Properties

Label 26.2
Level 26
Weight 2
Dimension 6
Nonzero newspaces 3
Newform subspaces 4
Sturm bound 84
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 26 = 2 \cdot 13 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 4 \)
Sturm bound: \(84\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(26))\).

Total New Old
Modular forms 33 6 27
Cusp forms 10 6 4
Eisenstein series 23 0 23

Trace form

\( 6 q - q^{2} - 4 q^{3} - q^{4} - 6 q^{5} - 4 q^{6} - 4 q^{7} + 2 q^{8} + 3 q^{9} + 9 q^{10} + 11 q^{13} + 4 q^{14} + 3 q^{16} - 3 q^{17} + 2 q^{18} + 8 q^{19} - 3 q^{20} - 4 q^{21} - 12 q^{22} - 12 q^{23}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
26.2.a \(\chi_{26}(1, \cdot)\) 26.2.a.a 1 1
26.2.a.b 1
26.2.b \(\chi_{26}(25, \cdot)\) 26.2.b.a 2 1
26.2.c \(\chi_{26}(3, \cdot)\) 26.2.c.a 2 2
26.2.e \(\chi_{26}(17, \cdot)\) None 0 2

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(26))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(26)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 2}\)