Properties

Label 150.2
Level 150
Weight 2
Dimension 137
Nonzero newspaces 6
Newform subspaces 12
Sturm bound 2400
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 12 \)
Sturm bound: \(2400\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(150))\).

Total New Old
Modular forms 712 137 575
Cusp forms 489 137 352
Eisenstein series 223 0 223

Trace form

\( 137 q + 3 q^{2} + 7 q^{3} + 3 q^{4} + 10 q^{5} + 7 q^{6} + 24 q^{7} + 3 q^{8} + 3 q^{9} + 2 q^{10} + 4 q^{11} - 9 q^{12} + 10 q^{13} - 8 q^{14} - 4 q^{15} + 3 q^{16} - 34 q^{17} - 23 q^{18} - 52 q^{19}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(150))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
150.2.a \(\chi_{150}(1, \cdot)\) 150.2.a.a 1 1
150.2.a.b 1
150.2.a.c 1
150.2.c \(\chi_{150}(49, \cdot)\) 150.2.c.a 2 1
150.2.e \(\chi_{150}(107, \cdot)\) 150.2.e.a 4 2
150.2.e.b 8
150.2.g \(\chi_{150}(31, \cdot)\) 150.2.g.a 4 4
150.2.g.b 4
150.2.g.c 8
150.2.h \(\chi_{150}(19, \cdot)\) 150.2.h.a 8 4
150.2.h.b 16
150.2.l \(\chi_{150}(17, \cdot)\) 150.2.l.a 80 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(150))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(150)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)