Properties

Label 117.2
Level 117
Weight 2
Dimension 345
Nonzero newspaces 15
Newform subspaces 31
Sturm bound 2016
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 15 \)
Newform subspaces: \( 31 \)
Sturm bound: \(2016\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(117))\).

Total New Old
Modular forms 600 443 157
Cusp forms 409 345 64
Eisenstein series 191 98 93

Trace form

\( 345 q - 18 q^{2} - 24 q^{3} - 18 q^{4} - 18 q^{5} - 24 q^{6} - 20 q^{7} - 27 q^{8} - 24 q^{9} - 69 q^{10} - 24 q^{11} - 24 q^{12} - 30 q^{13} - 48 q^{14} - 24 q^{15} - 38 q^{16} - 27 q^{17} - 24 q^{18}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(117))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
117.2.a \(\chi_{117}(1, \cdot)\) 117.2.a.a 1 1
117.2.a.b 2
117.2.a.c 2
117.2.b \(\chi_{117}(64, \cdot)\) 117.2.b.a 2 1
117.2.b.b 4
117.2.e \(\chi_{117}(40, \cdot)\) 117.2.e.a 2 2
117.2.e.b 10
117.2.e.c 12
117.2.f \(\chi_{117}(61, \cdot)\) 117.2.f.a 24 2
117.2.g \(\chi_{117}(55, \cdot)\) 117.2.g.a 2 2
117.2.g.b 2
117.2.g.c 4
117.2.h \(\chi_{117}(16, \cdot)\) 117.2.h.a 24 2
117.2.i \(\chi_{117}(8, \cdot)\) 117.2.i.a 12 2
117.2.l \(\chi_{117}(4, \cdot)\) 117.2.l.a 2 2
117.2.l.b 22
117.2.q \(\chi_{117}(10, \cdot)\) 117.2.q.a 2 2
117.2.q.b 2
117.2.q.c 2
117.2.q.d 4
117.2.r \(\chi_{117}(43, \cdot)\) 117.2.r.a 2 2
117.2.r.b 22
117.2.t \(\chi_{117}(25, \cdot)\) 117.2.t.a 2 2
117.2.t.b 2
117.2.t.c 20
117.2.x \(\chi_{117}(2, \cdot)\) 117.2.x.a 48 4
117.2.z \(\chi_{117}(5, \cdot)\) 117.2.z.a 4 4
117.2.z.b 44
117.2.ba \(\chi_{117}(71, \cdot)\) 117.2.ba.a 8 4
117.2.ba.b 8
117.2.bc \(\chi_{117}(20, \cdot)\) 117.2.bc.a 48 4

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(117))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(117)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(117))\)\(^{\oplus 1}\)