Properties

Label 5850.hi
Modulus $5850$
Conductor $2925$
Order $60$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5850, base_ring=CyclotomicField(60)) M = H._module chi = DirichletCharacter(H, M([50,57,40])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(113,5850)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5850\)
Conductor: \(2925\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(60\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2925.hj
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{5850}(113,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{5850}(263,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{5850}(347,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{5850}(497,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{5850}(1283,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{5850}(1433,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{5850}(1517,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{5850}(1667,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{5850}(2453,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{5850}(2603,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{5850}(2687,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{5850}(2837,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{5850}(3623,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{5850}(3773,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{5850}(5027,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{5850}(5177,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{1}{12}\right)\)