Properties

Label 130.2
Level 130
Weight 2
Dimension 155
Nonzero newspaces 12
Newform subspaces 30
Sturm bound 2016
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 30 \)
Sturm bound: \(2016\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(130))\).

Total New Old
Modular forms 600 155 445
Cusp forms 409 155 254
Eisenstein series 191 0 191

Trace form

\( 155 q + q^{2} + 4 q^{3} + q^{4} + q^{5} + 4 q^{6} - 5 q^{8} - 19 q^{9} - 14 q^{10} - 12 q^{11} - 4 q^{12} - 35 q^{13} - 16 q^{14} - 20 q^{15} - 7 q^{16} - 12 q^{17} - 17 q^{18} - 36 q^{19} - 2 q^{20}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(130))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
130.2.a \(\chi_{130}(1, \cdot)\) 130.2.a.a 1 1
130.2.a.b 1
130.2.a.c 1
130.2.b \(\chi_{130}(79, \cdot)\) 130.2.b.a 6 1
130.2.c \(\chi_{130}(129, \cdot)\) 130.2.c.a 4 1
130.2.c.b 4
130.2.d \(\chi_{130}(51, \cdot)\) 130.2.d.a 2 1
130.2.e \(\chi_{130}(61, \cdot)\) 130.2.e.a 2 2
130.2.e.b 2
130.2.e.c 4
130.2.e.d 4
130.2.g \(\chi_{130}(57, \cdot)\) 130.2.g.a 2 2
130.2.g.b 2
130.2.g.c 2
130.2.g.d 4
130.2.g.e 4
130.2.j \(\chi_{130}(47, \cdot)\) 130.2.j.a 2 2
130.2.j.b 2
130.2.j.c 2
130.2.j.d 4
130.2.j.e 4
130.2.l \(\chi_{130}(101, \cdot)\) 130.2.l.a 4 2
130.2.l.b 8
130.2.m \(\chi_{130}(49, \cdot)\) 130.2.m.a 8 2
130.2.m.b 8
130.2.n \(\chi_{130}(9, \cdot)\) 130.2.n.a 12 2
130.2.p \(\chi_{130}(7, \cdot)\) 130.2.p.a 12 4
130.2.p.b 16
130.2.s \(\chi_{130}(33, \cdot)\) 130.2.s.a 12 4
130.2.s.b 16

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(130))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(130)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(65))\)\(^{\oplus 2}\)