Properties

Label 5850.2.a.cc
Level $5850$
Weight $2$
Character orbit 5850.a
Self dual yes
Analytic conductor $46.712$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5850.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(46.7124851824\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + 4 q^{7} + q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + q^{4} + 4 q^{7} + q^{8} + 6 q^{11} - q^{13} + 4 q^{14} + q^{16} - 4 q^{17} + 2 q^{19} + 6 q^{22} - 6 q^{23} - q^{26} + 4 q^{28} + 10 q^{29} + 4 q^{31} + q^{32} - 4 q^{34} + 6 q^{37} + 2 q^{38} - 10 q^{41} + 6 q^{44} - 6 q^{46} + 8 q^{47} + 9 q^{49} - q^{52} - 6 q^{53} + 4 q^{56} + 10 q^{58} + 6 q^{59} - 6 q^{61} + 4 q^{62} + q^{64} + 12 q^{67} - 4 q^{68} - 2 q^{73} + 6 q^{74} + 2 q^{76} + 24 q^{77} - 8 q^{79} - 10 q^{82} - 4 q^{83} + 6 q^{88} - 14 q^{89} - 4 q^{91} - 6 q^{92} + 8 q^{94} - 14 q^{97} + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 0 0 4.00000 1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5850.2.a.cc 1
3.b odd 2 1 1950.2.a.d 1
5.b even 2 1 5850.2.a.e 1
5.c odd 4 2 1170.2.e.c 2
15.d odd 2 1 1950.2.a.v 1
15.e even 4 2 390.2.e.d 2
60.l odd 4 2 3120.2.l.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.e.d 2 15.e even 4 2
1170.2.e.c 2 5.c odd 4 2
1950.2.a.d 1 3.b odd 2 1
1950.2.a.v 1 15.d odd 2 1
3120.2.l.i 2 60.l odd 4 2
5850.2.a.e 1 5.b even 2 1
5850.2.a.cc 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5850))\):

\( T_{7} - 4 \) Copy content Toggle raw display
\( T_{11} - 6 \) Copy content Toggle raw display
\( T_{17} + 4 \) Copy content Toggle raw display
\( T_{23} + 6 \) Copy content Toggle raw display
\( T_{31} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 4 \) Copy content Toggle raw display
$11$ \( T - 6 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T + 4 \) Copy content Toggle raw display
$19$ \( T - 2 \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T - 10 \) Copy content Toggle raw display
$31$ \( T - 4 \) Copy content Toggle raw display
$37$ \( T - 6 \) Copy content Toggle raw display
$41$ \( T + 10 \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T - 8 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T - 6 \) Copy content Toggle raw display
$61$ \( T + 6 \) Copy content Toggle raw display
$67$ \( T - 12 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 2 \) Copy content Toggle raw display
$79$ \( T + 8 \) Copy content Toggle raw display
$83$ \( T + 4 \) Copy content Toggle raw display
$89$ \( T + 14 \) Copy content Toggle raw display
$97$ \( T + 14 \) Copy content Toggle raw display
show more
show less