Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1950))\).
|
Total |
New |
Old |
Modular forms
| 103488 |
22952 |
80536 |
Cusp forms
| 98113 |
22952 |
75161 |
Eisenstein series
| 5375 |
0 |
5375 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1950))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label |
\(\chi\) |
Newforms |
Dimension |
\(\chi\) degree |
1950.2.a |
\(\chi_{1950}(1, \cdot)\) |
1950.2.a.a |
1 |
1 |
1950.2.a.b |
1 |
1950.2.a.c |
1 |
1950.2.a.d |
1 |
1950.2.a.e |
1 |
1950.2.a.f |
1 |
1950.2.a.g |
1 |
1950.2.a.h |
1 |
1950.2.a.i |
1 |
1950.2.a.j |
1 |
1950.2.a.k |
1 |
1950.2.a.l |
1 |
1950.2.a.m |
1 |
1950.2.a.n |
1 |
1950.2.a.o |
1 |
1950.2.a.p |
1 |
1950.2.a.q |
1 |
1950.2.a.r |
1 |
1950.2.a.s |
1 |
1950.2.a.t |
1 |
1950.2.a.u |
1 |
1950.2.a.v |
1 |
1950.2.a.w |
1 |
1950.2.a.x |
1 |
1950.2.a.y |
1 |
1950.2.a.z |
1 |
1950.2.a.ba |
1 |
1950.2.a.bb |
1 |
1950.2.a.bc |
2 |
1950.2.a.bd |
2 |
1950.2.a.be |
2 |
1950.2.a.bf |
2 |
1950.2.a.bg |
2 |
1950.2.b |
\(\chi_{1950}(1351, \cdot)\) |
1950.2.b.a |
2 |
1 |
1950.2.b.b |
2 |
1950.2.b.c |
2 |
1950.2.b.d |
2 |
1950.2.b.e |
2 |
1950.2.b.f |
2 |
1950.2.b.g |
2 |
1950.2.b.h |
4 |
1950.2.b.i |
4 |
1950.2.b.j |
4 |
1950.2.b.k |
4 |
1950.2.b.l |
6 |
1950.2.b.m |
6 |
1950.2.e |
\(\chi_{1950}(1249, \cdot)\) |
1950.2.e.a |
2 |
1 |
1950.2.e.b |
2 |
1950.2.e.c |
2 |
1950.2.e.d |
2 |
1950.2.e.e |
2 |
1950.2.e.f |
2 |
1950.2.e.g |
2 |
1950.2.e.h |
2 |
1950.2.e.i |
2 |
1950.2.e.j |
2 |
1950.2.e.k |
2 |
1950.2.e.l |
2 |
1950.2.e.m |
2 |
1950.2.e.n |
2 |
1950.2.e.o |
4 |
1950.2.e.p |
4 |
1950.2.f |
\(\chi_{1950}(649, \cdot)\) |
1950.2.f.a |
2 |
1 |
1950.2.f.b |
2 |
1950.2.f.c |
2 |
1950.2.f.d |
2 |
1950.2.f.e |
2 |
1950.2.f.f |
2 |
1950.2.f.g |
2 |
1950.2.f.h |
2 |
1950.2.f.i |
2 |
1950.2.f.j |
2 |
1950.2.f.k |
4 |
1950.2.f.l |
4 |
1950.2.f.m |
4 |
1950.2.f.n |
4 |
1950.2.f.o |
4 |
1950.2.f.p |
4 |
1950.2.i |
\(\chi_{1950}(451, \cdot)\) |
1950.2.i.a |
2 |
2 |
1950.2.i.b |
2 |
1950.2.i.c |
2 |
1950.2.i.d |
2 |
1950.2.i.e |
2 |
1950.2.i.f |
2 |
1950.2.i.g |
2 |
1950.2.i.h |
2 |
1950.2.i.i |
2 |
1950.2.i.j |
2 |
1950.2.i.k |
2 |
1950.2.i.l |
2 |
1950.2.i.m |
2 |
1950.2.i.n |
2 |
1950.2.i.o |
2 |
1950.2.i.p |
2 |
1950.2.i.q |
2 |
1950.2.i.r |
2 |
1950.2.i.s |
2 |
1950.2.i.t |
2 |
1950.2.i.u |
2 |
1950.2.i.v |
2 |
1950.2.i.w |
2 |
1950.2.i.x |
2 |
1950.2.i.y |
4 |
1950.2.i.z |
4 |
1950.2.i.ba |
4 |
1950.2.i.bb |
4 |
1950.2.i.bc |
4 |
1950.2.i.bd |
4 |
1950.2.i.be |
4 |
1950.2.i.bf |
4 |
1950.2.i.bg |
4 |
1950.2.i.bh |
4 |
1950.2.i.bi |
4 |
1950.2.j |
\(\chi_{1950}(1243, \cdot)\) |
1950.2.j.a |
12 |
2 |
1950.2.j.b |
12 |
1950.2.j.c |
12 |
1950.2.j.d |
16 |
1950.2.j.e |
16 |
1950.2.j.f |
16 |
1950.2.l |
\(\chi_{1950}(443, \cdot)\) |
n/a |
144 |
2 |
1950.2.n |
\(\chi_{1950}(749, \cdot)\) |
n/a |
168 |
2 |
1950.2.p |
\(\chi_{1950}(551, \cdot)\) |
n/a |
180 |
2 |
1950.2.s |
\(\chi_{1950}(857, \cdot)\) |
n/a |
168 |
2 |
1950.2.t |
\(\chi_{1950}(307, \cdot)\) |
1950.2.t.a |
12 |
2 |
1950.2.t.b |
12 |
1950.2.t.c |
12 |
1950.2.t.d |
16 |
1950.2.t.e |
16 |
1950.2.t.f |
16 |
1950.2.v |
\(\chi_{1950}(391, \cdot)\) |
n/a |
240 |
4 |
1950.2.y |
\(\chi_{1950}(49, \cdot)\) |
1950.2.y.a |
4 |
2 |
1950.2.y.b |
4 |
1950.2.y.c |
4 |
1950.2.y.d |
4 |
1950.2.y.e |
4 |
1950.2.y.f |
4 |
1950.2.y.g |
4 |
1950.2.y.h |
4 |
1950.2.y.i |
8 |
1950.2.y.j |
8 |
1950.2.y.k |
8 |
1950.2.y.l |
8 |
1950.2.y.m |
12 |
1950.2.y.n |
12 |
1950.2.z |
\(\chi_{1950}(1699, \cdot)\) |
1950.2.z.a |
4 |
2 |
1950.2.z.b |
4 |
1950.2.z.c |
4 |
1950.2.z.d |
4 |
1950.2.z.e |
4 |
1950.2.z.f |
4 |
1950.2.z.g |
4 |
1950.2.z.h |
4 |
1950.2.z.i |
4 |
1950.2.z.j |
4 |
1950.2.z.k |
4 |
1950.2.z.l |
4 |
1950.2.z.m |
8 |
1950.2.z.n |
8 |
1950.2.z.o |
8 |
1950.2.z.p |
8 |
1950.2.bc |
\(\chi_{1950}(751, \cdot)\) |
1950.2.bc.a |
4 |
2 |
1950.2.bc.b |
4 |
1950.2.bc.c |
4 |
1950.2.bc.d |
4 |
1950.2.bc.e |
8 |
1950.2.bc.f |
8 |
1950.2.bc.g |
8 |
1950.2.bc.h |
12 |
1950.2.bc.i |
12 |
1950.2.bc.j |
12 |
1950.2.bc.k |
12 |
1950.2.bd |
\(\chi_{1950}(79, \cdot)\) |
n/a |
240 |
4 |
1950.2.bg |
\(\chi_{1950}(181, \cdot)\) |
n/a |
288 |
4 |
1950.2.bj |
\(\chi_{1950}(259, \cdot)\) |
n/a |
272 |
4 |
1950.2.bl |
\(\chi_{1950}(7, \cdot)\) |
n/a |
168 |
4 |
1950.2.bm |
\(\chi_{1950}(257, \cdot)\) |
n/a |
336 |
4 |
1950.2.bp |
\(\chi_{1950}(401, \cdot)\) |
n/a |
352 |
4 |
1950.2.br |
\(\chi_{1950}(149, \cdot)\) |
n/a |
336 |
4 |
1950.2.bt |
\(\chi_{1950}(107, \cdot)\) |
n/a |
336 |
4 |
1950.2.bv |
\(\chi_{1950}(193, \cdot)\) |
n/a |
168 |
4 |
1950.2.bw |
\(\chi_{1950}(61, \cdot)\) |
n/a |
544 |
8 |
1950.2.by |
\(\chi_{1950}(73, \cdot)\) |
n/a |
560 |
8 |
1950.2.bz |
\(\chi_{1950}(77, \cdot)\) |
n/a |
1120 |
8 |
1950.2.cc |
\(\chi_{1950}(161, \cdot)\) |
n/a |
1120 |
8 |
1950.2.ce |
\(\chi_{1950}(239, \cdot)\) |
n/a |
1120 |
8 |
1950.2.cg |
\(\chi_{1950}(53, \cdot)\) |
n/a |
960 |
8 |
1950.2.ci |
\(\chi_{1950}(697, \cdot)\) |
n/a |
560 |
8 |
1950.2.cj |
\(\chi_{1950}(439, \cdot)\) |
n/a |
544 |
8 |
1950.2.cm |
\(\chi_{1950}(121, \cdot)\) |
n/a |
576 |
8 |
1950.2.cp |
\(\chi_{1950}(139, \cdot)\) |
n/a |
576 |
8 |
1950.2.cq |
\(\chi_{1950}(37, \cdot)\) |
n/a |
1120 |
16 |
1950.2.cs |
\(\chi_{1950}(113, \cdot)\) |
n/a |
2240 |
16 |
1950.2.cu |
\(\chi_{1950}(59, \cdot)\) |
n/a |
2240 |
16 |
1950.2.cw |
\(\chi_{1950}(11, \cdot)\) |
n/a |
2240 |
16 |
1950.2.cz |
\(\chi_{1950}(17, \cdot)\) |
n/a |
2240 |
16 |
1950.2.da |
\(\chi_{1950}(67, \cdot)\) |
n/a |
1120 |
16 |
"n/a" means that newforms for that character have not been added to the database yet