Properties

Label 416.2.bd.a.83.17
Level $416$
Weight $2$
Character 416.83
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 83.17
Character \(\chi\) \(=\) 416.83
Dual form 416.2.bd.a.411.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.825979 - 1.14794i) q^{2} +(0.518989 + 0.214972i) q^{3} +(-0.635517 + 1.89634i) q^{4} +(1.14210 - 2.75727i) q^{5} +(-0.181899 - 0.773329i) q^{6} +2.29289i q^{7} +(2.70181 - 0.836807i) q^{8} +(-1.89818 - 1.89818i) q^{9} +O(q^{10})\) \(q+(-0.825979 - 1.14794i) q^{2} +(0.518989 + 0.214972i) q^{3} +(-0.635517 + 1.89634i) q^{4} +(1.14210 - 2.75727i) q^{5} +(-0.181899 - 0.773329i) q^{6} +2.29289i q^{7} +(2.70181 - 0.836807i) q^{8} +(-1.89818 - 1.89818i) q^{9} +(-4.10852 + 0.966391i) q^{10} +(-3.98985 - 1.65265i) q^{11} +(-0.737487 + 0.847562i) q^{12} +(2.07019 - 2.95200i) q^{13} +(2.63209 - 1.89388i) q^{14} +(1.18547 - 1.18547i) q^{15} +(-3.19224 - 2.41032i) q^{16} +7.59132 q^{17} +(-0.611134 + 3.74686i) q^{18} +(-1.82624 - 4.40893i) q^{19} +(4.50291 + 3.91810i) q^{20} +(-0.492907 + 1.18998i) q^{21} +(1.39840 + 5.94515i) q^{22} +(2.02063 + 2.02063i) q^{23} +(1.58210 + 0.146519i) q^{24} +(-2.76262 - 2.76262i) q^{25} +(-5.09864 + 0.0618532i) q^{26} +(-1.22200 - 2.95016i) q^{27} +(-4.34811 - 1.45717i) q^{28} +(1.06580 - 2.57307i) q^{29} +(-2.34002 - 0.381672i) q^{30} +(-4.58378 - 4.58378i) q^{31} +(-0.130169 + 5.65536i) q^{32} +(-1.71541 - 1.71541i) q^{33} +(-6.27027 - 8.71436i) q^{34} +(6.32212 + 2.61871i) q^{35} +(4.80594 - 2.39328i) q^{36} +(-7.67223 - 3.17794i) q^{37} +(-3.55273 + 5.73809i) q^{38} +(1.70900 - 1.08702i) q^{39} +(0.778425 - 8.40533i) q^{40} +2.38731 q^{41} +(1.77316 - 0.417075i) q^{42} +(2.58284 + 6.23554i) q^{43} +(5.66961 - 6.51584i) q^{44} +(-7.40172 + 3.06589i) q^{45} +(0.650558 - 3.98856i) q^{46} +(0.800438 + 0.800438i) q^{47} +(-1.13858 - 1.93717i) q^{48} +1.74266 q^{49} +(-0.889445 + 5.45317i) q^{50} +(3.93981 + 1.63192i) q^{51} +(4.28238 + 5.80183i) q^{52} +(-3.63540 - 8.77663i) q^{53} +(-2.37725 + 3.83954i) q^{54} +(-9.11361 + 9.11361i) q^{55} +(1.91871 + 6.19494i) q^{56} -2.68077i q^{57} +(-3.83404 + 0.901829i) q^{58} +(-2.35581 + 5.68744i) q^{59} +(1.49468 + 3.00145i) q^{60} +(-3.55120 + 8.57336i) q^{61} +(-1.47578 + 9.04799i) q^{62} +(4.35233 - 4.35233i) q^{63} +(6.59951 - 4.52178i) q^{64} +(-5.77512 - 9.07954i) q^{65} +(-0.552290 + 3.38608i) q^{66} +(10.1877 - 4.21989i) q^{67} +(-4.82441 + 14.3958i) q^{68} +(0.614306 + 1.48307i) q^{69} +(-2.21583 - 9.42038i) q^{70} +7.20444 q^{71} +(-6.71694 - 3.54011i) q^{72} +12.0231i q^{73} +(2.68903 + 11.4321i) q^{74} +(-0.839881 - 2.02765i) q^{75} +(9.52144 - 0.661226i) q^{76} +(3.78934 - 9.14829i) q^{77} +(-2.65944 - 1.06397i) q^{78} -1.01246 q^{79} +(-10.2917 + 6.04904i) q^{80} +6.25952i q^{81} +(-1.97187 - 2.74048i) q^{82} +(1.54226 + 3.72333i) q^{83} +(-1.94337 - 1.69098i) q^{84} +(8.67004 - 20.9313i) q^{85} +(5.02463 - 8.11537i) q^{86} +(1.10627 - 1.10627i) q^{87} +(-12.1628 - 1.12640i) q^{88} +4.18739 q^{89} +(9.63312 + 5.96434i) q^{90} +(6.76862 + 4.74671i) q^{91} +(-5.11596 + 2.54767i) q^{92} +(-1.39354 - 3.36431i) q^{93} +(0.257707 - 1.58000i) q^{94} -14.2423 q^{95} +(-1.28330 + 2.90708i) q^{96} +(1.07250 - 1.07250i) q^{97} +(-1.43940 - 2.00046i) q^{98} +(4.43644 + 10.7105i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24} - 4 q^{26} - 8 q^{27} + 56 q^{28} - 8 q^{29} - 16 q^{30} - 44 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} - 28 q^{39} - 8 q^{40} - 8 q^{41} - 48 q^{42} - 32 q^{43} + 12 q^{44} - 36 q^{45} - 48 q^{46} - 8 q^{47} - 8 q^{48} - 168 q^{49} + 76 q^{50} - 4 q^{52} - 8 q^{53} - 28 q^{54} - 40 q^{55} + 56 q^{56} + 32 q^{58} + 52 q^{59} - 36 q^{60} - 8 q^{61} + 72 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} + 20 q^{70} + 56 q^{71} + 8 q^{72} - 8 q^{74} - 68 q^{76} + 56 q^{77} - 48 q^{78} - 16 q^{79} + 28 q^{80} - 88 q^{82} + 36 q^{83} + 100 q^{84} - 24 q^{85} + 96 q^{86} - 8 q^{87} + 64 q^{88} - 8 q^{89} - 64 q^{90} + 72 q^{91} - 8 q^{92} - 40 q^{93} - 56 q^{94} + 36 q^{96} - 8 q^{97} + 52 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.825979 1.14794i −0.584055 0.811714i
\(3\) 0.518989 + 0.214972i 0.299638 + 0.124114i 0.527437 0.849594i \(-0.323153\pi\)
−0.227799 + 0.973708i \(0.573153\pi\)
\(4\) −0.635517 + 1.89634i −0.317758 + 0.948172i
\(5\) 1.14210 2.75727i 0.510762 1.23309i −0.432679 0.901548i \(-0.642432\pi\)
0.943441 0.331541i \(-0.107568\pi\)
\(6\) −0.181899 0.773329i −0.0742601 0.315710i
\(7\) 2.29289i 0.866631i 0.901242 + 0.433315i \(0.142656\pi\)
−0.901242 + 0.433315i \(0.857344\pi\)
\(8\) 2.70181 0.836807i 0.955233 0.295856i
\(9\) −1.89818 1.89818i −0.632728 0.632728i
\(10\) −4.10852 + 0.966391i −1.29923 + 0.305600i
\(11\) −3.98985 1.65265i −1.20299 0.498293i −0.311023 0.950402i \(-0.600672\pi\)
−0.891962 + 0.452109i \(0.850672\pi\)
\(12\) −0.737487 + 0.847562i −0.212894 + 0.244670i
\(13\) 2.07019 2.95200i 0.574166 0.818739i
\(14\) 2.63209 1.89388i 0.703456 0.506160i
\(15\) 1.18547 1.18547i 0.306088 0.306088i
\(16\) −3.19224 2.41032i −0.798059 0.602579i
\(17\) 7.59132 1.84117 0.920583 0.390547i \(-0.127714\pi\)
0.920583 + 0.390547i \(0.127714\pi\)
\(18\) −0.611134 + 3.74686i −0.144046 + 0.883142i
\(19\) −1.82624 4.40893i −0.418967 1.01148i −0.982647 0.185484i \(-0.940615\pi\)
0.563680 0.825993i \(-0.309385\pi\)
\(20\) 4.50291 + 3.91810i 1.00688 + 0.876115i
\(21\) −0.492907 + 1.18998i −0.107561 + 0.259676i
\(22\) 1.39840 + 5.94515i 0.298139 + 1.26751i
\(23\) 2.02063 + 2.02063i 0.421331 + 0.421331i 0.885662 0.464331i \(-0.153705\pi\)
−0.464331 + 0.885662i \(0.653705\pi\)
\(24\) 1.58210 + 0.146519i 0.322944 + 0.0299082i
\(25\) −2.76262 2.76262i −0.552523 0.552523i
\(26\) −5.09864 + 0.0618532i −0.999926 + 0.0121304i
\(27\) −1.22200 2.95016i −0.235173 0.567758i
\(28\) −4.34811 1.45717i −0.821715 0.275379i
\(29\) 1.06580 2.57307i 0.197914 0.477806i −0.793500 0.608571i \(-0.791743\pi\)
0.991413 + 0.130764i \(0.0417432\pi\)
\(30\) −2.34002 0.381672i −0.427228 0.0696834i
\(31\) −4.58378 4.58378i −0.823271 0.823271i 0.163305 0.986576i \(-0.447785\pi\)
−0.986576 + 0.163305i \(0.947785\pi\)
\(32\) −0.130169 + 5.65536i −0.0230108 + 0.999735i
\(33\) −1.71541 1.71541i −0.298615 0.298615i
\(34\) −6.27027 8.71436i −1.07534 1.49450i
\(35\) 6.32212 + 2.61871i 1.06863 + 0.442642i
\(36\) 4.80594 2.39328i 0.800989 0.398880i
\(37\) −7.67223 3.17794i −1.26131 0.522450i −0.350997 0.936377i \(-0.614157\pi\)
−0.910310 + 0.413926i \(0.864157\pi\)
\(38\) −3.55273 + 5.73809i −0.576330 + 0.930840i
\(39\) 1.70900 1.08702i 0.273659 0.174063i
\(40\) 0.778425 8.40533i 0.123080 1.32900i
\(41\) 2.38731 0.372836 0.186418 0.982471i \(-0.440312\pi\)
0.186418 + 0.982471i \(0.440312\pi\)
\(42\) 1.77316 0.417075i 0.273604 0.0643561i
\(43\) 2.58284 + 6.23554i 0.393880 + 0.950911i 0.989086 + 0.147338i \(0.0470704\pi\)
−0.595206 + 0.803573i \(0.702930\pi\)
\(44\) 5.66961 6.51584i 0.854726 0.982300i
\(45\) −7.40172 + 3.06589i −1.10338 + 0.457036i
\(46\) 0.650558 3.98856i 0.0959195 0.588081i
\(47\) 0.800438 + 0.800438i 0.116756 + 0.116756i 0.763071 0.646315i \(-0.223691\pi\)
−0.646315 + 0.763071i \(0.723691\pi\)
\(48\) −1.13858 1.93717i −0.164340 0.279606i
\(49\) 1.74266 0.248951
\(50\) −0.889445 + 5.45317i −0.125787 + 0.771195i
\(51\) 3.93981 + 1.63192i 0.551684 + 0.228515i
\(52\) 4.28238 + 5.80183i 0.593859 + 0.804569i
\(53\) −3.63540 8.77663i −0.499360 1.20556i −0.949829 0.312770i \(-0.898743\pi\)
0.450469 0.892792i \(-0.351257\pi\)
\(54\) −2.37725 + 3.83954i −0.323503 + 0.522496i
\(55\) −9.11361 + 9.11361i −1.22888 + 1.22888i
\(56\) 1.91871 + 6.19494i 0.256398 + 0.827834i
\(57\) 2.68077i 0.355077i
\(58\) −3.83404 + 0.901829i −0.503435 + 0.118416i
\(59\) −2.35581 + 5.68744i −0.306701 + 0.740441i 0.693107 + 0.720835i \(0.256241\pi\)
−0.999808 + 0.0196065i \(0.993759\pi\)
\(60\) 1.49468 + 3.00145i 0.192962 + 0.387486i
\(61\) −3.55120 + 8.57336i −0.454685 + 1.09771i 0.515835 + 0.856688i \(0.327482\pi\)
−0.970520 + 0.241019i \(0.922518\pi\)
\(62\) −1.47578 + 9.04799i −0.187424 + 1.14910i
\(63\) 4.35233 4.35233i 0.548342 0.548342i
\(64\) 6.59951 4.52178i 0.824938 0.565223i
\(65\) −5.77512 9.07954i −0.716315 1.12618i
\(66\) −0.552290 + 3.38608i −0.0679822 + 0.416798i
\(67\) 10.1877 4.21989i 1.24463 0.515542i 0.339470 0.940617i \(-0.389752\pi\)
0.905158 + 0.425075i \(0.139752\pi\)
\(68\) −4.82441 + 14.3958i −0.585046 + 1.74574i
\(69\) 0.614306 + 1.48307i 0.0739537 + 0.178540i
\(70\) −2.21583 9.42038i −0.264842 1.12595i
\(71\) 7.20444 0.855010 0.427505 0.904013i \(-0.359393\pi\)
0.427505 + 0.904013i \(0.359393\pi\)
\(72\) −6.71694 3.54011i −0.791599 0.417206i
\(73\) 12.0231i 1.40720i 0.710595 + 0.703602i \(0.248426\pi\)
−0.710595 + 0.703602i \(0.751574\pi\)
\(74\) 2.68903 + 11.4321i 0.312593 + 1.32896i
\(75\) −0.839881 2.02765i −0.0969811 0.234133i
\(76\) 9.52144 0.661226i 1.09218 0.0758478i
\(77\) 3.78934 9.14829i 0.431836 1.04254i
\(78\) −2.65944 1.06397i −0.301122 0.120470i
\(79\) −1.01246 −0.113911 −0.0569555 0.998377i \(-0.518139\pi\)
−0.0569555 + 0.998377i \(0.518139\pi\)
\(80\) −10.2917 + 6.04904i −1.15065 + 0.676303i
\(81\) 6.25952i 0.695502i
\(82\) −1.97187 2.74048i −0.217757 0.302636i
\(83\) 1.54226 + 3.72333i 0.169285 + 0.408689i 0.985640 0.168861i \(-0.0540089\pi\)
−0.816355 + 0.577550i \(0.804009\pi\)
\(84\) −1.94337 1.69098i −0.212039 0.184501i
\(85\) 8.67004 20.9313i 0.940398 2.27032i
\(86\) 5.02463 8.11537i 0.541819 0.875102i
\(87\) 1.10627 1.10627i 0.118605 0.118605i
\(88\) −12.1628 1.12640i −1.29655 0.120075i
\(89\) 4.18739 0.443863 0.221931 0.975062i \(-0.428764\pi\)
0.221931 + 0.975062i \(0.428764\pi\)
\(90\) 9.63312 + 5.96434i 1.01542 + 0.628697i
\(91\) 6.76862 + 4.74671i 0.709544 + 0.497590i
\(92\) −5.11596 + 2.54767i −0.533376 + 0.265613i
\(93\) −1.39354 3.36431i −0.144504 0.348863i
\(94\) 0.257707 1.58000i 0.0265804 0.162964i
\(95\) −14.2423 −1.46123
\(96\) −1.28330 + 2.90708i −0.130976 + 0.296703i
\(97\) 1.07250 1.07250i 0.108896 0.108896i −0.650559 0.759455i \(-0.725466\pi\)
0.759455 + 0.650559i \(0.225466\pi\)
\(98\) −1.43940 2.00046i −0.145401 0.202077i
\(99\) 4.43644 + 10.7105i 0.445879 + 1.07645i
\(100\) 6.99456 3.48318i 0.699456 0.348318i
\(101\) 5.55787 + 13.4179i 0.553028 + 1.33513i 0.915193 + 0.403015i \(0.132038\pi\)
−0.362165 + 0.932114i \(0.617962\pi\)
\(102\) −1.38086 5.87059i −0.136725 0.581275i
\(103\) −5.76332 + 5.76332i −0.567877 + 0.567877i −0.931533 0.363656i \(-0.881528\pi\)
0.363656 + 0.931533i \(0.381528\pi\)
\(104\) 3.12298 9.70809i 0.306233 0.951956i
\(105\) 2.71816 + 2.71816i 0.265265 + 0.265265i
\(106\) −7.07225 + 11.4225i −0.686917 + 1.10945i
\(107\) 17.2386 7.14048i 1.66652 0.690296i 0.667975 0.744184i \(-0.267161\pi\)
0.998547 + 0.0538875i \(0.0171612\pi\)
\(108\) 6.37111 0.442448i 0.613061 0.0425746i
\(109\) 5.32763 2.20677i 0.510294 0.211371i −0.112654 0.993634i \(-0.535935\pi\)
0.622948 + 0.782264i \(0.285935\pi\)
\(110\) 17.9895 + 2.93419i 1.71523 + 0.279764i
\(111\) −3.29863 3.29863i −0.313092 0.313092i
\(112\) 5.52659 7.31945i 0.522213 0.691623i
\(113\) 17.1590i 1.61418i 0.590429 + 0.807090i \(0.298959\pi\)
−0.590429 + 0.807090i \(0.701041\pi\)
\(114\) −3.07736 + 2.21426i −0.288221 + 0.207385i
\(115\) 7.87920 3.26367i 0.734739 0.304339i
\(116\) 4.20208 + 3.65635i 0.390154 + 0.339483i
\(117\) −9.53304 + 1.67386i −0.881330 + 0.154748i
\(118\) 8.47467 1.99338i 0.780157 0.183506i
\(119\) 17.4061i 1.59561i
\(120\) 2.21090 4.19493i 0.201827 0.382943i
\(121\) 5.40949 + 5.40949i 0.491772 + 0.491772i
\(122\) 12.7749 3.00486i 1.15659 0.272048i
\(123\) 1.23899 + 0.513206i 0.111716 + 0.0462742i
\(124\) 11.6055 5.77935i 1.04220 0.519001i
\(125\) 3.01389 1.24839i 0.269570 0.111660i
\(126\) −8.59112 1.40126i −0.765358 0.124834i
\(127\) 6.61325 0.586831 0.293416 0.955985i \(-0.405208\pi\)
0.293416 + 0.955985i \(0.405208\pi\)
\(128\) −10.6418 3.84092i −0.940609 0.339492i
\(129\) 3.79141i 0.333815i
\(130\) −5.65261 + 14.1290i −0.495767 + 1.23919i
\(131\) −0.294690 0.122064i −0.0257472 0.0106648i 0.369773 0.929122i \(-0.379436\pi\)
−0.395520 + 0.918457i \(0.629436\pi\)
\(132\) 4.34319 2.16284i 0.378026 0.188251i
\(133\) 10.1092 4.18736i 0.876577 0.363090i
\(134\) −13.2590 8.20931i −1.14540 0.709177i
\(135\) −9.53003 −0.820214
\(136\) 20.5103 6.35247i 1.75874 0.544720i
\(137\) 7.09917i 0.606523i −0.952907 0.303262i \(-0.901924\pi\)
0.952907 0.303262i \(-0.0980756\pi\)
\(138\) 1.19506 1.93017i 0.101730 0.164307i
\(139\) −0.967035 + 0.400559i −0.0820228 + 0.0339750i −0.423318 0.905981i \(-0.639135\pi\)
0.341295 + 0.939956i \(0.389135\pi\)
\(140\) −8.98378 + 10.3247i −0.759268 + 0.872594i
\(141\) 0.243346 + 0.587490i 0.0204935 + 0.0494756i
\(142\) −5.95072 8.27024i −0.499373 0.694023i
\(143\) −13.1384 + 8.35677i −1.09869 + 0.698828i
\(144\) 1.48423 + 10.6347i 0.123686 + 0.886223i
\(145\) −5.87739 5.87739i −0.488091 0.488091i
\(146\) 13.8018 9.93087i 1.14225 0.821885i
\(147\) 0.904421 + 0.374623i 0.0745954 + 0.0308984i
\(148\) 10.9023 12.5295i 0.896164 1.02992i
\(149\) −3.89568 1.61364i −0.319146 0.132195i 0.217359 0.976092i \(-0.430256\pi\)
−0.536505 + 0.843897i \(0.680256\pi\)
\(150\) −1.63389 + 2.63893i −0.133407 + 0.215468i
\(151\) −6.85278 −0.557671 −0.278836 0.960339i \(-0.589948\pi\)
−0.278836 + 0.960339i \(0.589948\pi\)
\(152\) −8.62356 10.3839i −0.699463 0.842242i
\(153\) −14.4097 14.4097i −1.16496 1.16496i
\(154\) −13.6316 + 3.20637i −1.09846 + 0.258376i
\(155\) −17.8738 + 7.40359i −1.43566 + 0.594671i
\(156\) 0.975273 + 3.93168i 0.0780844 + 0.314786i
\(157\) 2.93514 7.08604i 0.234249 0.565528i −0.762419 0.647083i \(-0.775989\pi\)
0.996669 + 0.0815552i \(0.0259887\pi\)
\(158\) 0.836273 + 1.16224i 0.0665303 + 0.0924631i
\(159\) 5.33648i 0.423210i
\(160\) 15.4447 + 6.81789i 1.22101 + 0.539001i
\(161\) −4.63309 + 4.63309i −0.365138 + 0.365138i
\(162\) 7.18553 5.17023i 0.564549 0.406212i
\(163\) 8.23010 + 19.8692i 0.644631 + 1.55628i 0.820366 + 0.571839i \(0.193770\pi\)
−0.175735 + 0.984438i \(0.556230\pi\)
\(164\) −1.51718 + 4.52716i −0.118472 + 0.353512i
\(165\) −6.68903 + 2.77069i −0.520740 + 0.215698i
\(166\) 3.00028 4.84581i 0.232867 0.376108i
\(167\) 16.8492i 1.30383i −0.758291 0.651917i \(-0.773965\pi\)
0.758291 0.651917i \(-0.226035\pi\)
\(168\) −0.335953 + 3.62757i −0.0259193 + 0.279873i
\(169\) −4.42867 12.2224i −0.340667 0.940184i
\(170\) −31.1891 + 7.33618i −2.39210 + 0.562660i
\(171\) −4.90242 + 11.8355i −0.374897 + 0.905082i
\(172\) −13.4662 + 0.935171i −1.02679 + 0.0713061i
\(173\) 3.34097 8.06582i 0.254010 0.613233i −0.744511 0.667610i \(-0.767317\pi\)
0.998520 + 0.0543770i \(0.0173173\pi\)
\(174\) −2.18369 0.356173i −0.165545 0.0270014i
\(175\) 6.33438 6.33438i 0.478834 0.478834i
\(176\) 8.75314 + 14.8925i 0.659793 + 1.12256i
\(177\) −2.44528 + 2.44528i −0.183799 + 0.183799i
\(178\) −3.45870 4.80686i −0.259240 0.360289i
\(179\) −8.30773 3.44118i −0.620949 0.257206i 0.0499528 0.998752i \(-0.484093\pi\)
−0.670902 + 0.741546i \(0.734093\pi\)
\(180\) −1.11007 15.9846i −0.0827396 1.19142i
\(181\) −10.8456 + 4.49239i −0.806146 + 0.333917i −0.747415 0.664357i \(-0.768705\pi\)
−0.0587311 + 0.998274i \(0.518705\pi\)
\(182\) −0.141823 11.6906i −0.0105126 0.866567i
\(183\) −3.68607 + 3.68607i −0.272482 + 0.272482i
\(184\) 7.15024 + 3.76848i 0.527123 + 0.277816i
\(185\) −17.5249 + 17.5249i −1.28846 + 1.28846i
\(186\) −2.71098 + 4.37855i −0.198779 + 0.321051i
\(187\) −30.2882 12.5458i −2.21490 0.917440i
\(188\) −2.02660 + 1.00921i −0.147805 + 0.0736045i
\(189\) 6.76439 2.80190i 0.492037 0.203808i
\(190\) 11.7639 + 16.3493i 0.853442 + 1.18610i
\(191\) 15.9188i 1.15185i 0.817503 + 0.575924i \(0.195357\pi\)
−0.817503 + 0.575924i \(0.804643\pi\)
\(192\) 4.39713 0.928043i 0.317335 0.0669757i
\(193\) −0.0112421 0.0112421i −0.000809224 0.000809224i 0.706702 0.707511i \(-0.250182\pi\)
−0.707511 + 0.706702i \(0.750182\pi\)
\(194\) −2.11703 0.345300i −0.151994 0.0247911i
\(195\) −1.04537 5.95367i −0.0748607 0.426351i
\(196\) −1.10749 + 3.30468i −0.0791064 + 0.236049i
\(197\) −5.88508 + 14.2078i −0.419294 + 1.01227i 0.563258 + 0.826281i \(0.309548\pi\)
−0.982553 + 0.185985i \(0.940452\pi\)
\(198\) 8.63058 13.9394i 0.613349 0.990630i
\(199\) −15.5175 + 15.5175i −1.10001 + 1.10001i −0.105600 + 0.994409i \(0.533676\pi\)
−0.994409 + 0.105600i \(0.966324\pi\)
\(200\) −9.77583 5.15228i −0.691256 0.364321i
\(201\) 6.19447 0.436924
\(202\) 10.8122 17.4630i 0.760743 1.22869i
\(203\) 5.89975 + 2.44376i 0.414082 + 0.171518i
\(204\) −5.59850 + 6.43412i −0.391973 + 0.450478i
\(205\) 2.72655 6.58247i 0.190430 0.459739i
\(206\) 11.3763 + 1.85554i 0.792625 + 0.129282i
\(207\) 7.67107i 0.533176i
\(208\) −13.7238 + 4.43370i −0.951573 + 0.307422i
\(209\) 20.6091i 1.42556i
\(210\) 0.875131 5.36541i 0.0603898 0.370249i
\(211\) 6.09460 14.7137i 0.419570 1.01293i −0.562903 0.826523i \(-0.690315\pi\)
0.982472 0.186408i \(-0.0596845\pi\)
\(212\) 18.9539 1.31627i 1.30176 0.0904017i
\(213\) 3.73902 + 1.54875i 0.256194 + 0.106119i
\(214\) −22.4356 13.8910i −1.53366 0.949568i
\(215\) 20.1429 1.37374
\(216\) −5.77031 6.94818i −0.392620 0.472764i
\(217\) 10.5101 10.5101i 0.713472 0.713472i
\(218\) −6.93375 4.29303i −0.469612 0.290760i
\(219\) −2.58464 + 6.23988i −0.174654 + 0.421652i
\(220\) −11.4907 23.0744i −0.774702 1.55567i
\(221\) 15.7154 22.4096i 1.05713 1.50743i
\(222\) −1.06202 + 6.51122i −0.0712780 + 0.437004i
\(223\) −5.30433 5.30433i −0.355204 0.355204i 0.506837 0.862042i \(-0.330814\pi\)
−0.862042 + 0.506837i \(0.830814\pi\)
\(224\) −12.9671 0.298463i −0.866401 0.0199419i
\(225\) 10.4879i 0.699194i
\(226\) 19.6974 14.1729i 1.31025 0.942770i
\(227\) 0.0178168 0.00737995i 0.00118254 0.000489824i −0.382092 0.924124i \(-0.624796\pi\)
0.383275 + 0.923634i \(0.374796\pi\)
\(228\) 5.08367 + 1.70368i 0.336674 + 0.112829i
\(229\) 7.74380 + 3.20759i 0.511725 + 0.211963i 0.623578 0.781762i \(-0.285679\pi\)
−0.111853 + 0.993725i \(0.535679\pi\)
\(230\) −10.2545 6.34909i −0.676164 0.418647i
\(231\) 3.93325 3.93325i 0.258789 0.258789i
\(232\) 0.726421 7.84379i 0.0476919 0.514970i
\(233\) −8.53569 + 8.53569i −0.559192 + 0.559192i −0.929077 0.369886i \(-0.879397\pi\)
0.369886 + 0.929077i \(0.379397\pi\)
\(234\) 9.79557 + 9.56076i 0.640357 + 0.625006i
\(235\) 3.12120 1.29284i 0.203605 0.0843359i
\(236\) −9.28817 8.08189i −0.604609 0.526086i
\(237\) −0.525456 0.217651i −0.0341321 0.0141380i
\(238\) 19.9811 14.3770i 1.29518 0.931925i
\(239\) 18.4356 18.4356i 1.19250 1.19250i 0.216136 0.976363i \(-0.430655\pi\)
0.976363 0.216136i \(-0.0693453\pi\)
\(240\) −6.64167 + 0.926946i −0.428718 + 0.0598341i
\(241\) −2.31674 + 2.31674i −0.149234 + 0.149234i −0.777776 0.628542i \(-0.783652\pi\)
0.628542 + 0.777776i \(0.283652\pi\)
\(242\) 1.74162 10.6779i 0.111956 0.686400i
\(243\) −5.01161 + 12.0991i −0.321495 + 0.776157i
\(244\) −14.0012 12.1828i −0.896335 0.779925i
\(245\) 1.99029 4.80498i 0.127155 0.306979i
\(246\) −0.434251 1.84618i −0.0276868 0.117708i
\(247\) −16.7958 3.73623i −1.06869 0.237731i
\(248\) −16.2202 8.54874i −1.02999 0.542846i
\(249\) 2.26391i 0.143469i
\(250\) −3.92248 2.42860i −0.248080 0.153598i
\(251\) 19.8162 8.20813i 1.25079 0.518092i 0.343716 0.939074i \(-0.388314\pi\)
0.907069 + 0.420981i \(0.138314\pi\)
\(252\) 5.48753 + 11.0195i 0.345682 + 0.694162i
\(253\) −4.72263 11.4014i −0.296909 0.716802i
\(254\) −5.46241 7.59159i −0.342742 0.476339i
\(255\) 8.99930 8.99930i 0.563558 0.563558i
\(256\) 4.38075 + 15.3886i 0.273797 + 0.961787i
\(257\) 11.1031i 0.692595i 0.938125 + 0.346297i \(0.112561\pi\)
−0.938125 + 0.346297i \(0.887439\pi\)
\(258\) 4.35230 3.13163i 0.270962 0.194967i
\(259\) 7.28667 17.5916i 0.452772 1.09309i
\(260\) 20.8881 5.18141i 1.29543 0.321337i
\(261\) −6.90724 + 2.86107i −0.427547 + 0.177096i
\(262\) 0.103285 + 0.439108i 0.00638099 + 0.0271282i
\(263\) −21.5902 21.5902i −1.33131 1.33131i −0.904199 0.427111i \(-0.859531\pi\)
−0.427111 0.904199i \(-0.640469\pi\)
\(264\) −6.07019 3.19924i −0.373594 0.196900i
\(265\) −28.3515 −1.74162
\(266\) −13.1568 8.14602i −0.806695 0.499465i
\(267\) 2.17321 + 0.900172i 0.132998 + 0.0550896i
\(268\) 1.52790 + 22.0012i 0.0933312 + 1.34394i
\(269\) 18.3561 + 7.60334i 1.11919 + 0.463584i 0.864093 0.503332i \(-0.167893\pi\)
0.255097 + 0.966915i \(0.417893\pi\)
\(270\) 7.87160 + 10.9399i 0.479050 + 0.665779i
\(271\) 6.51693 + 6.51693i 0.395875 + 0.395875i 0.876775 0.480900i \(-0.159690\pi\)
−0.480900 + 0.876775i \(0.659690\pi\)
\(272\) −24.2333 18.2975i −1.46936 1.10945i
\(273\) 2.49243 + 3.91855i 0.150849 + 0.237161i
\(274\) −8.14940 + 5.86377i −0.492323 + 0.354243i
\(275\) 6.45679 + 15.5881i 0.389359 + 0.939996i
\(276\) −3.20280 + 0.222422i −0.192786 + 0.0133882i
\(277\) −25.3091 + 10.4834i −1.52068 + 0.629885i −0.977727 0.209879i \(-0.932693\pi\)
−0.542951 + 0.839765i \(0.682693\pi\)
\(278\) 1.25857 + 0.779241i 0.0754838 + 0.0467358i
\(279\) 17.4017i 1.04181i
\(280\) 19.2725 + 1.78484i 1.15175 + 0.106665i
\(281\) 10.6480 0.635204 0.317602 0.948224i \(-0.397122\pi\)
0.317602 + 0.948224i \(0.397122\pi\)
\(282\) 0.473402 0.764601i 0.0281907 0.0455313i
\(283\) 26.4623 10.9610i 1.57302 0.651566i 0.585732 0.810505i \(-0.300807\pi\)
0.987288 + 0.158938i \(0.0508071\pi\)
\(284\) −4.57854 + 13.6621i −0.271686 + 0.810696i
\(285\) −7.39162 3.06171i −0.437842 0.181360i
\(286\) 20.4451 + 8.17949i 1.20894 + 0.483664i
\(287\) 5.47384i 0.323111i
\(288\) 10.9820 10.4878i 0.647120 0.618001i
\(289\) 40.6282 2.38989
\(290\) −1.89227 + 11.6015i −0.111118 + 0.681262i
\(291\) 0.787174 0.326058i 0.0461449 0.0191139i
\(292\) −22.8000 7.64091i −1.33427 0.447151i
\(293\) −3.38161 1.40071i −0.197556 0.0818304i 0.281712 0.959499i \(-0.409098\pi\)
−0.479268 + 0.877669i \(0.659098\pi\)
\(294\) −0.316989 1.34765i −0.0184872 0.0785965i
\(295\) 12.9912 + 12.9912i 0.756379 + 0.756379i
\(296\) −23.3882 2.16600i −1.35941 0.125896i
\(297\) 13.7902i 0.800190i
\(298\) 1.36539 + 5.80482i 0.0790949 + 0.336264i
\(299\) 10.1480 1.78183i 0.586874 0.103046i
\(300\) 4.37888 0.304096i 0.252815 0.0175570i
\(301\) −14.2974 + 5.92218i −0.824088 + 0.341349i
\(302\) 5.66025 + 7.86656i 0.325711 + 0.452669i
\(303\) 8.15851i 0.468694i
\(304\) −4.79712 + 18.4761i −0.275134 + 1.05968i
\(305\) 19.5833 + 19.5833i 1.12133 + 1.12133i
\(306\) −4.63932 + 28.4436i −0.265212 + 1.62601i
\(307\) −23.7893 + 9.85386i −1.35773 + 0.562389i −0.938433 0.345461i \(-0.887723\pi\)
−0.419295 + 0.907850i \(0.637723\pi\)
\(308\) 14.9401 + 12.9998i 0.851291 + 0.740732i
\(309\) −4.23005 + 1.75214i −0.240639 + 0.0996760i
\(310\) 23.2623 + 14.4028i 1.32121 + 0.818026i
\(311\) −10.4507 10.4507i −0.592602 0.592602i 0.345731 0.938334i \(-0.387631\pi\)
−0.938334 + 0.345731i \(0.887631\pi\)
\(312\) 3.70776 4.36703i 0.209911 0.247235i
\(313\) −1.65921 + 1.65921i −0.0937843 + 0.0937843i −0.752442 0.658658i \(-0.771124\pi\)
0.658658 + 0.752442i \(0.271124\pi\)
\(314\) −10.5587 + 2.48358i −0.595861 + 0.140156i
\(315\) −7.02975 16.9713i −0.396082 0.956226i
\(316\) 0.643437 1.91998i 0.0361961 0.108007i
\(317\) −1.12313 2.71146i −0.0630810 0.152291i 0.889196 0.457527i \(-0.151265\pi\)
−0.952277 + 0.305236i \(0.901265\pi\)
\(318\) −6.12594 + 4.40782i −0.343526 + 0.247178i
\(319\) −8.50476 + 8.50476i −0.476175 + 0.476175i
\(320\) −4.93048 23.3609i −0.275622 1.30592i
\(321\) 10.4817 0.585029
\(322\) 9.14533 + 1.49166i 0.509649 + 0.0831268i
\(323\) −13.8636 33.4696i −0.771389 1.86230i
\(324\) −11.8702 3.97803i −0.659455 0.221002i
\(325\) −13.8744 + 2.43613i −0.769613 + 0.135132i
\(326\) 16.0107 25.8592i 0.886751 1.43221i
\(327\) 3.23937 0.179138
\(328\) 6.45005 1.99772i 0.356145 0.110306i
\(329\) −1.83532 + 1.83532i −0.101184 + 0.101184i
\(330\) 8.70558 + 5.39005i 0.479226 + 0.296713i
\(331\) −1.47260 + 3.55517i −0.0809415 + 0.195410i −0.959169 0.282832i \(-0.908726\pi\)
0.878228 + 0.478242i \(0.158726\pi\)
\(332\) −8.04085 + 0.558405i −0.441299 + 0.0306464i
\(333\) 8.53099 + 20.5956i 0.467495 + 1.12863i
\(334\) −19.3419 + 13.9171i −1.05834 + 0.761511i
\(335\) 32.9098i 1.79806i
\(336\) 4.44171 2.61065i 0.242315 0.142422i
\(337\) 19.0403 1.03719 0.518595 0.855020i \(-0.326455\pi\)
0.518595 + 0.855020i \(0.326455\pi\)
\(338\) −10.3725 + 15.1793i −0.564192 + 0.825643i
\(339\) −3.68870 + 8.90531i −0.200343 + 0.483670i
\(340\) 34.1830 + 29.7436i 1.85384 + 1.61307i
\(341\) 10.7132 + 25.8640i 0.580153 + 1.40061i
\(342\) 17.6357 4.14820i 0.953629 0.224309i
\(343\) 20.0459i 1.08238i
\(344\) 12.1963 + 14.6859i 0.657580 + 0.791809i
\(345\) 4.79081 0.257929
\(346\) −12.0186 + 2.82698i −0.646126 + 0.151979i
\(347\) −8.78988 21.2206i −0.471865 1.13918i −0.963338 0.268291i \(-0.913541\pi\)
0.491472 0.870893i \(-0.336459\pi\)
\(348\) 1.39482 + 2.80093i 0.0747702 + 0.150146i
\(349\) −11.1763 + 4.62938i −0.598254 + 0.247805i −0.661197 0.750212i \(-0.729951\pi\)
0.0629430 + 0.998017i \(0.479951\pi\)
\(350\) −12.5035 2.03940i −0.668341 0.109010i
\(351\) −11.2386 2.50004i −0.599874 0.133442i
\(352\) 9.86568 22.3489i 0.525843 1.19120i
\(353\) 6.47553 6.47553i 0.344658 0.344658i −0.513457 0.858115i \(-0.671636\pi\)
0.858115 + 0.513457i \(0.171636\pi\)
\(354\) 4.82678 + 0.787276i 0.256540 + 0.0418433i
\(355\) 8.22818 19.8646i 0.436707 1.05430i
\(356\) −2.66116 + 7.94073i −0.141041 + 0.420858i
\(357\) −3.74182 + 9.03355i −0.198038 + 0.478106i
\(358\) 2.91176 + 12.3791i 0.153891 + 0.654255i
\(359\) 29.7972i 1.57264i −0.617820 0.786319i \(-0.711984\pi\)
0.617820 0.786319i \(-0.288016\pi\)
\(360\) −17.4325 + 14.4773i −0.918771 + 0.763019i
\(361\) −2.66846 + 2.66846i −0.140445 + 0.140445i
\(362\) 14.1152 + 8.73943i 0.741879 + 0.459334i
\(363\) 1.64457 + 3.97035i 0.0863177 + 0.208389i
\(364\) −13.3030 + 9.81902i −0.697264 + 0.514656i
\(365\) 33.1511 + 13.7316i 1.73521 + 0.718746i
\(366\) 7.27599 + 1.18676i 0.380322 + 0.0620328i
\(367\) −8.76959 −0.457769 −0.228884 0.973454i \(-0.573508\pi\)
−0.228884 + 0.973454i \(0.573508\pi\)
\(368\) −1.57998 11.3207i −0.0823619 0.590133i
\(369\) −4.53156 4.53156i −0.235904 0.235904i
\(370\) 34.5927 + 5.64227i 1.79839 + 0.293328i
\(371\) 20.1238 8.33556i 1.04478 0.432761i
\(372\) 7.26552 0.504561i 0.376699 0.0261603i
\(373\) −6.66474 16.0901i −0.345087 0.833114i −0.997185 0.0749793i \(-0.976111\pi\)
0.652098 0.758135i \(-0.273889\pi\)
\(374\) 10.6157 + 45.1316i 0.548923 + 2.33370i
\(375\) 1.83254 0.0946321
\(376\) 2.83244 + 1.49282i 0.146072 + 0.0769861i
\(377\) −5.38930 8.47297i −0.277563 0.436380i
\(378\) −8.80365 5.45077i −0.452811 0.280358i
\(379\) −24.4128 10.1121i −1.25400 0.519424i −0.345938 0.938258i \(-0.612439\pi\)
−0.908063 + 0.418833i \(0.862439\pi\)
\(380\) 9.05125 27.0084i 0.464319 1.38550i
\(381\) 3.43220 + 1.42166i 0.175837 + 0.0728341i
\(382\) 18.2738 13.1486i 0.934970 0.672743i
\(383\) −5.86845 5.86845i −0.299864 0.299864i 0.541097 0.840960i \(-0.318009\pi\)
−0.840960 + 0.541097i \(0.818009\pi\)
\(384\) −4.69727 4.28108i −0.239707 0.218468i
\(385\) −20.8965 20.8965i −1.06498 1.06498i
\(386\) −0.00361948 + 0.0221910i −0.000184227 + 0.00112949i
\(387\) 6.93349 16.7389i 0.352449 0.850887i
\(388\) 1.35224 + 2.71542i 0.0686495 + 0.137855i
\(389\) −0.619840 1.49643i −0.0314272 0.0758719i 0.907387 0.420297i \(-0.138074\pi\)
−0.938814 + 0.344425i \(0.888074\pi\)
\(390\) −5.97098 + 6.11763i −0.302352 + 0.309778i
\(391\) 15.3393 + 15.3393i 0.775741 + 0.775741i
\(392\) 4.70833 1.45827i 0.237806 0.0736538i
\(393\) −0.126700 0.126700i −0.00639118 0.00639118i
\(394\) 21.1706 4.97968i 1.06656 0.250873i
\(395\) −1.15633 + 2.79163i −0.0581814 + 0.140462i
\(396\) −23.1302 + 1.60630i −1.16234 + 0.0807197i
\(397\) −7.65475 18.4802i −0.384181 0.927495i −0.991147 0.132768i \(-0.957614\pi\)
0.606966 0.794728i \(-0.292386\pi\)
\(398\) 30.6303 + 4.99599i 1.53536 + 0.250426i
\(399\) 6.14671 0.307721
\(400\) 2.16015 + 15.4777i 0.108007 + 0.773886i
\(401\) 2.54345 2.54345i 0.127014 0.127014i −0.640742 0.767756i \(-0.721373\pi\)
0.767756 + 0.640742i \(0.221373\pi\)
\(402\) −5.11650 7.11086i −0.255188 0.354657i
\(403\) −23.0206 + 4.04207i −1.14674 + 0.201350i
\(404\) −28.9770 + 2.01234i −1.44166 + 0.100118i
\(405\) 17.2592 + 7.14899i 0.857616 + 0.355236i
\(406\) −2.06779 8.79104i −0.102623 0.436292i
\(407\) 25.3590 + 25.3590i 1.25700 + 1.25700i
\(408\) 12.0102 + 1.11228i 0.594594 + 0.0550659i
\(409\) 17.7108i 0.875742i −0.899038 0.437871i \(-0.855733\pi\)
0.899038 0.437871i \(-0.144267\pi\)
\(410\) −9.80832 + 2.30708i −0.484399 + 0.113938i
\(411\) 1.52612 3.68439i 0.0752781 0.181738i
\(412\) −7.26655 14.5919i −0.357997 0.718892i
\(413\) −13.0407 5.40162i −0.641689 0.265796i
\(414\) −8.80590 + 6.33614i −0.432786 + 0.311404i
\(415\) 12.0276 0.590414
\(416\) 16.4252 + 12.0919i 0.805310 + 0.592854i
\(417\) −0.587989 −0.0287939
\(418\) 23.6579 17.0227i 1.15715 0.832607i
\(419\) 20.5866 + 8.52723i 1.00572 + 0.416582i 0.823891 0.566748i \(-0.191799\pi\)
0.181828 + 0.983330i \(0.441799\pi\)
\(420\) −6.88199 + 3.42713i −0.335807 + 0.167227i
\(421\) −11.7353 + 28.3316i −0.571946 + 1.38080i 0.327950 + 0.944695i \(0.393642\pi\)
−0.899896 + 0.436104i \(0.856358\pi\)
\(422\) −21.9244 + 5.15697i −1.06726 + 0.251037i
\(423\) 3.03876i 0.147749i
\(424\) −17.1665 20.6706i −0.833678 1.00385i
\(425\) −20.9719 20.9719i −1.01729 1.01729i
\(426\) −1.31048 5.57140i −0.0634931 0.269935i
\(427\) −19.6578 8.14252i −0.951306 0.394044i
\(428\) 2.58535 + 37.2283i 0.124968 + 1.79950i
\(429\) −8.61513 + 1.51269i −0.415943 + 0.0730331i
\(430\) −16.6376 23.1228i −0.802338 1.11508i
\(431\) −19.1335 + 19.1335i −0.921629 + 0.921629i −0.997145 0.0755159i \(-0.975940\pi\)
0.0755159 + 0.997145i \(0.475940\pi\)
\(432\) −3.20992 + 12.3630i −0.154437 + 0.594815i
\(433\) 26.0534 1.25205 0.626023 0.779804i \(-0.284681\pi\)
0.626023 + 0.779804i \(0.284681\pi\)
\(434\) −20.7460 3.38380i −0.995842 0.162428i
\(435\) −1.78682 4.31377i −0.0856716 0.206830i
\(436\) 0.799007 + 11.5055i 0.0382655 + 0.551011i
\(437\) 5.21867 12.5990i 0.249643 0.602691i
\(438\) 9.29784 2.18700i 0.444268 0.104499i
\(439\) −0.195559 0.195559i −0.00933350 0.00933350i 0.702425 0.711758i \(-0.252101\pi\)
−0.711758 + 0.702425i \(0.752101\pi\)
\(440\) −16.9969 + 32.2495i −0.810294 + 1.53744i
\(441\) −3.30789 3.30789i −0.157519 0.157519i
\(442\) −38.7054 + 0.469548i −1.84103 + 0.0223341i
\(443\) 11.9944 + 28.9570i 0.569871 + 1.37579i 0.901664 + 0.432438i \(0.142347\pi\)
−0.331792 + 0.943352i \(0.607653\pi\)
\(444\) 8.35167 4.15900i 0.396353 0.197378i
\(445\) 4.78241 11.5458i 0.226708 0.547322i
\(446\) −1.70777 + 10.4703i −0.0808652 + 0.495783i
\(447\) −1.67492 1.67492i −0.0792212 0.0792212i
\(448\) 10.3679 + 15.1319i 0.489839 + 0.714917i
\(449\) 0.639812 + 0.639812i 0.0301946 + 0.0301946i 0.722043 0.691848i \(-0.243203\pi\)
−0.691848 + 0.722043i \(0.743203\pi\)
\(450\) 12.0395 8.66280i 0.567546 0.408368i
\(451\) −9.52502 3.94539i −0.448516 0.185781i
\(452\) −32.5393 10.9048i −1.53052 0.512919i
\(453\) −3.55651 1.47316i −0.167100 0.0692149i
\(454\) −0.0231880 0.0143568i −0.00108827 0.000673800i
\(455\) 20.8184 13.2417i 0.975981 0.620781i
\(456\) −2.24329 7.24293i −0.105052 0.339181i
\(457\) 31.2843 1.46342 0.731709 0.681617i \(-0.238723\pi\)
0.731709 + 0.681617i \(0.238723\pi\)
\(458\) −2.71411 11.5388i −0.126822 0.539172i
\(459\) −9.27656 22.3956i −0.432993 1.04534i
\(460\) 1.18168 + 17.0158i 0.0550960 + 0.793365i
\(461\) 20.3607 8.43368i 0.948292 0.392796i 0.145704 0.989328i \(-0.453455\pi\)
0.802589 + 0.596533i \(0.203455\pi\)
\(462\) −7.76391 1.26634i −0.361210 0.0589155i
\(463\) 11.9587 + 11.9587i 0.555768 + 0.555768i 0.928100 0.372332i \(-0.121442\pi\)
−0.372332 + 0.928100i \(0.621442\pi\)
\(464\) −9.60418 + 5.64492i −0.445863 + 0.262059i
\(465\) −10.8679 −0.503986
\(466\) 16.8487 + 2.74813i 0.780502 + 0.127305i
\(467\) 30.2851 + 12.5445i 1.40143 + 0.580490i 0.950121 0.311880i \(-0.100959\pi\)
0.451305 + 0.892370i \(0.350959\pi\)
\(468\) 2.88420 19.1417i 0.133322 0.884825i
\(469\) 9.67574 + 23.3593i 0.446784 + 1.07863i
\(470\) −4.06215 2.51508i −0.187373 0.116012i
\(471\) 3.04660 3.04660i 0.140380 0.140380i
\(472\) −1.60566 + 17.3377i −0.0739066 + 0.798033i
\(473\) 29.1474i 1.34020i
\(474\) 0.184166 + 0.782966i 0.00845904 + 0.0359628i
\(475\) −7.13498 + 17.2254i −0.327375 + 0.790354i
\(476\) −33.0079 11.0618i −1.51291 0.507019i
\(477\) −9.75900 + 23.5603i −0.446834 + 1.07875i
\(478\) −36.3903 5.93547i −1.66445 0.271482i
\(479\) 17.8581 17.8581i 0.815958 0.815958i −0.169562 0.985520i \(-0.554235\pi\)
0.985520 + 0.169562i \(0.0542352\pi\)
\(480\) 6.54996 + 6.85858i 0.298963 + 0.313050i
\(481\) −25.2642 + 16.0695i −1.15195 + 0.732708i
\(482\) 4.57304 + 0.745890i 0.208296 + 0.0339744i
\(483\) −3.40050 + 1.40854i −0.154728 + 0.0640906i
\(484\) −13.6961 + 6.82043i −0.622548 + 0.310019i
\(485\) −1.73227 4.18208i −0.0786585 0.189898i
\(486\) 18.0285 4.24059i 0.817788 0.192357i
\(487\) 3.48947 0.158123 0.0790614 0.996870i \(-0.474808\pi\)
0.0790614 + 0.996870i \(0.474808\pi\)
\(488\) −2.42041 + 26.1352i −0.109567 + 1.18309i
\(489\) 12.0811i 0.546328i
\(490\) −7.15976 + 1.68409i −0.323445 + 0.0760795i
\(491\) −4.81645 11.6279i −0.217363 0.524762i 0.777157 0.629307i \(-0.216661\pi\)
−0.994520 + 0.104545i \(0.966661\pi\)
\(492\) −1.76061 + 2.02340i −0.0793745 + 0.0912217i
\(493\) 8.09082 19.5330i 0.364392 0.879721i
\(494\) 9.58404 + 22.3666i 0.431206 + 1.00632i
\(495\) 34.5986 1.55509
\(496\) 3.58415 + 25.6809i 0.160933 + 1.15310i
\(497\) 16.5190i 0.740977i
\(498\) 2.59882 1.86994i 0.116456 0.0837941i
\(499\) −0.196016 0.473223i −0.00877486 0.0211844i 0.919431 0.393250i \(-0.128649\pi\)
−0.928206 + 0.372066i \(0.878649\pi\)
\(500\) 0.452006 + 6.50874i 0.0202143 + 0.291080i
\(501\) 3.62212 8.74456i 0.161824 0.390678i
\(502\) −25.7901 15.9680i −1.15107 0.712685i
\(503\) −16.1899 + 16.1899i −0.721872 + 0.721872i −0.968986 0.247114i \(-0.920518\pi\)
0.247114 + 0.968986i \(0.420518\pi\)
\(504\) 8.11708 15.4012i 0.361563 0.686024i
\(505\) 43.3444 1.92880
\(506\) −9.18733 + 14.8386i −0.408426 + 0.659657i
\(507\) 0.329047 7.29532i 0.0146135 0.323997i
\(508\) −4.20283 + 12.5410i −0.186471 + 0.556417i
\(509\) 5.91082 + 14.2700i 0.261992 + 0.632505i 0.999062 0.0433118i \(-0.0137909\pi\)
−0.737069 + 0.675817i \(0.763791\pi\)
\(510\) −17.7639 2.89739i −0.786597 0.128299i
\(511\) −27.5677 −1.21953
\(512\) 14.0467 17.7395i 0.620783 0.783982i
\(513\) −10.7754 + 10.7754i −0.475745 + 0.475745i
\(514\) 12.7457 9.17096i 0.562189 0.404514i
\(515\) 9.30875 + 22.4733i 0.410193 + 0.990293i
\(516\) −7.18982 2.40951i −0.316514 0.106073i
\(517\) −1.87078 4.51647i −0.0822770 0.198634i
\(518\) −26.2126 + 6.16564i −1.15172 + 0.270903i
\(519\) 3.46785 3.46785i 0.152222 0.152222i
\(520\) −23.2011 19.6985i −1.01743 0.863836i
\(521\) −20.3087 20.3087i −0.889739 0.889739i 0.104759 0.994498i \(-0.466593\pi\)
−0.994498 + 0.104759i \(0.966593\pi\)
\(522\) 8.98956 + 5.56588i 0.393462 + 0.243612i
\(523\) −34.3338 + 14.2215i −1.50131 + 0.621865i −0.973744 0.227647i \(-0.926897\pi\)
−0.527570 + 0.849512i \(0.676897\pi\)
\(524\) 0.418756 0.481259i 0.0182935 0.0210239i
\(525\) 4.64918 1.92575i 0.202907 0.0840468i
\(526\) −6.95113 + 42.6173i −0.303084 + 1.85820i
\(527\) −34.7969 34.7969i −1.51578 1.51578i
\(528\) 1.34132 + 9.61070i 0.0583734 + 0.418252i
\(529\) 14.8341i 0.644960i
\(530\) 23.4178 + 32.5457i 1.01720 + 1.41370i
\(531\) 15.2676 6.32403i 0.662556 0.274440i
\(532\) 1.51612 + 21.8316i 0.0657321 + 0.946520i
\(533\) 4.94218 7.04736i 0.214070 0.305255i
\(534\) −0.761684 3.23823i −0.0329613 0.140132i
\(535\) 55.6867i 2.40755i
\(536\) 23.9940 19.9265i 1.03638 0.860693i
\(537\) −3.57186 3.57186i −0.154137 0.154137i
\(538\) −6.43359 27.3518i −0.277372 1.17922i
\(539\) −6.95295 2.88001i −0.299485 0.124051i
\(540\) 6.05649 18.0722i 0.260630 0.777704i
\(541\) −14.8442 + 6.14866i −0.638201 + 0.264351i −0.678233 0.734847i \(-0.737254\pi\)
0.0400322 + 0.999198i \(0.487254\pi\)
\(542\) 2.09817 12.8639i 0.0901242 0.552550i
\(543\) −6.59448 −0.282996
\(544\) −0.988153 + 42.9316i −0.0423667 + 1.84068i
\(545\) 17.2101i 0.737198i
\(546\) 2.43955 6.09779i 0.104403 0.260961i
\(547\) 21.1875 + 8.77613i 0.905910 + 0.375240i 0.786490 0.617604i \(-0.211896\pi\)
0.119420 + 0.992844i \(0.461896\pi\)
\(548\) 13.4625 + 4.51164i 0.575088 + 0.192728i
\(549\) 23.0147 9.53299i 0.982242 0.406858i
\(550\) 12.5609 20.2874i 0.535601 0.865058i
\(551\) −13.2909 −0.566210
\(552\) 2.90078 + 3.49290i 0.123465 + 0.148668i
\(553\) 2.32146i 0.0987187i
\(554\) 32.9391 + 20.3942i 1.39945 + 0.866467i
\(555\) −12.8626 + 5.32786i −0.545986 + 0.226155i
\(556\) −0.145030 2.08839i −0.00615066 0.0885676i
\(557\) −1.56000 3.76617i −0.0660992 0.159578i 0.887378 0.461042i \(-0.152524\pi\)
−0.953477 + 0.301465i \(0.902524\pi\)
\(558\) 19.9761 14.3735i 0.845654 0.608477i
\(559\) 23.7543 + 5.28415i 1.00470 + 0.223496i
\(560\) −13.8698 23.5978i −0.586105 0.997190i
\(561\) −13.0223 13.0223i −0.549800 0.549800i
\(562\) −8.79499 12.2232i −0.370994 0.515604i
\(563\) −9.94373 4.11883i −0.419078 0.173588i 0.163172 0.986598i \(-0.447828\pi\)
−0.582250 + 0.813010i \(0.697828\pi\)
\(564\) −1.26873 + 0.0881085i −0.0534233 + 0.00371004i
\(565\) 47.3119 + 19.5972i 1.99043 + 0.824462i
\(566\) −34.4399 21.3234i −1.44762 0.896291i
\(567\) −14.3524 −0.602743
\(568\) 19.4650 6.02873i 0.816733 0.252960i
\(569\) −6.47792 6.47792i −0.271569 0.271569i 0.558163 0.829731i \(-0.311506\pi\)
−0.829731 + 0.558163i \(0.811506\pi\)
\(570\) 2.59067 + 11.0140i 0.108511 + 0.461326i
\(571\) −19.9626 + 8.26880i −0.835411 + 0.346038i −0.759042 0.651041i \(-0.774332\pi\)
−0.0763683 + 0.997080i \(0.524332\pi\)
\(572\) −7.49765 30.2257i −0.313493 1.26380i
\(573\) −3.42211 + 8.26170i −0.142961 + 0.345137i
\(574\) 6.28362 4.52128i 0.262273 0.188715i
\(575\) 11.1645i 0.465591i
\(576\) −21.1103 3.94391i −0.879594 0.164329i
\(577\) 9.29739 9.29739i 0.387056 0.387056i −0.486580 0.873636i \(-0.661756\pi\)
0.873636 + 0.486580i \(0.161756\pi\)
\(578\) −33.5580 46.6385i −1.39583 1.93991i
\(579\) −0.00341778 0.00825126i −0.000142038 0.000342911i
\(580\) 14.8807 7.41037i 0.617889 0.307699i
\(581\) −8.53719 + 3.53622i −0.354182 + 0.146707i
\(582\) −1.02448 0.634308i −0.0424662 0.0262929i
\(583\) 41.0255i 1.69910i
\(584\) 10.0611 + 32.4842i 0.416330 + 1.34421i
\(585\) −6.27240 + 28.1969i −0.259332 + 1.16580i
\(586\) 1.18522 + 5.03884i 0.0489608 + 0.208152i
\(587\) −3.40778 + 8.22711i −0.140654 + 0.339569i −0.978472 0.206381i \(-0.933831\pi\)
0.837818 + 0.545950i \(0.183831\pi\)
\(588\) −1.28519 + 1.47701i −0.0530003 + 0.0609110i
\(589\) −11.8385 + 28.5806i −0.487796 + 1.17764i
\(590\) 4.18262 25.6436i 0.172196 1.05573i
\(591\) −6.10858 + 6.10858i −0.251273 + 0.251273i
\(592\) 16.8317 + 28.6372i 0.691780 + 1.17698i
\(593\) −19.2190 + 19.2190i −0.789232 + 0.789232i −0.981368 0.192137i \(-0.938458\pi\)
0.192137 + 0.981368i \(0.438458\pi\)
\(594\) 15.8303 11.3904i 0.649525 0.467355i
\(595\) 47.9932 + 19.8794i 1.96753 + 0.814978i
\(596\) 5.53579 6.36204i 0.226755 0.260599i
\(597\) −11.3893 + 4.71759i −0.466132 + 0.193078i
\(598\) −10.4275 10.1775i −0.426411 0.416189i
\(599\) 21.1752 21.1752i 0.865196 0.865196i −0.126740 0.991936i \(-0.540451\pi\)
0.991936 + 0.126740i \(0.0404513\pi\)
\(600\) −3.96595 4.77550i −0.161909 0.194959i
\(601\) −32.0385 + 32.0385i −1.30688 + 1.30688i −0.383219 + 0.923658i \(0.625185\pi\)
−0.923658 + 0.383219i \(0.874815\pi\)
\(602\) 18.6076 + 11.5209i 0.758391 + 0.469557i
\(603\) −27.3483 11.3280i −1.11371 0.461313i
\(604\) 4.35506 12.9952i 0.177205 0.528768i
\(605\) 21.0936 8.73725i 0.857576 0.355220i
\(606\) 9.36546 6.73876i 0.380446 0.273743i
\(607\) 21.6218i 0.877601i −0.898584 0.438801i \(-0.855403\pi\)
0.898584 0.438801i \(-0.144597\pi\)
\(608\) 25.1718 9.75412i 1.02085 0.395582i
\(609\) 2.53657 + 2.53657i 0.102787 + 0.102787i
\(610\) 6.30498 38.6557i 0.255281 1.56512i
\(611\) 4.01995 0.705842i 0.162630 0.0285553i
\(612\) 36.4834 18.1682i 1.47475 0.734405i
\(613\) 3.28278 7.92533i 0.132590 0.320101i −0.843615 0.536948i \(-0.819577\pi\)
0.976206 + 0.216847i \(0.0695772\pi\)
\(614\) 30.9611 + 19.1695i 1.24949 + 0.773620i
\(615\) 2.83009 2.83009i 0.114120 0.114120i
\(616\) 2.58272 27.8878i 0.104061 1.12363i
\(617\) 10.6098 0.427136 0.213568 0.976928i \(-0.431492\pi\)
0.213568 + 0.976928i \(0.431492\pi\)
\(618\) 5.50529 + 3.40860i 0.221455 + 0.137114i
\(619\) 2.82937 + 1.17196i 0.113722 + 0.0471052i 0.438819 0.898575i \(-0.355397\pi\)
−0.325097 + 0.945681i \(0.605397\pi\)
\(620\) −2.68062 38.6001i −0.107656 1.55022i
\(621\) 3.49198 8.43039i 0.140128 0.338300i
\(622\) −3.36466 + 20.6287i −0.134911 + 0.827136i
\(623\) 9.60122i 0.384665i
\(624\) −8.07561 0.649193i −0.323283 0.0259885i
\(625\) 29.2705i 1.17082i
\(626\) 3.27515 + 0.534196i 0.130901 + 0.0213508i
\(627\) −4.43038 + 10.6959i −0.176932 + 0.427152i
\(628\) 11.5722 + 10.0693i 0.461783 + 0.401810i
\(629\) −58.2424 24.1248i −2.32228 0.961918i
\(630\) −13.6756 + 22.0877i −0.544848 + 0.879994i
\(631\) −10.8706 −0.432750 −0.216375 0.976310i \(-0.569423\pi\)
−0.216375 + 0.976310i \(0.569423\pi\)
\(632\) −2.73548 + 0.847236i −0.108811 + 0.0337012i
\(633\) 6.32606 6.32606i 0.251438 0.251438i
\(634\) −2.18491 + 3.52889i −0.0867739 + 0.140150i
\(635\) 7.55299 18.2345i 0.299731 0.723615i
\(636\) 10.1198 + 3.39142i 0.401276 + 0.134479i
\(637\) 3.60763 5.14434i 0.142939 0.203826i
\(638\) 16.7877 + 2.73817i 0.664630 + 0.108405i
\(639\) −13.6754 13.6754i −0.540989 0.540989i
\(640\) −22.7444 + 24.9555i −0.899052 + 0.986454i
\(641\) 32.4069i 1.28000i 0.768376 + 0.639999i \(0.221065\pi\)
−0.768376 + 0.639999i \(0.778935\pi\)
\(642\) −8.65763 12.0323i −0.341690 0.474876i
\(643\) −25.3392 + 10.4958i −0.999281 + 0.413916i −0.821533 0.570160i \(-0.806881\pi\)
−0.177748 + 0.984076i \(0.556881\pi\)
\(644\) −5.84152 11.7303i −0.230188 0.462240i
\(645\) 10.4540 + 4.33017i 0.411624 + 0.170500i
\(646\) −26.9699 + 43.5596i −1.06112 + 1.71383i
\(647\) 5.92860 5.92860i 0.233077 0.233077i −0.580899 0.813976i \(-0.697299\pi\)
0.813976 + 0.580899i \(0.197299\pi\)
\(648\) 5.23801 + 16.9120i 0.205769 + 0.664366i
\(649\) 18.7987 18.7987i 0.737913 0.737913i
\(650\) 14.2565 + 13.9147i 0.559185 + 0.545780i
\(651\) 7.71400 3.19524i 0.302335 0.125231i
\(652\) −42.9092 + 2.97987i −1.68045 + 0.116701i
\(653\) 1.93017 + 0.799504i 0.0755335 + 0.0312870i 0.420130 0.907464i \(-0.361984\pi\)
−0.344597 + 0.938751i \(0.611984\pi\)
\(654\) −2.67565 3.71859i −0.104626 0.145409i
\(655\) −0.673129 + 0.673129i −0.0263013 + 0.0263013i
\(656\) −7.62087 5.75418i −0.297545 0.224663i
\(657\) 22.8222 22.8222i 0.890377 0.890377i
\(658\) 3.62276 + 0.590893i 0.141230 + 0.0230354i
\(659\) −6.07211 + 14.6594i −0.236536 + 0.571048i −0.996920 0.0784254i \(-0.975011\pi\)
0.760384 + 0.649474i \(0.225011\pi\)
\(660\) −1.00318 14.4455i −0.0390489 0.562291i
\(661\) 3.44087 8.30699i 0.133834 0.323104i −0.842728 0.538340i \(-0.819052\pi\)
0.976562 + 0.215235i \(0.0690518\pi\)
\(662\) 5.29745 1.24605i 0.205891 0.0484290i
\(663\) 12.9736 8.25195i 0.503852 0.320479i
\(664\) 7.28259 + 8.76915i 0.282619 + 0.340309i
\(665\) 32.6561i 1.26635i
\(666\) 16.5961 26.8046i 0.643084 1.03866i
\(667\) 7.35281 3.04563i 0.284702 0.117927i
\(668\) 31.9519 + 10.7080i 1.23626 + 0.414304i
\(669\) −1.61261 3.89317i −0.0623469 0.150519i
\(670\) −37.7784 + 27.1828i −1.45951 + 1.05016i
\(671\) 28.3376 28.3376i 1.09396 1.09396i
\(672\) −6.66562 2.94246i −0.257132 0.113508i
\(673\) 4.73644i 0.182576i −0.995825 0.0912881i \(-0.970902\pi\)
0.995825 0.0912881i \(-0.0290984\pi\)
\(674\) −15.7269 21.8570i −0.605776 0.841901i
\(675\) −4.77425 + 11.5261i −0.183761 + 0.443638i
\(676\) 25.9923 0.630735i 0.999706 0.0242590i
\(677\) −5.58760 + 2.31446i −0.214749 + 0.0889519i −0.487465 0.873143i \(-0.662078\pi\)
0.272716 + 0.962095i \(0.412078\pi\)
\(678\) 13.2695 3.12121i 0.509613 0.119869i
\(679\) 2.45913 + 2.45913i 0.0943726 + 0.0943726i
\(680\) 5.90927 63.8075i 0.226610 2.44691i
\(681\) 0.0108332 0.000415128
\(682\) 20.8413 33.6612i 0.798056 1.28895i
\(683\) −8.51011 3.52500i −0.325630 0.134880i 0.213879 0.976860i \(-0.431390\pi\)
−0.539509 + 0.841980i \(0.681390\pi\)
\(684\) −19.3286 16.8183i −0.739047 0.643065i
\(685\) −19.5743 8.10796i −0.747897 0.309789i
\(686\) 23.0115 16.5575i 0.878582 0.632170i
\(687\) 3.32940 + 3.32940i 0.127025 + 0.127025i
\(688\) 6.78457 26.1308i 0.258659 0.996227i
\(689\) −33.4346 7.43753i −1.27376 0.283347i
\(690\) −3.95711 5.49955i −0.150645 0.209364i
\(691\) −15.3202 36.9863i −0.582809 1.40703i −0.890256 0.455460i \(-0.849475\pi\)
0.307447 0.951565i \(-0.400525\pi\)
\(692\) 13.1723 + 11.4616i 0.500737 + 0.435705i
\(693\) −24.5580 + 10.1723i −0.932882 + 0.386412i
\(694\) −17.0997 + 27.6180i −0.649096 + 1.04837i
\(695\) 3.12385i 0.118495i
\(696\) 2.06320 3.91468i 0.0782054 0.148386i
\(697\) 18.1229 0.686452
\(698\) 14.5456 + 9.00593i 0.550560 + 0.340879i
\(699\) −6.26486 + 2.59499i −0.236959 + 0.0981515i
\(700\) 7.98655 + 16.0378i 0.301863 + 0.606170i
\(701\) 5.56687 + 2.30587i 0.210258 + 0.0870916i 0.485327 0.874333i \(-0.338701\pi\)
−0.275069 + 0.961425i \(0.588701\pi\)
\(702\) 6.41300 + 14.9662i 0.242043 + 0.564864i
\(703\) 39.6300i 1.49467i
\(704\) −33.8040 + 7.13456i −1.27404 + 0.268894i
\(705\) 1.89779 0.0714751
\(706\) −12.7821 2.08484i −0.481062 0.0784641i
\(707\) −30.7657 + 12.7436i −1.15706 + 0.479271i
\(708\) −3.08308 6.19111i −0.115869 0.232676i
\(709\) 17.6647 + 7.31694i 0.663410 + 0.274794i 0.688873 0.724882i \(-0.258106\pi\)
−0.0254625 + 0.999676i \(0.508106\pi\)
\(710\) −29.5996 + 6.96231i −1.11085 + 0.261291i
\(711\) 1.92184 + 1.92184i 0.0720746 + 0.0720746i
\(712\) 11.3135 3.50404i 0.423992 0.131319i
\(713\) 18.5243i 0.693740i
\(714\) 13.4606 3.16615i 0.503750 0.118490i
\(715\) 8.03656 + 45.7703i 0.300550 + 1.71171i
\(716\) 11.8054 13.5674i 0.441187 0.507037i
\(717\) 13.5310 5.60472i 0.505324 0.209312i
\(718\) −34.2053 + 24.6119i −1.27653 + 0.918508i
\(719\) 19.3072i 0.720039i 0.932945 + 0.360019i \(0.117230\pi\)
−0.932945 + 0.360019i \(0.882770\pi\)
\(720\) 31.0178 + 8.05343i 1.15597 + 0.300134i
\(721\) −13.2147 13.2147i −0.492140 0.492140i
\(722\) 5.26731 + 0.859130i 0.196029 + 0.0319735i
\(723\) −1.70039 + 0.704326i −0.0632383 + 0.0261942i
\(724\) −1.62656 23.4220i −0.0604507 0.870470i
\(725\) −10.0528 + 4.16400i −0.373351 + 0.154647i
\(726\) 3.19933 5.16729i 0.118738 0.191776i
\(727\) 22.1623 + 22.1623i 0.821956 + 0.821956i 0.986388 0.164432i \(-0.0525792\pi\)
−0.164432 + 0.986388i \(0.552579\pi\)
\(728\) 22.2596 + 7.16064i 0.824995 + 0.265391i
\(729\) 8.07651 8.07651i 0.299130 0.299130i
\(730\) −11.6191 49.3974i −0.430041 1.82828i
\(731\) 19.6072 + 47.3360i 0.725199 + 1.75078i
\(732\) −4.64749 9.33261i −0.171776 0.344943i
\(733\) 16.1404 + 38.9665i 0.596161 + 1.43926i 0.877465 + 0.479641i \(0.159233\pi\)
−0.281304 + 0.959619i \(0.590767\pi\)
\(734\) 7.24350 + 10.0669i 0.267362 + 0.371577i
\(735\) 2.06588 2.06588i 0.0762010 0.0762010i
\(736\) −11.6904 + 11.1644i −0.430915 + 0.411524i
\(737\) −47.6215 −1.75416
\(738\) −1.45897 + 8.94491i −0.0537054 + 0.329267i
\(739\) 12.9292 + 31.2138i 0.475607 + 1.14822i 0.961649 + 0.274282i \(0.0884401\pi\)
−0.486042 + 0.873935i \(0.661560\pi\)
\(740\) −22.0959 44.3706i −0.812260 1.63109i
\(741\) −7.91365 5.54970i −0.290715 0.203873i
\(742\) −26.1906 16.2159i −0.961486 0.595304i
\(743\) 20.3591 0.746904 0.373452 0.927649i \(-0.378174\pi\)
0.373452 + 0.927649i \(0.378174\pi\)
\(744\) −6.58037 7.92359i −0.241248 0.290493i
\(745\) −8.89850 + 8.89850i −0.326016 + 0.326016i
\(746\) −12.9655 + 20.9408i −0.474700 + 0.766697i
\(747\) 4.14009 9.99506i 0.151478 0.365700i
\(748\) 43.0398 49.4638i 1.57369 1.80858i
\(749\) 16.3723 + 39.5263i 0.598232 + 1.44426i
\(750\) −1.51364 2.10364i −0.0552704 0.0768142i
\(751\) 9.18065i 0.335007i −0.985872 0.167503i \(-0.946430\pi\)
0.985872 0.167503i \(-0.0535705\pi\)
\(752\) −0.625879 4.48450i −0.0228235 0.163533i
\(753\) 12.0489 0.439086
\(754\) −5.27498 + 13.1851i −0.192103 + 0.480172i
\(755\) −7.82655 + 18.8950i −0.284837 + 0.687658i
\(756\) 1.01448 + 14.6083i 0.0368965 + 0.531297i
\(757\) −3.31231 7.99661i −0.120388 0.290642i 0.852185 0.523241i \(-0.175277\pi\)
−0.972573 + 0.232599i \(0.925277\pi\)
\(758\) 8.55640 + 36.3767i 0.310782 + 1.32126i
\(759\) 6.93244i 0.251632i
\(760\) −38.4800 + 11.9181i −1.39582 + 0.432315i
\(761\) −35.1003 −1.27238 −0.636192 0.771531i \(-0.719491\pi\)
−0.636192 + 0.771531i \(0.719491\pi\)
\(762\) −1.20295 5.11422i −0.0435782 0.185269i
\(763\) 5.05989 + 12.2157i 0.183180 + 0.442236i
\(764\) −30.1876 10.1167i −1.09215 0.366009i
\(765\) −56.1888 + 23.2742i −2.03151 + 0.841480i
\(766\) −1.88939 + 11.5838i −0.0682665 + 0.418541i
\(767\) 11.9124 + 18.7284i 0.430131 + 0.676244i
\(768\) −1.03456 + 8.92825i −0.0373314 + 0.322170i
\(769\) −4.27039 + 4.27039i −0.153994 +