Properties

 Label 1170.2 Level 1170 Weight 2 Dimension 8672 Nonzero newspaces 50 Sturm bound 145152 Trace bound 31

Defining parameters

 Level: $$N$$ = $$1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13$$ Weight: $$k$$ = $$2$$ Nonzero newspaces: $$50$$ Sturm bound: $$145152$$ Trace bound: $$31$$

Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(1170))$$.

Total New Old
Modular forms 37824 8672 29152
Cusp forms 34753 8672 26081
Eisenstein series 3071 0 3071

Trace form

 $$8672 q - 6 q^{2} - 12 q^{3} - 6 q^{4} - 10 q^{5} + 12 q^{6} - 32 q^{7} + 28 q^{9} + O(q^{10})$$ $$8672 q - 6 q^{2} - 12 q^{3} - 6 q^{4} - 10 q^{5} + 12 q^{6} - 32 q^{7} + 28 q^{9} + 7 q^{10} + 28 q^{11} + 16 q^{12} - 34 q^{13} + 16 q^{14} + 48 q^{15} - 14 q^{16} + 6 q^{17} + 8 q^{18} - 40 q^{19} + 19 q^{20} + 72 q^{21} + 20 q^{22} + 48 q^{23} - 12 q^{24} + 34 q^{25} - 6 q^{26} + 48 q^{27} + 24 q^{28} + 126 q^{29} + 48 q^{30} + 160 q^{31} - 6 q^{32} + 124 q^{33} + 136 q^{34} + 136 q^{35} + 76 q^{36} + 214 q^{37} + 132 q^{38} + 128 q^{39} + 6 q^{40} + 130 q^{41} + 16 q^{42} + 116 q^{43} + 80 q^{44} - 40 q^{45} + 144 q^{46} + 72 q^{47} - 20 q^{48} + 154 q^{49} - 13 q^{50} + 36 q^{51} + 20 q^{52} - 36 q^{53} - 60 q^{54} + 124 q^{55} - 16 q^{56} - 52 q^{57} - 14 q^{58} + 28 q^{59} + 16 q^{60} - 10 q^{61} + 72 q^{62} + 176 q^{63} + 12 q^{64} + 291 q^{65} + 96 q^{66} + 268 q^{67} + 78 q^{68} + 272 q^{69} + 156 q^{70} + 480 q^{71} + 12 q^{72} + 468 q^{73} + 130 q^{74} + 108 q^{75} + 84 q^{76} + 312 q^{77} + 28 q^{78} + 160 q^{79} - q^{80} + 188 q^{81} + 26 q^{82} + 216 q^{83} + 24 q^{84} + 129 q^{85} + 92 q^{86} + 232 q^{87} + 20 q^{88} + 188 q^{89} + 112 q^{90} + 104 q^{91} + 24 q^{92} + 80 q^{93} - 64 q^{94} + 16 q^{96} - 32 q^{97} - 138 q^{98} - 248 q^{99} + O(q^{100})$$

Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(1170))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list available newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
1170.2.a $$\chi_{1170}(1, \cdot)$$ 1170.2.a.a 1 1
1170.2.a.b 1
1170.2.a.c 1
1170.2.a.d 1
1170.2.a.e 1
1170.2.a.f 1
1170.2.a.g 1
1170.2.a.h 1
1170.2.a.i 1
1170.2.a.j 1
1170.2.a.k 1
1170.2.a.l 1
1170.2.a.m 1
1170.2.a.n 1
1170.2.a.o 2
1170.2.a.p 2
1170.2.a.q 2
1170.2.b $$\chi_{1170}(181, \cdot)$$ 1170.2.b.a 2 1
1170.2.b.b 2
1170.2.b.c 2
1170.2.b.d 4
1170.2.b.e 4
1170.2.b.f 4
1170.2.b.g 8
1170.2.e $$\chi_{1170}(469, \cdot)$$ 1170.2.e.a 2 1
1170.2.e.b 2
1170.2.e.c 2
1170.2.e.d 2
1170.2.e.e 4
1170.2.e.f 6
1170.2.e.g 6
1170.2.e.h 6
1170.2.f $$\chi_{1170}(649, \cdot)$$ 1170.2.f.a 4 1
1170.2.f.b 4
1170.2.f.c 6
1170.2.f.d 6
1170.2.f.e 8
1170.2.f.f 8
1170.2.i $$\chi_{1170}(451, \cdot)$$ 1170.2.i.a 2 2
1170.2.i.b 2
1170.2.i.c 2
1170.2.i.d 2
1170.2.i.e 2
1170.2.i.f 2
1170.2.i.g 2
1170.2.i.h 2
1170.2.i.i 2
1170.2.i.j 2
1170.2.i.k 2
1170.2.i.l 2
1170.2.i.m 4
1170.2.i.n 4
1170.2.i.o 4
1170.2.i.p 4
1170.2.i.q 4
1170.2.j $$\chi_{1170}(391, \cdot)$$ 1170.2.j.a 2 2
1170.2.j.b 2
1170.2.j.c 2
1170.2.j.d 2
1170.2.j.e 2
1170.2.j.f 2
1170.2.j.g 4
1170.2.j.h 8
1170.2.j.i 10
1170.2.j.j 10
1170.2.j.k 12
1170.2.j.l 12
1170.2.j.m 12
1170.2.j.n 16
1170.2.k $$\chi_{1170}(601, \cdot)$$ n/a 112 2
1170.2.l $$\chi_{1170}(61, \cdot)$$ n/a 112 2
1170.2.m $$\chi_{1170}(73, \cdot)$$ 1170.2.m.a 2 2
1170.2.m.b 2
1170.2.m.c 2
1170.2.m.d 4
1170.2.m.e 4
1170.2.m.f 12
1170.2.m.g 14
1170.2.m.h 14
1170.2.m.i 16
1170.2.o $$\chi_{1170}(53, \cdot)$$ 1170.2.o.a 12 2
1170.2.o.b 12
1170.2.o.c 12
1170.2.o.d 12
1170.2.q $$\chi_{1170}(359, \cdot)$$ 1170.2.q.a 4 2
1170.2.q.b 4
1170.2.q.c 24
1170.2.q.d 24
1170.2.s $$\chi_{1170}(161, \cdot)$$ 1170.2.s.a 4 2
1170.2.s.b 4
1170.2.s.c 4
1170.2.s.d 4
1170.2.s.e 8
1170.2.s.f 12
1170.2.s.g 12
1170.2.v $$\chi_{1170}(233, \cdot)$$ 1170.2.v.a 4 2
1170.2.v.b 4
1170.2.v.c 24
1170.2.v.d 24
1170.2.w $$\chi_{1170}(307, \cdot)$$ 1170.2.w.a 2 2
1170.2.w.b 2
1170.2.w.c 2
1170.2.w.d 4
1170.2.w.e 4
1170.2.w.f 12
1170.2.w.g 14
1170.2.w.h 14
1170.2.w.i 16
1170.2.y $$\chi_{1170}(529, \cdot)$$ n/a 168 2
1170.2.bb $$\chi_{1170}(511, \cdot)$$ n/a 112 2
1170.2.bd $$\chi_{1170}(439, \cdot)$$ n/a 168 2
1170.2.bg $$\chi_{1170}(259, \cdot)$$ n/a 168 2
1170.2.bj $$\chi_{1170}(199, \cdot)$$ 1170.2.bj.a 8 2
1170.2.bj.b 8
1170.2.bj.c 12
1170.2.bj.d 12
1170.2.bj.e 16
1170.2.bj.f 16
1170.2.bm $$\chi_{1170}(121, \cdot)$$ n/a 112 2
1170.2.bo $$\chi_{1170}(79, \cdot)$$ n/a 144 2
1170.2.bp $$\chi_{1170}(289, \cdot)$$ 1170.2.bp.a 4 2
1170.2.bp.b 4
1170.2.bp.c 4
1170.2.bp.d 4
1170.2.bp.e 4
1170.2.bp.f 4
1170.2.bp.g 8
1170.2.bp.h 12
1170.2.bp.i 24
1170.2.bs $$\chi_{1170}(361, \cdot)$$ 1170.2.bs.a 4 2
1170.2.bs.b 4
1170.2.bs.c 4
1170.2.bs.d 4
1170.2.bs.e 4
1170.2.bs.f 8
1170.2.bs.g 8
1170.2.bs.h 8
1170.2.bt $$\chi_{1170}(571, \cdot)$$ n/a 112 2
1170.2.bv $$\chi_{1170}(139, \cdot)$$ n/a 168 2
1170.2.bz $$\chi_{1170}(49, \cdot)$$ n/a 168 2
1170.2.cb $$\chi_{1170}(67, \cdot)$$ n/a 336 4
1170.2.cc $$\chi_{1170}(223, \cdot)$$ n/a 336 4
1170.2.cf $$\chi_{1170}(37, \cdot)$$ n/a 140 4
1170.2.cg $$\chi_{1170}(697, \cdot)$$ n/a 336 4
1170.2.cj $$\chi_{1170}(113, \cdot)$$ n/a 336 4
1170.2.cl $$\chi_{1170}(17, \cdot)$$ n/a 112 4
1170.2.cm $$\chi_{1170}(23, \cdot)$$ n/a 336 4
1170.2.cp $$\chi_{1170}(77, \cdot)$$ n/a 336 4
1170.2.cr $$\chi_{1170}(239, \cdot)$$ n/a 336 4
1170.2.cs $$\chi_{1170}(11, \cdot)$$ n/a 224 4
1170.2.cu $$\chi_{1170}(71, \cdot)$$ 1170.2.cu.a 8 4
1170.2.cu.b 8
1170.2.cu.c 8
1170.2.cu.d 8
1170.2.cu.e 16
1170.2.cu.f 16
1170.2.cx $$\chi_{1170}(41, \cdot)$$ n/a 224 4
1170.2.cz $$\chi_{1170}(509, \cdot)$$ n/a 336 4
1170.2.da $$\chi_{1170}(59, \cdot)$$ n/a 336 4
1170.2.dc $$\chi_{1170}(89, \cdot)$$ n/a 112 4
1170.2.df $$\chi_{1170}(281, \cdot)$$ n/a 224 4
1170.2.dg $$\chi_{1170}(443, \cdot)$$ n/a 288 4
1170.2.dj $$\chi_{1170}(653, \cdot)$$ n/a 336 4
1170.2.dk $$\chi_{1170}(107, \cdot)$$ n/a 112 4
1170.2.dm $$\chi_{1170}(563, \cdot)$$ n/a 336 4
1170.2.do $$\chi_{1170}(457, \cdot)$$ n/a 336 4
1170.2.dr $$\chi_{1170}(187, \cdot)$$ n/a 336 4
1170.2.ds $$\chi_{1170}(163, \cdot)$$ n/a 140 4
1170.2.dv $$\chi_{1170}(7, \cdot)$$ n/a 336 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of $$S_{2}^{\mathrm{old}}(\Gamma_1(1170))$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(\Gamma_1(1170)) \cong$$ $$S_{2}^{\mathrm{new}}(\Gamma_1(1))$$$$^{\oplus 24}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(2))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(3))$$$$^{\oplus 16}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(5))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(6))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(9))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(10))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(13))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(15))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(18))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(26))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(30))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(39))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(45))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(65))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(78))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(90))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(117))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(130))$$$$^{\oplus 3}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(195))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(234))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(390))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(585))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(1170))$$$$^{\oplus 1}$$