Properties

Label 5850.2.e.bk
Level $5850$
Weight $2$
Character orbit 5850.e
Analytic conductor $46.712$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5850,2,Mod(5149,5850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5850.5149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5850, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5850.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(46.7124851824\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - q^{4} + \beta_{2} q^{7} + \beta_1 q^{8} + 2 \beta_{3} q^{11} + \beta_1 q^{13} + \beta_{3} q^{14} + q^{16} + (\beta_{2} + 2 \beta_1) q^{17} + \beta_{3} q^{19} - 2 \beta_{2} q^{22}+ \cdots + \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 4 q^{16} + 4 q^{26} - 24 q^{29} + 16 q^{31} + 8 q^{34} + 8 q^{41} - 4 q^{49} - 32 q^{59} + 24 q^{61} - 4 q^{64} - 24 q^{74} - 32 q^{79} - 16 q^{86} - 40 q^{89} + 32 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{8}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\zeta_{8}^{3} + 2\zeta_{8} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -2\zeta_{8}^{3} + 2\zeta_{8} \) Copy content Toggle raw display
\(\zeta_{8}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\zeta_{8}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{8}^{3}\)\(=\) \( ( -\beta_{3} + \beta_{2} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5850\mathbb{Z}\right)^\times\).

\(n\) \(2251\) \(3251\) \(3277\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5149.1
−0.707107 0.707107i
0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
1.00000i 0 −1.00000 0 0 2.82843i 1.00000i 0 0
5149.2 1.00000i 0 −1.00000 0 0 2.82843i 1.00000i 0 0
5149.3 1.00000i 0 −1.00000 0 0 2.82843i 1.00000i 0 0
5149.4 1.00000i 0 −1.00000 0 0 2.82843i 1.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5850.2.e.bk 4
3.b odd 2 1 1950.2.e.o 4
5.b even 2 1 inner 5850.2.e.bk 4
5.c odd 4 1 1170.2.a.o 2
5.c odd 4 1 5850.2.a.cl 2
15.d odd 2 1 1950.2.e.o 4
15.e even 4 1 390.2.a.h 2
15.e even 4 1 1950.2.a.bd 2
20.e even 4 1 9360.2.a.ch 2
60.l odd 4 1 3120.2.a.bc 2
195.j odd 4 1 5070.2.b.q 4
195.s even 4 1 5070.2.a.bc 2
195.u odd 4 1 5070.2.b.q 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.a.h 2 15.e even 4 1
1170.2.a.o 2 5.c odd 4 1
1950.2.a.bd 2 15.e even 4 1
1950.2.e.o 4 3.b odd 2 1
1950.2.e.o 4 15.d odd 2 1
3120.2.a.bc 2 60.l odd 4 1
5070.2.a.bc 2 195.s even 4 1
5070.2.b.q 4 195.j odd 4 1
5070.2.b.q 4 195.u odd 4 1
5850.2.a.cl 2 5.c odd 4 1
5850.2.e.bk 4 1.a even 1 1 trivial
5850.2.e.bk 4 5.b even 2 1 inner
9360.2.a.ch 2 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5850, [\chi])\):

\( T_{7}^{2} + 8 \) Copy content Toggle raw display
\( T_{11}^{2} - 32 \) Copy content Toggle raw display
\( T_{17}^{4} + 24T_{17}^{2} + 16 \) Copy content Toggle raw display
\( T_{19}^{2} - 8 \) Copy content Toggle raw display
\( T_{29}^{2} + 12T_{29} + 28 \) Copy content Toggle raw display
\( T_{31} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$19$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 12 T + 28)^{2} \) Copy content Toggle raw display
$31$ \( (T - 4)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 136T^{2} + 16 \) Copy content Toggle raw display
$41$ \( (T^{2} - 4 T - 28)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 96T^{2} + 256 \) Copy content Toggle raw display
$47$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 264 T^{2} + 15376 \) Copy content Toggle raw display
$59$ \( (T^{2} + 16 T + 32)^{2} \) Copy content Toggle raw display
$61$ \( (T - 6)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 216T^{2} + 1296 \) Copy content Toggle raw display
$79$ \( (T^{2} + 16 T + 32)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 352 T^{2} + 12544 \) Copy content Toggle raw display
$89$ \( (T^{2} + 20 T + 68)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 88T^{2} + 784 \) Copy content Toggle raw display
show more
show less