# Properties

 Label 5850.2.e.m Level $5850$ Weight $2$ Character orbit 5850.e Analytic conductor $46.712$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 5850.e (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$46.7124851824$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 390) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{2} - q^{4} + 4 i q^{7} -i q^{8} +O(q^{10})$$ $$q + i q^{2} - q^{4} + 4 i q^{7} -i q^{8} + i q^{13} -4 q^{14} + q^{16} + 2 i q^{17} -4 q^{19} + 8 i q^{23} - q^{26} -4 i q^{28} + 2 q^{29} -8 q^{31} + i q^{32} -2 q^{34} + 2 i q^{37} -4 i q^{38} + 6 q^{41} -12 i q^{43} -8 q^{46} -9 q^{49} -i q^{52} + 10 i q^{53} + 4 q^{56} + 2 i q^{58} -10 q^{61} -8 i q^{62} - q^{64} -4 i q^{67} -2 i q^{68} + 16 q^{71} + 6 i q^{73} -2 q^{74} + 4 q^{76} + 8 q^{79} + 6 i q^{82} -4 i q^{83} + 12 q^{86} -14 q^{89} -4 q^{91} -8 i q^{92} -6 i q^{97} -9 i q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{4} + O(q^{10})$$ $$2q - 2q^{4} - 8q^{14} + 2q^{16} - 8q^{19} - 2q^{26} + 4q^{29} - 16q^{31} - 4q^{34} + 12q^{41} - 16q^{46} - 18q^{49} + 8q^{56} - 20q^{61} - 2q^{64} + 32q^{71} - 4q^{74} + 8q^{76} + 16q^{79} + 24q^{86} - 28q^{89} - 8q^{91} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/5850\mathbb{Z}\right)^\times$$.

 $$n$$ $$2251$$ $$3251$$ $$3277$$ $$\chi(n)$$ $$1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
5149.1
 − 1.00000i 1.00000i
1.00000i 0 −1.00000 0 0 4.00000i 1.00000i 0 0
5149.2 1.00000i 0 −1.00000 0 0 4.00000i 1.00000i 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5850.2.e.m 2
3.b odd 2 1 1950.2.e.e 2
5.b even 2 1 inner 5850.2.e.m 2
5.c odd 4 1 1170.2.a.n 1
5.c odd 4 1 5850.2.a.c 1
15.d odd 2 1 1950.2.e.e 2
15.e even 4 1 390.2.a.c 1
15.e even 4 1 1950.2.a.n 1
20.e even 4 1 9360.2.a.bc 1
60.l odd 4 1 3120.2.a.a 1
195.j odd 4 1 5070.2.b.i 2
195.s even 4 1 5070.2.a.u 1
195.u odd 4 1 5070.2.b.i 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.a.c 1 15.e even 4 1
1170.2.a.n 1 5.c odd 4 1
1950.2.a.n 1 15.e even 4 1
1950.2.e.e 2 3.b odd 2 1
1950.2.e.e 2 15.d odd 2 1
3120.2.a.a 1 60.l odd 4 1
5070.2.a.u 1 195.s even 4 1
5070.2.b.i 2 195.j odd 4 1
5070.2.b.i 2 195.u odd 4 1
5850.2.a.c 1 5.c odd 4 1
5850.2.e.m 2 1.a even 1 1 trivial
5850.2.e.m 2 5.b even 2 1 inner
9360.2.a.bc 1 20.e even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(5850, [\chi])$$:

 $$T_{7}^{2} + 16$$ $$T_{11}$$ $$T_{17}^{2} + 4$$ $$T_{19} + 4$$ $$T_{29} - 2$$ $$T_{31} + 8$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$16 + T^{2}$$
$11$ $$T^{2}$$
$13$ $$1 + T^{2}$$
$17$ $$4 + T^{2}$$
$19$ $$( 4 + T )^{2}$$
$23$ $$64 + T^{2}$$
$29$ $$( -2 + T )^{2}$$
$31$ $$( 8 + T )^{2}$$
$37$ $$4 + T^{2}$$
$41$ $$( -6 + T )^{2}$$
$43$ $$144 + T^{2}$$
$47$ $$T^{2}$$
$53$ $$100 + T^{2}$$
$59$ $$T^{2}$$
$61$ $$( 10 + T )^{2}$$
$67$ $$16 + T^{2}$$
$71$ $$( -16 + T )^{2}$$
$73$ $$36 + T^{2}$$
$79$ $$( -8 + T )^{2}$$
$83$ $$16 + T^{2}$$
$89$ $$( 14 + T )^{2}$$
$97$ $$36 + T^{2}$$