Properties

Label 416.2.bd.a
Level $416$
Weight $2$
Character orbit 416.bd
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24} - 4 q^{26} - 8 q^{27} + 56 q^{28} - 8 q^{29} - 16 q^{30} - 44 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} - 28 q^{39} - 8 q^{40} - 8 q^{41} - 48 q^{42} - 32 q^{43} + 12 q^{44} - 36 q^{45} - 48 q^{46} - 8 q^{47} - 8 q^{48} - 168 q^{49} + 76 q^{50} - 4 q^{52} - 8 q^{53} - 28 q^{54} - 40 q^{55} + 56 q^{56} + 32 q^{58} + 52 q^{59} - 36 q^{60} - 8 q^{61} + 72 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} + 20 q^{70} + 56 q^{71} + 8 q^{72} - 8 q^{74} - 68 q^{76} + 56 q^{77} - 48 q^{78} - 16 q^{79} + 28 q^{80} - 88 q^{82} + 36 q^{83} + 100 q^{84} - 24 q^{85} + 96 q^{86} - 8 q^{87} + 64 q^{88} - 8 q^{89} - 64 q^{90} + 72 q^{91} - 8 q^{92} - 40 q^{93} - 56 q^{94} + 36 q^{96} - 8 q^{97} + 52 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
83.1 −1.41400 0.0247176i 1.03934 + 0.430508i 1.99878 + 0.0699014i −0.387075 + 0.934483i −1.45898 0.634427i 4.00321i −2.82454 0.148245i −1.22643 1.22643i 0.570422 1.31179i
83.2 −1.41215 0.0764043i 2.23541 + 0.925935i 1.98832 + 0.215788i 0.344928 0.832729i −3.08598 1.47835i 1.15405i −2.79132 0.456642i 2.01836 + 2.01836i −0.550713 + 1.14958i
83.3 −1.41176 0.0832778i −2.32196 0.961788i 1.98613 + 0.235136i 0.932501 2.25126i 3.19796 + 1.55118i 4.08128i −2.78436 0.497357i 2.34515 + 2.34515i −1.50395 + 3.10058i
83.4 −1.37663 0.323857i −2.65712 1.10062i 1.79023 + 0.891665i −1.41696 + 3.42085i 3.30144 + 2.37567i 0.353777i −2.17572 1.80728i 3.72762 + 3.72762i 3.05851 4.25036i
83.5 −1.35152 + 0.416401i −2.25523 0.934148i 1.65322 1.12555i 0.261748 0.631915i 3.43698 + 0.323439i 4.76655i −1.76568 + 2.20961i 2.09213 + 2.09213i −0.0906275 + 0.963039i
83.6 −1.32811 + 0.485919i −1.25935 0.521639i 1.52777 1.29071i 0.194227 0.468906i 1.92603 + 0.0808542i 2.08466i −1.40186 + 2.45658i −0.807469 0.807469i −0.0301053 + 0.717139i
83.7 −1.29289 0.573103i −0.377788 0.156485i 1.34311 + 1.48191i −0.605904 + 1.46278i 0.398755 + 0.418829i 0.514771i −0.887196 2.68568i −2.00308 2.00308i 1.62169 1.54396i
83.8 −1.28670 + 0.586855i −0.191326 0.0792497i 1.31120 1.51021i −1.64053 + 3.96058i 0.292687 0.0103097i 2.32652i −0.800850 + 2.71268i −2.09100 2.09100i −0.213419 6.05884i
83.9 −1.26014 0.641900i −0.400717 0.165982i 1.17593 + 1.61777i 1.56341 3.77440i 0.398417 + 0.466382i 2.76672i −0.443390 2.79346i −1.98830 1.98830i −4.39291 + 3.75274i
83.10 −1.24384 + 0.672951i 1.34047 + 0.555241i 1.09427 1.67409i 1.54705 3.73491i −2.04098 + 0.211441i 0.167444i −0.234521 + 2.81869i −0.632754 0.632754i 0.589131 + 5.68672i
83.11 −1.22104 + 0.713478i 2.00588 + 0.830863i 0.981898 1.74238i −1.19939 + 2.89559i −3.04207 + 0.416631i 2.39832i 0.0442070 + 2.82808i 1.21190 + 1.21190i −0.601429 4.39139i
83.12 −1.13073 0.849387i 0.761899 + 0.315589i 0.557082 + 1.92085i −0.560536 + 1.35325i −0.593442 1.00399i 4.42814i 1.00164 2.64513i −1.64043 1.64043i 1.78325 1.05405i
83.13 −1.01464 0.985142i 2.77489 + 1.14940i 0.0589886 + 1.99913i 0.336989 0.813563i −1.68319 3.89989i 2.04545i 1.90958 2.08651i 4.25758 + 4.25758i −1.14340 + 0.493492i
83.14 −0.978420 + 1.02112i 2.81450 + 1.16580i −0.0853883 1.99818i −0.131889 + 0.318408i −3.94419 + 1.73331i 4.33289i 2.12393 + 1.86786i 4.44098 + 4.44098i −0.196091 0.446212i
83.15 −0.877210 1.10928i −1.94716 0.806541i −0.461004 + 1.94614i −0.00996722 + 0.0240630i 0.813391 + 2.86746i 2.96755i 2.56322 1.19579i 1.01961 + 1.01961i 0.0354360 0.0100519i
83.16 −0.873613 + 1.11212i −0.260922 0.108078i −0.473600 1.94312i 0.260195 0.628165i 0.348140 0.195758i 0.282606i 2.57471 + 1.17084i −2.06492 2.06492i 0.471283 + 0.838140i
83.17 −0.825979 1.14794i 0.518989 + 0.214972i −0.635517 + 1.89634i 1.14210 2.75727i −0.181899 0.773329i 2.29289i 2.70181 0.836807i −1.89818 1.89818i −4.10852 + 0.966391i
83.18 −0.798622 + 1.16713i −1.28933 0.534060i −0.724407 1.86420i −0.341082 + 0.823446i 1.65301 1.07832i 0.829877i 2.75430 + 0.643308i −0.744158 0.744158i −0.688676 1.05571i
83.19 −0.757760 1.19407i −2.82515 1.17022i −0.851600 + 1.80963i 0.899503 2.17159i 0.743468 + 4.26017i 2.64760i 2.80614 0.354399i 4.49077 + 4.49077i −3.27464 + 0.571477i
83.20 −0.649485 + 1.25625i −2.66851 1.10533i −1.15634 1.63183i 1.60908 3.88465i 3.12173 2.63443i 1.17091i 2.80102 0.392804i 3.77787 + 3.77787i 3.83503 + 4.54443i
See next 80 embeddings (of 216 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 83.54
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
416.bd even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.2.bd.a 216
13.d odd 4 1 416.2.bi.a yes 216
32.h odd 8 1 416.2.bi.a yes 216
416.bd even 8 1 inner 416.2.bd.a 216
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.2.bd.a 216 1.a even 1 1 trivial
416.2.bd.a 216 416.bd even 8 1 inner
416.2.bi.a yes 216 13.d odd 4 1
416.2.bi.a yes 216 32.h odd 8 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(416, [\chi])\).