Defining parameters
Level: | \( N \) | = | \( 50 = 2 \cdot 5^{2} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 4 \) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(300\) | ||
Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(50))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 103 | 24 | 79 |
Cusp forms | 48 | 24 | 24 |
Eisenstein series | 55 | 0 | 55 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(50))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(50))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(50)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 1}\)