Properties

Label 5850.2.e.e
Level $5850$
Weight $2$
Character orbit 5850.e
Analytic conductor $46.712$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5850.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(46.7124851824\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -i q^{2} - q^{4} + i q^{8} +O(q^{10})\) \( q -i q^{2} - q^{4} + i q^{8} -4 q^{11} -i q^{13} + q^{16} + 6 i q^{17} -4 q^{19} + 4 i q^{22} + 8 i q^{23} - q^{26} + 6 q^{29} -8 q^{31} -i q^{32} + 6 q^{34} -10 i q^{37} + 4 i q^{38} + 6 q^{41} -4 i q^{43} + 4 q^{44} + 8 q^{46} + 7 q^{49} + i q^{52} -10 i q^{53} -6 i q^{58} + 4 q^{59} -2 q^{61} + 8 i q^{62} - q^{64} -12 i q^{67} -6 i q^{68} -16 q^{71} -2 i q^{73} -10 q^{74} + 4 q^{76} + 16 q^{79} -6 i q^{82} -12 i q^{83} -4 q^{86} -4 i q^{88} + 10 q^{89} -8 i q^{92} -6 i q^{97} -7 i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} + O(q^{10}) \) \( 2q - 2q^{4} - 8q^{11} + 2q^{16} - 8q^{19} - 2q^{26} + 12q^{29} - 16q^{31} + 12q^{34} + 12q^{41} + 8q^{44} + 16q^{46} + 14q^{49} + 8q^{59} - 4q^{61} - 2q^{64} - 32q^{71} - 20q^{74} + 8q^{76} + 32q^{79} - 8q^{86} + 20q^{89} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5850\mathbb{Z}\right)^\times\).

\(n\) \(2251\) \(3251\) \(3277\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5149.1
1.00000i
1.00000i
1.00000i 0 −1.00000 0 0 0 1.00000i 0 0
5149.2 1.00000i 0 −1.00000 0 0 0 1.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5850.2.e.e 2
3.b odd 2 1 1950.2.e.g 2
5.b even 2 1 inner 5850.2.e.e 2
5.c odd 4 1 1170.2.a.a 1
5.c odd 4 1 5850.2.a.bo 1
15.d odd 2 1 1950.2.e.g 2
15.e even 4 1 390.2.a.f 1
15.e even 4 1 1950.2.a.k 1
20.e even 4 1 9360.2.a.p 1
60.l odd 4 1 3120.2.a.w 1
195.j odd 4 1 5070.2.b.d 2
195.s even 4 1 5070.2.a.a 1
195.u odd 4 1 5070.2.b.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.a.f 1 15.e even 4 1
1170.2.a.a 1 5.c odd 4 1
1950.2.a.k 1 15.e even 4 1
1950.2.e.g 2 3.b odd 2 1
1950.2.e.g 2 15.d odd 2 1
3120.2.a.w 1 60.l odd 4 1
5070.2.a.a 1 195.s even 4 1
5070.2.b.d 2 195.j odd 4 1
5070.2.b.d 2 195.u odd 4 1
5850.2.a.bo 1 5.c odd 4 1
5850.2.e.e 2 1.a even 1 1 trivial
5850.2.e.e 2 5.b even 2 1 inner
9360.2.a.p 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5850, [\chi])\):

\( T_{7} \)
\( T_{11} + 4 \)
\( T_{17}^{2} + 36 \)
\( T_{19} + 4 \)
\( T_{29} - 6 \)
\( T_{31} + 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{2} \)
$3$ \( T^{2} \)
$5$ \( T^{2} \)
$7$ \( T^{2} \)
$11$ \( ( 4 + T )^{2} \)
$13$ \( 1 + T^{2} \)
$17$ \( 36 + T^{2} \)
$19$ \( ( 4 + T )^{2} \)
$23$ \( 64 + T^{2} \)
$29$ \( ( -6 + T )^{2} \)
$31$ \( ( 8 + T )^{2} \)
$37$ \( 100 + T^{2} \)
$41$ \( ( -6 + T )^{2} \)
$43$ \( 16 + T^{2} \)
$47$ \( T^{2} \)
$53$ \( 100 + T^{2} \)
$59$ \( ( -4 + T )^{2} \)
$61$ \( ( 2 + T )^{2} \)
$67$ \( 144 + T^{2} \)
$71$ \( ( 16 + T )^{2} \)
$73$ \( 4 + T^{2} \)
$79$ \( ( -16 + T )^{2} \)
$83$ \( 144 + T^{2} \)
$89$ \( ( -10 + T )^{2} \)
$97$ \( 36 + T^{2} \)
show more
show less