Properties

Label 1950.2
Level 1950
Weight 2
Dimension 22952
Nonzero newspaces 40
Sturm bound 403200
Trace bound 19

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 40 \)
Sturm bound: \(403200\)
Trace bound: \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1950))\).

Total New Old
Modular forms 103488 22952 80536
Cusp forms 98113 22952 75161
Eisenstein series 5375 0 5375

Trace form

\( 22952 q - 6 q^{2} - 14 q^{3} - 6 q^{4} - 20 q^{5} - 14 q^{6} - 56 q^{7} - 12 q^{8} - 10 q^{9} - 4 q^{10} - 32 q^{11} + 14 q^{12} - 58 q^{13} - 8 q^{14} + 8 q^{15} - 14 q^{16} + 38 q^{17} + 40 q^{18} + 48 q^{19}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1950))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1950.2.a \(\chi_{1950}(1, \cdot)\) 1950.2.a.a 1 1
1950.2.a.b 1
1950.2.a.c 1
1950.2.a.d 1
1950.2.a.e 1
1950.2.a.f 1
1950.2.a.g 1
1950.2.a.h 1
1950.2.a.i 1
1950.2.a.j 1
1950.2.a.k 1
1950.2.a.l 1
1950.2.a.m 1
1950.2.a.n 1
1950.2.a.o 1
1950.2.a.p 1
1950.2.a.q 1
1950.2.a.r 1
1950.2.a.s 1
1950.2.a.t 1
1950.2.a.u 1
1950.2.a.v 1
1950.2.a.w 1
1950.2.a.x 1
1950.2.a.y 1
1950.2.a.z 1
1950.2.a.ba 1
1950.2.a.bb 1
1950.2.a.bc 2
1950.2.a.bd 2
1950.2.a.be 2
1950.2.a.bf 2
1950.2.a.bg 2
1950.2.b \(\chi_{1950}(1351, \cdot)\) 1950.2.b.a 2 1
1950.2.b.b 2
1950.2.b.c 2
1950.2.b.d 2
1950.2.b.e 2
1950.2.b.f 2
1950.2.b.g 2
1950.2.b.h 4
1950.2.b.i 4
1950.2.b.j 4
1950.2.b.k 4
1950.2.b.l 6
1950.2.b.m 6
1950.2.e \(\chi_{1950}(1249, \cdot)\) 1950.2.e.a 2 1
1950.2.e.b 2
1950.2.e.c 2
1950.2.e.d 2
1950.2.e.e 2
1950.2.e.f 2
1950.2.e.g 2
1950.2.e.h 2
1950.2.e.i 2
1950.2.e.j 2
1950.2.e.k 2
1950.2.e.l 2
1950.2.e.m 2
1950.2.e.n 2
1950.2.e.o 4
1950.2.e.p 4
1950.2.f \(\chi_{1950}(649, \cdot)\) 1950.2.f.a 2 1
1950.2.f.b 2
1950.2.f.c 2
1950.2.f.d 2
1950.2.f.e 2
1950.2.f.f 2
1950.2.f.g 2
1950.2.f.h 2
1950.2.f.i 2
1950.2.f.j 2
1950.2.f.k 4
1950.2.f.l 4
1950.2.f.m 4
1950.2.f.n 4
1950.2.f.o 4
1950.2.f.p 4
1950.2.i \(\chi_{1950}(451, \cdot)\) 1950.2.i.a 2 2
1950.2.i.b 2
1950.2.i.c 2
1950.2.i.d 2
1950.2.i.e 2
1950.2.i.f 2
1950.2.i.g 2
1950.2.i.h 2
1950.2.i.i 2
1950.2.i.j 2
1950.2.i.k 2
1950.2.i.l 2
1950.2.i.m 2
1950.2.i.n 2
1950.2.i.o 2
1950.2.i.p 2
1950.2.i.q 2
1950.2.i.r 2
1950.2.i.s 2
1950.2.i.t 2
1950.2.i.u 2
1950.2.i.v 2
1950.2.i.w 2
1950.2.i.x 2
1950.2.i.y 4
1950.2.i.z 4
1950.2.i.ba 4
1950.2.i.bb 4
1950.2.i.bc 4
1950.2.i.bd 4
1950.2.i.be 4
1950.2.i.bf 4
1950.2.i.bg 4
1950.2.i.bh 4
1950.2.i.bi 4
1950.2.j \(\chi_{1950}(1243, \cdot)\) 1950.2.j.a 12 2
1950.2.j.b 12
1950.2.j.c 12
1950.2.j.d 16
1950.2.j.e 16
1950.2.j.f 16
1950.2.l \(\chi_{1950}(443, \cdot)\) n/a 144 2
1950.2.n \(\chi_{1950}(749, \cdot)\) n/a 168 2
1950.2.p \(\chi_{1950}(551, \cdot)\) n/a 180 2
1950.2.s \(\chi_{1950}(857, \cdot)\) n/a 168 2
1950.2.t \(\chi_{1950}(307, \cdot)\) 1950.2.t.a 12 2
1950.2.t.b 12
1950.2.t.c 12
1950.2.t.d 16
1950.2.t.e 16
1950.2.t.f 16
1950.2.v \(\chi_{1950}(391, \cdot)\) n/a 240 4
1950.2.y \(\chi_{1950}(49, \cdot)\) 1950.2.y.a 4 2
1950.2.y.b 4
1950.2.y.c 4
1950.2.y.d 4
1950.2.y.e 4
1950.2.y.f 4
1950.2.y.g 4
1950.2.y.h 4
1950.2.y.i 8
1950.2.y.j 8
1950.2.y.k 8
1950.2.y.l 8
1950.2.y.m 12
1950.2.y.n 12
1950.2.z \(\chi_{1950}(1699, \cdot)\) 1950.2.z.a 4 2
1950.2.z.b 4
1950.2.z.c 4
1950.2.z.d 4
1950.2.z.e 4
1950.2.z.f 4
1950.2.z.g 4
1950.2.z.h 4
1950.2.z.i 4
1950.2.z.j 4
1950.2.z.k 4
1950.2.z.l 4
1950.2.z.m 8
1950.2.z.n 8
1950.2.z.o 8
1950.2.z.p 8
1950.2.bc \(\chi_{1950}(751, \cdot)\) 1950.2.bc.a 4 2
1950.2.bc.b 4
1950.2.bc.c 4
1950.2.bc.d 4
1950.2.bc.e 8
1950.2.bc.f 8
1950.2.bc.g 8
1950.2.bc.h 12
1950.2.bc.i 12
1950.2.bc.j 12
1950.2.bc.k 12
1950.2.bd \(\chi_{1950}(79, \cdot)\) n/a 240 4
1950.2.bg \(\chi_{1950}(181, \cdot)\) n/a 288 4
1950.2.bj \(\chi_{1950}(259, \cdot)\) n/a 272 4
1950.2.bl \(\chi_{1950}(7, \cdot)\) n/a 168 4
1950.2.bm \(\chi_{1950}(257, \cdot)\) n/a 336 4
1950.2.bp \(\chi_{1950}(401, \cdot)\) n/a 352 4
1950.2.br \(\chi_{1950}(149, \cdot)\) n/a 336 4
1950.2.bt \(\chi_{1950}(107, \cdot)\) n/a 336 4
1950.2.bv \(\chi_{1950}(193, \cdot)\) n/a 168 4
1950.2.bw \(\chi_{1950}(61, \cdot)\) n/a 544 8
1950.2.by \(\chi_{1950}(73, \cdot)\) n/a 560 8
1950.2.bz \(\chi_{1950}(77, \cdot)\) n/a 1120 8
1950.2.cc \(\chi_{1950}(161, \cdot)\) n/a 1120 8
1950.2.ce \(\chi_{1950}(239, \cdot)\) n/a 1120 8
1950.2.cg \(\chi_{1950}(53, \cdot)\) n/a 960 8
1950.2.ci \(\chi_{1950}(697, \cdot)\) n/a 560 8
1950.2.cj \(\chi_{1950}(439, \cdot)\) n/a 544 8
1950.2.cm \(\chi_{1950}(121, \cdot)\) n/a 576 8
1950.2.cp \(\chi_{1950}(139, \cdot)\) n/a 576 8
1950.2.cq \(\chi_{1950}(37, \cdot)\) n/a 1120 16
1950.2.cs \(\chi_{1950}(113, \cdot)\) n/a 2240 16
1950.2.cu \(\chi_{1950}(59, \cdot)\) n/a 2240 16
1950.2.cw \(\chi_{1950}(11, \cdot)\) n/a 2240 16
1950.2.cz \(\chi_{1950}(17, \cdot)\) n/a 2240 16
1950.2.da \(\chi_{1950}(67, \cdot)\) n/a 1120 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1950))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1950)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(65))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(130))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(195))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(325))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(390))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(650))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(975))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1950))\)\(^{\oplus 1}\)