Properties

Label 90.2
Level 90
Weight 2
Dimension 53
Nonzero newspaces 6
Newform subspaces 12
Sturm bound 864
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 12 \)
Sturm bound: \(864\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(90))\).

Total New Old
Modular forms 280 53 227
Cusp forms 153 53 100
Eisenstein series 127 0 127

Trace form

\( 53 q + 3 q^{2} + 6 q^{3} + 3 q^{4} + 5 q^{5} - 6 q^{6} + 12 q^{7} - 3 q^{8} - 14 q^{9} - 11 q^{10} - 26 q^{11} - 8 q^{12} - 14 q^{13} - 20 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 4 q^{18} - 8 q^{19}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(90))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
90.2.a \(\chi_{90}(1, \cdot)\) 90.2.a.a 1 1
90.2.a.b 1
90.2.a.c 1
90.2.c \(\chi_{90}(19, \cdot)\) 90.2.c.a 2 1
90.2.e \(\chi_{90}(31, \cdot)\) 90.2.e.a 2 2
90.2.e.b 2
90.2.e.c 4
90.2.f \(\chi_{90}(17, \cdot)\) 90.2.f.a 4 2
90.2.i \(\chi_{90}(49, \cdot)\) 90.2.i.a 4 2
90.2.i.b 8
90.2.l \(\chi_{90}(23, \cdot)\) 90.2.l.a 8 4
90.2.l.b 16

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(90))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(90)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 1}\)