Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(650))\).
|
Total |
New |
Old |
Modular forms
| 13272 |
3823 |
9449 |
Cusp forms
| 11929 |
3823 |
8106 |
Eisenstein series
| 1343 |
0 |
1343 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(650))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label |
\(\chi\) |
Newforms |
Dimension |
\(\chi\) degree |
650.2.a |
\(\chi_{650}(1, \cdot)\) |
650.2.a.a |
1 |
1 |
650.2.a.b |
1 |
650.2.a.c |
1 |
650.2.a.d |
1 |
650.2.a.e |
1 |
650.2.a.f |
1 |
650.2.a.g |
1 |
650.2.a.h |
1 |
650.2.a.i |
1 |
650.2.a.j |
1 |
650.2.a.k |
1 |
650.2.a.l |
1 |
650.2.a.m |
1 |
650.2.a.n |
3 |
650.2.a.o |
3 |
650.2.b |
\(\chi_{650}(599, \cdot)\) |
650.2.b.a |
2 |
1 |
650.2.b.b |
2 |
650.2.b.c |
2 |
650.2.b.d |
2 |
650.2.b.e |
2 |
650.2.b.f |
2 |
650.2.b.g |
2 |
650.2.b.h |
2 |
650.2.b.i |
2 |
650.2.c |
\(\chi_{650}(649, \cdot)\) |
650.2.c.a |
2 |
1 |
650.2.c.b |
2 |
650.2.c.c |
2 |
650.2.c.d |
2 |
650.2.c.e |
6 |
650.2.c.f |
6 |
650.2.d |
\(\chi_{650}(51, \cdot)\) |
650.2.d.a |
2 |
1 |
650.2.d.b |
2 |
650.2.d.c |
6 |
650.2.d.d |
6 |
650.2.d.e |
8 |
650.2.e |
\(\chi_{650}(451, \cdot)\) |
650.2.e.a |
2 |
2 |
650.2.e.b |
2 |
650.2.e.c |
2 |
650.2.e.d |
4 |
650.2.e.e |
4 |
650.2.e.f |
4 |
650.2.e.g |
4 |
650.2.e.h |
4 |
650.2.e.i |
4 |
650.2.e.j |
6 |
650.2.e.k |
6 |
650.2.g |
\(\chi_{650}(57, \cdot)\) |
650.2.g.a |
2 |
2 |
650.2.g.b |
2 |
650.2.g.c |
2 |
650.2.g.d |
2 |
650.2.g.e |
2 |
650.2.g.f |
4 |
650.2.g.g |
4 |
650.2.g.h |
12 |
650.2.g.i |
12 |
650.2.j |
\(\chi_{650}(307, \cdot)\) |
650.2.j.a |
2 |
2 |
650.2.j.b |
2 |
650.2.j.c |
2 |
650.2.j.d |
2 |
650.2.j.e |
2 |
650.2.j.f |
4 |
650.2.j.g |
4 |
650.2.j.h |
12 |
650.2.j.i |
12 |
650.2.l |
\(\chi_{650}(131, \cdot)\) |
650.2.l.a |
4 |
4 |
650.2.l.b |
20 |
650.2.l.c |
24 |
650.2.l.d |
36 |
650.2.l.e |
36 |
650.2.m |
\(\chi_{650}(101, \cdot)\) |
650.2.m.a |
4 |
2 |
650.2.m.b |
8 |
650.2.m.c |
8 |
650.2.m.d |
8 |
650.2.m.e |
16 |
650.2.n |
\(\chi_{650}(49, \cdot)\) |
650.2.n.a |
4 |
2 |
650.2.n.b |
4 |
650.2.n.c |
8 |
650.2.n.d |
8 |
650.2.n.e |
8 |
650.2.n.f |
8 |
650.2.o |
\(\chi_{650}(399, \cdot)\) |
650.2.o.a |
4 |
2 |
650.2.o.b |
4 |
650.2.o.c |
4 |
650.2.o.d |
4 |
650.2.o.e |
4 |
650.2.o.f |
8 |
650.2.o.g |
8 |
650.2.o.h |
8 |
650.2.p |
\(\chi_{650}(181, \cdot)\) |
650.2.p.a |
136 |
4 |
650.2.q |
\(\chi_{650}(79, \cdot)\) |
650.2.q.a |
48 |
4 |
650.2.q.b |
72 |
650.2.r |
\(\chi_{650}(129, \cdot)\) |
650.2.r.a |
72 |
4 |
650.2.r.b |
72 |
650.2.t |
\(\chi_{650}(7, \cdot)\) |
650.2.t.a |
4 |
4 |
650.2.t.b |
4 |
650.2.t.c |
8 |
650.2.t.d |
8 |
650.2.t.e |
12 |
650.2.t.f |
16 |
650.2.t.g |
16 |
650.2.t.h |
16 |
650.2.w |
\(\chi_{650}(193, \cdot)\) |
650.2.w.a |
4 |
4 |
650.2.w.b |
4 |
650.2.w.c |
8 |
650.2.w.d |
8 |
650.2.w.e |
12 |
650.2.w.f |
16 |
650.2.w.g |
16 |
650.2.w.h |
16 |
650.2.y |
\(\chi_{650}(61, \cdot)\) |
650.2.y.a |
136 |
8 |
650.2.y.b |
152 |
650.2.ba |
\(\chi_{650}(73, \cdot)\) |
650.2.ba.a |
136 |
8 |
650.2.ba.b |
144 |
650.2.bd |
\(\chi_{650}(47, \cdot)\) |
650.2.bd.a |
136 |
8 |
650.2.bd.b |
144 |
650.2.bf |
\(\chi_{650}(69, \cdot)\) |
650.2.bf.a |
144 |
8 |
650.2.bf.b |
144 |
650.2.bg |
\(\chi_{650}(9, \cdot)\) |
650.2.bg.a |
272 |
8 |
650.2.bh |
\(\chi_{650}(121, \cdot)\) |
650.2.bh.a |
272 |
8 |
650.2.bj |
\(\chi_{650}(37, \cdot)\) |
650.2.bj.a |
272 |
16 |
650.2.bj.b |
288 |
650.2.bm |
\(\chi_{650}(33, \cdot)\) |
650.2.bm.a |
272 |
16 |
650.2.bm.b |
288 |