Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [416,2,Mod(83,416)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(416, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([4, 7, 6]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("416.83");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 416 = 2^{5} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 416.bd (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.32177672409\) |
Analytic rank: | \(0\) |
Dimension: | \(216\) |
Relative dimension: | \(54\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
83.1 | −1.41400 | − | 0.0247176i | 1.03934 | + | 0.430508i | 1.99878 | + | 0.0699014i | −0.387075 | + | 0.934483i | −1.45898 | − | 0.634427i | − | 4.00321i | −2.82454 | − | 0.148245i | −1.22643 | − | 1.22643i | 0.570422 | − | 1.31179i | |
83.2 | −1.41215 | − | 0.0764043i | 2.23541 | + | 0.925935i | 1.98832 | + | 0.215788i | 0.344928 | − | 0.832729i | −3.08598 | − | 1.47835i | 1.15405i | −2.79132 | − | 0.456642i | 2.01836 | + | 2.01836i | −0.550713 | + | 1.14958i | ||
83.3 | −1.41176 | − | 0.0832778i | −2.32196 | − | 0.961788i | 1.98613 | + | 0.235136i | 0.932501 | − | 2.25126i | 3.19796 | + | 1.55118i | 4.08128i | −2.78436 | − | 0.497357i | 2.34515 | + | 2.34515i | −1.50395 | + | 3.10058i | ||
83.4 | −1.37663 | − | 0.323857i | −2.65712 | − | 1.10062i | 1.79023 | + | 0.891665i | −1.41696 | + | 3.42085i | 3.30144 | + | 2.37567i | 0.353777i | −2.17572 | − | 1.80728i | 3.72762 | + | 3.72762i | 3.05851 | − | 4.25036i | ||
83.5 | −1.35152 | + | 0.416401i | −2.25523 | − | 0.934148i | 1.65322 | − | 1.12555i | 0.261748 | − | 0.631915i | 3.43698 | + | 0.323439i | − | 4.76655i | −1.76568 | + | 2.20961i | 2.09213 | + | 2.09213i | −0.0906275 | + | 0.963039i | |
83.6 | −1.32811 | + | 0.485919i | −1.25935 | − | 0.521639i | 1.52777 | − | 1.29071i | 0.194227 | − | 0.468906i | 1.92603 | + | 0.0808542i | 2.08466i | −1.40186 | + | 2.45658i | −0.807469 | − | 0.807469i | −0.0301053 | + | 0.717139i | ||
83.7 | −1.29289 | − | 0.573103i | −0.377788 | − | 0.156485i | 1.34311 | + | 1.48191i | −0.605904 | + | 1.46278i | 0.398755 | + | 0.418829i | − | 0.514771i | −0.887196 | − | 2.68568i | −2.00308 | − | 2.00308i | 1.62169 | − | 1.54396i | |
83.8 | −1.28670 | + | 0.586855i | −0.191326 | − | 0.0792497i | 1.31120 | − | 1.51021i | −1.64053 | + | 3.96058i | 0.292687 | − | 0.0103097i | 2.32652i | −0.800850 | + | 2.71268i | −2.09100 | − | 2.09100i | −0.213419 | − | 6.05884i | ||
83.9 | −1.26014 | − | 0.641900i | −0.400717 | − | 0.165982i | 1.17593 | + | 1.61777i | 1.56341 | − | 3.77440i | 0.398417 | + | 0.466382i | − | 2.76672i | −0.443390 | − | 2.79346i | −1.98830 | − | 1.98830i | −4.39291 | + | 3.75274i | |
83.10 | −1.24384 | + | 0.672951i | 1.34047 | + | 0.555241i | 1.09427 | − | 1.67409i | 1.54705 | − | 3.73491i | −2.04098 | + | 0.211441i | − | 0.167444i | −0.234521 | + | 2.81869i | −0.632754 | − | 0.632754i | 0.589131 | + | 5.68672i | |
83.11 | −1.22104 | + | 0.713478i | 2.00588 | + | 0.830863i | 0.981898 | − | 1.74238i | −1.19939 | + | 2.89559i | −3.04207 | + | 0.416631i | − | 2.39832i | 0.0442070 | + | 2.82808i | 1.21190 | + | 1.21190i | −0.601429 | − | 4.39139i | |
83.12 | −1.13073 | − | 0.849387i | 0.761899 | + | 0.315589i | 0.557082 | + | 1.92085i | −0.560536 | + | 1.35325i | −0.593442 | − | 1.00399i | 4.42814i | 1.00164 | − | 2.64513i | −1.64043 | − | 1.64043i | 1.78325 | − | 1.05405i | ||
83.13 | −1.01464 | − | 0.985142i | 2.77489 | + | 1.14940i | 0.0589886 | + | 1.99913i | 0.336989 | − | 0.813563i | −1.68319 | − | 3.89989i | − | 2.04545i | 1.90958 | − | 2.08651i | 4.25758 | + | 4.25758i | −1.14340 | + | 0.493492i | |
83.14 | −0.978420 | + | 1.02112i | 2.81450 | + | 1.16580i | −0.0853883 | − | 1.99818i | −0.131889 | + | 0.318408i | −3.94419 | + | 1.73331i | 4.33289i | 2.12393 | + | 1.86786i | 4.44098 | + | 4.44098i | −0.196091 | − | 0.446212i | ||
83.15 | −0.877210 | − | 1.10928i | −1.94716 | − | 0.806541i | −0.461004 | + | 1.94614i | −0.00996722 | + | 0.0240630i | 0.813391 | + | 2.86746i | − | 2.96755i | 2.56322 | − | 1.19579i | 1.01961 | + | 1.01961i | 0.0354360 | − | 0.0100519i | |
83.16 | −0.873613 | + | 1.11212i | −0.260922 | − | 0.108078i | −0.473600 | − | 1.94312i | 0.260195 | − | 0.628165i | 0.348140 | − | 0.195758i | − | 0.282606i | 2.57471 | + | 1.17084i | −2.06492 | − | 2.06492i | 0.471283 | + | 0.838140i | |
83.17 | −0.825979 | − | 1.14794i | 0.518989 | + | 0.214972i | −0.635517 | + | 1.89634i | 1.14210 | − | 2.75727i | −0.181899 | − | 0.773329i | 2.29289i | 2.70181 | − | 0.836807i | −1.89818 | − | 1.89818i | −4.10852 | + | 0.966391i | ||
83.18 | −0.798622 | + | 1.16713i | −1.28933 | − | 0.534060i | −0.724407 | − | 1.86420i | −0.341082 | + | 0.823446i | 1.65301 | − | 1.07832i | 0.829877i | 2.75430 | + | 0.643308i | −0.744158 | − | 0.744158i | −0.688676 | − | 1.05571i | ||
83.19 | −0.757760 | − | 1.19407i | −2.82515 | − | 1.17022i | −0.851600 | + | 1.80963i | 0.899503 | − | 2.17159i | 0.743468 | + | 4.26017i | 2.64760i | 2.80614 | − | 0.354399i | 4.49077 | + | 4.49077i | −3.27464 | + | 0.571477i | ||
83.20 | −0.649485 | + | 1.25625i | −2.66851 | − | 1.10533i | −1.15634 | − | 1.63183i | 1.60908 | − | 3.88465i | 3.12173 | − | 2.63443i | − | 1.17091i | 2.80102 | − | 0.392804i | 3.77787 | + | 3.77787i | 3.83503 | + | 4.54443i | |
See next 80 embeddings (of 216 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
416.bd | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 416.2.bd.a | ✓ | 216 |
13.d | odd | 4 | 1 | 416.2.bi.a | yes | 216 | |
32.h | odd | 8 | 1 | 416.2.bi.a | yes | 216 | |
416.bd | even | 8 | 1 | inner | 416.2.bd.a | ✓ | 216 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
416.2.bd.a | ✓ | 216 | 1.a | even | 1 | 1 | trivial |
416.2.bd.a | ✓ | 216 | 416.bd | even | 8 | 1 | inner |
416.2.bi.a | yes | 216 | 13.d | odd | 4 | 1 | |
416.2.bi.a | yes | 216 | 32.h | odd | 8 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(416, [\chi])\).