Properties

Label 416.2.bd.a.83.6
Level $416$
Weight $2$
Character 416.83
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 83.6
Character \(\chi\) \(=\) 416.83
Dual form 416.2.bd.a.411.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32811 + 0.485919i) q^{2} +(-1.25935 - 0.521639i) q^{3} +(1.52777 - 1.29071i) q^{4} +(0.194227 - 0.468906i) q^{5} +(1.92603 + 0.0808542i) q^{6} +2.08466i q^{7} +(-1.40186 + 2.45658i) q^{8} +(-0.807469 - 0.807469i) q^{9} +O(q^{10})\) \(q+(-1.32811 + 0.485919i) q^{2} +(-1.25935 - 0.521639i) q^{3} +(1.52777 - 1.29071i) q^{4} +(0.194227 - 0.468906i) q^{5} +(1.92603 + 0.0808542i) q^{6} +2.08466i q^{7} +(-1.40186 + 2.45658i) q^{8} +(-0.807469 - 0.807469i) q^{9} +(-0.0301053 + 0.717139i) q^{10} +(2.71337 + 1.12391i) q^{11} +(-2.59727 + 0.828511i) q^{12} +(-3.41200 + 1.16545i) q^{13} +(-1.01298 - 2.76867i) q^{14} +(-0.489200 + 0.489200i) q^{15} +(0.668134 - 3.94380i) q^{16} +5.31344 q^{17} +(1.46477 + 0.680045i) q^{18} +(0.106653 + 0.257484i) q^{19} +(-0.308488 - 0.967070i) q^{20} +(1.08744 - 2.62532i) q^{21} +(-4.14979 - 0.174207i) q^{22} +(-1.46125 - 1.46125i) q^{23} +(3.04688 - 2.36242i) q^{24} +(3.35339 + 3.35339i) q^{25} +(3.96520 - 3.20580i) q^{26} +(2.16060 + 5.21614i) q^{27} +(2.69070 + 3.18488i) q^{28} +(3.35321 - 8.09536i) q^{29} +(0.412001 - 0.887424i) q^{30} +(7.22717 + 7.22717i) q^{31} +(1.02901 + 5.56248i) q^{32} +(-2.83080 - 2.83080i) q^{33} +(-7.05685 + 2.58190i) q^{34} +(0.977512 + 0.404899i) q^{35} +(-2.27583 - 0.191415i) q^{36} +(1.06725 + 0.442071i) q^{37} +(-0.266764 - 0.290142i) q^{38} +(4.90484 + 0.312127i) q^{39} +(0.879625 + 1.13448i) q^{40} -0.681081 q^{41} +(-0.168554 + 4.01513i) q^{42} +(3.85652 + 9.31046i) q^{43} +(5.59604 - 1.78510i) q^{44} +(-0.535460 + 0.221795i) q^{45} +(2.65076 + 1.23066i) q^{46} +(7.28593 + 7.28593i) q^{47} +(-2.89866 + 4.61810i) q^{48} +2.65418 q^{49} +(-6.08315 - 2.82420i) q^{50} +(-6.69148 - 2.77170i) q^{51} +(-3.70848 + 6.18443i) q^{52} +(-3.33170 - 8.04345i) q^{53} +(-5.40413 - 5.87774i) q^{54} +(1.05402 - 1.05402i) q^{55} +(-5.12114 - 2.92241i) q^{56} -0.379896i q^{57} +(-0.519748 + 12.3809i) q^{58} +(-0.127334 + 0.307412i) q^{59} +(-0.115967 + 1.37880i) q^{60} +(-1.36541 + 3.29640i) q^{61} +(-13.1103 - 6.08667i) q^{62} +(1.68330 - 1.68330i) q^{63} +(-4.06956 - 6.88758i) q^{64} +(-0.116218 + 1.82627i) q^{65} +(5.13516 + 2.38408i) q^{66} +(3.87328 - 1.60437i) q^{67} +(8.11770 - 6.85812i) q^{68} +(1.07798 + 2.60247i) q^{69} +(-1.49499 - 0.0627594i) q^{70} +3.99453 q^{71} +(3.11557 - 0.851650i) q^{72} +1.56592i q^{73} +(-1.63224 - 0.0685211i) q^{74} +(-2.47382 - 5.97234i) q^{75} +(0.495278 + 0.255716i) q^{76} +(-2.34298 + 5.65646i) q^{77} +(-6.66584 + 1.96881i) q^{78} -7.51320 q^{79} +(-1.71950 - 1.07929i) q^{80} -4.27018i q^{81} +(0.904552 - 0.330950i) q^{82} +(-6.09398 - 14.7122i) q^{83} +(-1.72717 - 5.41444i) q^{84} +(1.03202 - 2.49151i) q^{85} +(-9.64602 - 10.4914i) q^{86} +(-8.44571 + 8.44571i) q^{87} +(-6.56476 + 5.09003i) q^{88} +6.02327 q^{89} +(0.603377 - 0.554759i) q^{90} +(-2.42957 - 7.11287i) q^{91} +(-4.11850 - 0.346397i) q^{92} +(-5.33155 - 12.8715i) q^{93} +(-13.2169 - 6.13616i) q^{94} +0.141451 q^{95} +(1.60572 - 7.54187i) q^{96} +(7.41089 - 7.41089i) q^{97} +(-3.52505 + 1.28972i) q^{98} +(-1.28344 - 3.09849i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24} - 4 q^{26} - 8 q^{27} + 56 q^{28} - 8 q^{29} - 16 q^{30} - 44 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} - 28 q^{39} - 8 q^{40} - 8 q^{41} - 48 q^{42} - 32 q^{43} + 12 q^{44} - 36 q^{45} - 48 q^{46} - 8 q^{47} - 8 q^{48} - 168 q^{49} + 76 q^{50} - 4 q^{52} - 8 q^{53} - 28 q^{54} - 40 q^{55} + 56 q^{56} + 32 q^{58} + 52 q^{59} - 36 q^{60} - 8 q^{61} + 72 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} + 20 q^{70} + 56 q^{71} + 8 q^{72} - 8 q^{74} - 68 q^{76} + 56 q^{77} - 48 q^{78} - 16 q^{79} + 28 q^{80} - 88 q^{82} + 36 q^{83} + 100 q^{84} - 24 q^{85} + 96 q^{86} - 8 q^{87} + 64 q^{88} - 8 q^{89} - 64 q^{90} + 72 q^{91} - 8 q^{92} - 40 q^{93} - 56 q^{94} + 36 q^{96} - 8 q^{97} + 52 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.32811 + 0.485919i −0.939117 + 0.343597i
\(3\) −1.25935 0.521639i −0.727085 0.301169i −0.0117315 0.999931i \(-0.503734\pi\)
−0.715354 + 0.698763i \(0.753734\pi\)
\(4\) 1.52777 1.29071i 0.763883 0.645355i
\(5\) 0.194227 0.468906i 0.0868611 0.209701i −0.874480 0.485062i \(-0.838797\pi\)
0.961341 + 0.275360i \(0.0887972\pi\)
\(6\) 1.92603 + 0.0808542i 0.786299 + 0.0330086i
\(7\) 2.08466i 0.787929i 0.919126 + 0.393964i \(0.128897\pi\)
−0.919126 + 0.393964i \(0.871103\pi\)
\(8\) −1.40186 + 2.45658i −0.495634 + 0.868532i
\(9\) −0.807469 0.807469i −0.269156 0.269156i
\(10\) −0.0301053 + 0.717139i −0.00952012 + 0.226779i
\(11\) 2.71337 + 1.12391i 0.818112 + 0.338873i 0.752185 0.658951i \(-0.229000\pi\)
0.0659264 + 0.997824i \(0.479000\pi\)
\(12\) −2.59727 + 0.828511i −0.749768 + 0.239171i
\(13\) −3.41200 + 1.16545i −0.946318 + 0.323237i
\(14\) −1.01298 2.76867i −0.270730 0.739957i
\(15\) −0.489200 + 0.489200i −0.126311 + 0.126311i
\(16\) 0.668134 3.94380i 0.167034 0.985951i
\(17\) 5.31344 1.28870 0.644350 0.764731i \(-0.277128\pi\)
0.644350 + 0.764731i \(0.277128\pi\)
\(18\) 1.46477 + 0.680045i 0.345251 + 0.160288i
\(19\) 0.106653 + 0.257484i 0.0244679 + 0.0590708i 0.935641 0.352952i \(-0.114822\pi\)
−0.911173 + 0.412023i \(0.864822\pi\)
\(20\) −0.308488 0.967070i −0.0689801 0.216243i
\(21\) 1.08744 2.62532i 0.237299 0.572891i
\(22\) −4.14979 0.174207i −0.884739 0.0371411i
\(23\) −1.46125 1.46125i −0.304692 0.304692i 0.538154 0.842846i \(-0.319122\pi\)
−0.842846 + 0.538154i \(0.819122\pi\)
\(24\) 3.04688 2.36242i 0.621942 0.482227i
\(25\) 3.35339 + 3.35339i 0.670677 + 0.670677i
\(26\) 3.96520 3.20580i 0.777641 0.628709i
\(27\) 2.16060 + 5.21614i 0.415807 + 1.00385i
\(28\) 2.69070 + 3.18488i 0.508494 + 0.601885i
\(29\) 3.35321 8.09536i 0.622675 1.50327i −0.225876 0.974156i \(-0.572524\pi\)
0.848551 0.529114i \(-0.177476\pi\)
\(30\) 0.412001 0.887424i 0.0752207 0.162021i
\(31\) 7.22717 + 7.22717i 1.29804 + 1.29804i 0.929687 + 0.368350i \(0.120077\pi\)
0.368350 + 0.929687i \(0.379923\pi\)
\(32\) 1.02901 + 5.56248i 0.181905 + 0.983316i
\(33\) −2.83080 2.83080i −0.492779 0.492779i
\(34\) −7.05685 + 2.58190i −1.21024 + 0.442793i
\(35\) 0.977512 + 0.404899i 0.165230 + 0.0684404i
\(36\) −2.27583 0.191415i −0.379305 0.0319025i
\(37\) 1.06725 + 0.442071i 0.175455 + 0.0726760i 0.468682 0.883367i \(-0.344729\pi\)
−0.293227 + 0.956043i \(0.594729\pi\)
\(38\) −0.266764 0.290142i −0.0432748 0.0470673i
\(39\) 4.90484 + 0.312127i 0.785403 + 0.0499804i
\(40\) 0.879625 + 1.13448i 0.139081 + 0.179377i
\(41\) −0.681081 −0.106367 −0.0531835 0.998585i \(-0.516937\pi\)
−0.0531835 + 0.998585i \(0.516937\pi\)
\(42\) −0.168554 + 4.01513i −0.0260084 + 0.619547i
\(43\) 3.85652 + 9.31046i 0.588113 + 1.41983i 0.885304 + 0.465013i \(0.153950\pi\)
−0.297190 + 0.954818i \(0.596050\pi\)
\(44\) 5.59604 1.78510i 0.843635 0.269113i
\(45\) −0.535460 + 0.221795i −0.0798217 + 0.0330632i
\(46\) 2.65076 + 1.23066i 0.390833 + 0.181450i
\(47\) 7.28593 + 7.28593i 1.06276 + 1.06276i 0.997894 + 0.0648684i \(0.0206627\pi\)
0.0648684 + 0.997894i \(0.479337\pi\)
\(48\) −2.89866 + 4.61810i −0.418385 + 0.666565i
\(49\) 2.65418 0.379169
\(50\) −6.08315 2.82420i −0.860287 0.399402i
\(51\) −6.69148 2.77170i −0.936994 0.388116i
\(52\) −3.70848 + 6.18443i −0.514273 + 0.857626i
\(53\) −3.33170 8.04345i −0.457645 1.10485i −0.969348 0.245690i \(-0.920985\pi\)
0.511704 0.859162i \(-0.329015\pi\)
\(54\) −5.40413 5.87774i −0.735409 0.799860i
\(55\) 1.05402 1.05402i 0.142124 0.142124i
\(56\) −5.12114 2.92241i −0.684341 0.390524i
\(57\) 0.379896i 0.0503185i
\(58\) −0.519748 + 12.3809i −0.0682462 + 1.62570i
\(59\) −0.127334 + 0.307412i −0.0165775 + 0.0400216i −0.931952 0.362583i \(-0.881895\pi\)
0.915374 + 0.402604i \(0.131895\pi\)
\(60\) −0.115967 + 1.37880i −0.0149713 + 0.178002i
\(61\) −1.36541 + 3.29640i −0.174823 + 0.422060i −0.986867 0.161536i \(-0.948355\pi\)
0.812044 + 0.583597i \(0.198355\pi\)
\(62\) −13.1103 6.08667i −1.66501 0.773008i
\(63\) 1.68330 1.68330i 0.212076 0.212076i
\(64\) −4.06956 6.88758i −0.508695 0.860947i
\(65\) −0.116218 + 1.82627i −0.0144150 + 0.226521i
\(66\) 5.13516 + 2.38408i 0.632095 + 0.293460i
\(67\) 3.87328 1.60437i 0.473197 0.196005i −0.133323 0.991073i \(-0.542565\pi\)
0.606520 + 0.795068i \(0.292565\pi\)
\(68\) 8.11770 6.85812i 0.984415 0.831669i
\(69\) 1.07798 + 2.60247i 0.129773 + 0.313301i
\(70\) −1.49499 0.0627594i −0.178686 0.00750118i
\(71\) 3.99453 0.474064 0.237032 0.971502i \(-0.423825\pi\)
0.237032 + 0.971502i \(0.423825\pi\)
\(72\) 3.11557 0.851650i 0.367174 0.100368i
\(73\) 1.56592i 0.183277i 0.995792 + 0.0916384i \(0.0292104\pi\)
−0.995792 + 0.0916384i \(0.970790\pi\)
\(74\) −1.63224 0.0685211i −0.189744 0.00796541i
\(75\) −2.47382 5.97234i −0.285652 0.689626i
\(76\) 0.495278 + 0.255716i 0.0568123 + 0.0293327i
\(77\) −2.34298 + 5.65646i −0.267008 + 0.644614i
\(78\) −6.66584 + 1.96881i −0.754758 + 0.222924i
\(79\) −7.51320 −0.845301 −0.422650 0.906293i \(-0.638900\pi\)
−0.422650 + 0.906293i \(0.638900\pi\)
\(80\) −1.71950 1.07929i −0.192247 0.120668i
\(81\) 4.27018i 0.474465i
\(82\) 0.904552 0.330950i 0.0998911 0.0365473i
\(83\) −6.09398 14.7122i −0.668901 1.61487i −0.783451 0.621453i \(-0.786543\pi\)
0.114550 0.993418i \(-0.463457\pi\)
\(84\) −1.72717 5.41444i −0.188449 0.590764i
\(85\) 1.03202 2.49151i 0.111938 0.270242i
\(86\) −9.64602 10.4914i −1.04016 1.13131i
\(87\) −8.44571 + 8.44571i −0.905475 + 0.905475i
\(88\) −6.56476 + 5.09003i −0.699806 + 0.542599i
\(89\) 6.02327 0.638466 0.319233 0.947676i \(-0.396575\pi\)
0.319233 + 0.947676i \(0.396575\pi\)
\(90\) 0.603377 0.554759i 0.0636015 0.0584767i
\(91\) −2.42957 7.11287i −0.254688 0.745631i
\(92\) −4.11850 0.346397i −0.429383 0.0361144i
\(93\) −5.33155 12.8715i −0.552856 1.33471i
\(94\) −13.2169 6.13616i −1.36322 0.632897i
\(95\) 0.141451 0.0145125
\(96\) 1.60572 7.54187i 0.163883 0.769739i
\(97\) 7.41089 7.41089i 0.752462 0.752462i −0.222476 0.974938i \(-0.571414\pi\)
0.974938 + 0.222476i \(0.0714140\pi\)
\(98\) −3.52505 + 1.28972i −0.356084 + 0.130281i
\(99\) −1.28344 3.09849i −0.128990 0.311410i
\(100\) 9.45143 + 0.794937i 0.945143 + 0.0794937i
\(101\) −4.89562 11.8191i −0.487133 1.17604i −0.956156 0.292857i \(-0.905394\pi\)
0.469023 0.883186i \(-0.344606\pi\)
\(102\) 10.2339 + 0.429614i 1.01330 + 0.0425381i
\(103\) −7.36565 + 7.36565i −0.725759 + 0.725759i −0.969772 0.244013i \(-0.921536\pi\)
0.244013 + 0.969772i \(0.421536\pi\)
\(104\) 1.92014 10.0156i 0.188285 0.982114i
\(105\) −1.01982 1.01982i −0.0995239 0.0995239i
\(106\) 8.33334 + 9.06366i 0.809406 + 0.880341i
\(107\) 3.76342 1.55886i 0.363824 0.150701i −0.193280 0.981144i \(-0.561913\pi\)
0.557104 + 0.830443i \(0.311913\pi\)
\(108\) 10.0334 + 5.18033i 0.965465 + 0.498478i
\(109\) −15.3079 + 6.34074i −1.46623 + 0.607332i −0.965996 0.258558i \(-0.916753\pi\)
−0.500234 + 0.865890i \(0.666753\pi\)
\(110\) −0.887690 + 1.91203i −0.0846379 + 0.182305i
\(111\) −1.11344 1.11344i −0.105683 0.105683i
\(112\) 8.22150 + 1.39284i 0.776859 + 0.131611i
\(113\) 18.0993i 1.70264i 0.524645 + 0.851321i \(0.324198\pi\)
−0.524645 + 0.851321i \(0.675802\pi\)
\(114\) 0.184599 + 0.504545i 0.0172893 + 0.0472550i
\(115\) −0.969005 + 0.401375i −0.0903601 + 0.0374284i
\(116\) −5.32585 16.6958i −0.494492 1.55017i
\(117\) 3.69615 + 1.81402i 0.341709 + 0.167706i
\(118\) 0.0197368 0.470152i 0.00181692 0.0432810i
\(119\) 11.0767i 1.01540i
\(120\) −0.515966 1.88755i −0.0471011 0.172309i
\(121\) −1.67898 1.67898i −0.152635 0.152635i
\(122\) 0.211639 5.04147i 0.0191609 0.456433i
\(123\) 0.857719 + 0.355279i 0.0773379 + 0.0320344i
\(124\) 20.3696 + 1.71324i 1.82924 + 0.153853i
\(125\) 4.56827 1.89224i 0.408599 0.169247i
\(126\) −1.41767 + 3.05356i −0.126296 + 0.272033i
\(127\) −17.6544 −1.56657 −0.783286 0.621662i \(-0.786458\pi\)
−0.783286 + 0.621662i \(0.786458\pi\)
\(128\) 8.75163 + 7.17000i 0.773542 + 0.633745i
\(129\) 13.7368i 1.20946i
\(130\) −0.733069 2.48196i −0.0642944 0.217683i
\(131\) 17.9384 + 7.43031i 1.56728 + 0.649189i 0.986335 0.164752i \(-0.0526825\pi\)
0.580947 + 0.813942i \(0.302683\pi\)
\(132\) −7.97854 0.671056i −0.694443 0.0584079i
\(133\) −0.536767 + 0.222336i −0.0465436 + 0.0192790i
\(134\) −4.36456 + 4.01288i −0.377041 + 0.346660i
\(135\) 2.86553 0.246625
\(136\) −7.44872 + 13.0529i −0.638723 + 1.11928i
\(137\) 16.4259i 1.40336i 0.712491 + 0.701681i \(0.247567\pi\)
−0.712491 + 0.701681i \(0.752433\pi\)
\(138\) −2.69627 2.93256i −0.229521 0.249636i
\(139\) −8.79037 + 3.64109i −0.745589 + 0.308833i −0.722940 0.690910i \(-0.757210\pi\)
−0.0226486 + 0.999743i \(0.507210\pi\)
\(140\) 2.01602 0.643094i 0.170384 0.0543514i
\(141\) −5.37490 12.9762i −0.452648 1.09279i
\(142\) −5.30519 + 1.94102i −0.445202 + 0.162887i
\(143\) −10.5679 0.672504i −0.883730 0.0562376i
\(144\) −3.72400 + 2.64500i −0.310333 + 0.220417i
\(145\) −3.14468 3.14468i −0.261151 0.261151i
\(146\) −0.760909 2.07971i −0.0629733 0.172118i
\(147\) −3.34254 1.38452i −0.275688 0.114194i
\(148\) 2.20110 0.702134i 0.180929 0.0577151i
\(149\) −0.103430 0.0428422i −0.00847334 0.00350977i 0.378443 0.925625i \(-0.376460\pi\)
−0.386916 + 0.922115i \(0.626460\pi\)
\(150\) 6.18759 + 6.72986i 0.505214 + 0.549491i
\(151\) −3.18762 −0.259405 −0.129702 0.991553i \(-0.541402\pi\)
−0.129702 + 0.991553i \(0.541402\pi\)
\(152\) −0.782042 0.0989550i −0.0634320 0.00802631i
\(153\) −4.29044 4.29044i −0.346862 0.346862i
\(154\) 0.363163 8.65092i 0.0292645 0.697111i
\(155\) 4.79258 1.98515i 0.384949 0.159451i
\(156\) 7.89631 5.85387i 0.632211 0.468684i
\(157\) −0.833628 + 2.01256i −0.0665307 + 0.160619i −0.953648 0.300925i \(-0.902705\pi\)
0.887117 + 0.461545i \(0.152705\pi\)
\(158\) 9.97837 3.65081i 0.793837 0.290443i
\(159\) 11.8674i 0.941150i
\(160\) 2.80814 + 0.597875i 0.222003 + 0.0472661i
\(161\) 3.04622 3.04622i 0.240075 0.240075i
\(162\) 2.07496 + 5.67128i 0.163025 + 0.445578i
\(163\) −3.29362 7.95149i −0.257976 0.622809i 0.740828 0.671694i \(-0.234433\pi\)
−0.998804 + 0.0488852i \(0.984433\pi\)
\(164\) −1.04053 + 0.879079i −0.0812519 + 0.0686445i
\(165\) −1.87720 + 0.777561i −0.146140 + 0.0605331i
\(166\) 15.2424 + 16.5782i 1.18304 + 1.28672i
\(167\) 14.0874i 1.09012i −0.838397 0.545060i \(-0.816507\pi\)
0.838397 0.545060i \(-0.183493\pi\)
\(168\) 4.92485 + 6.35172i 0.379961 + 0.490046i
\(169\) 10.2835 7.95301i 0.791036 0.611770i
\(170\) −0.159963 + 3.81048i −0.0122686 + 0.292250i
\(171\) 0.121791 0.294029i 0.00931359 0.0224850i
\(172\) 17.9090 + 9.24655i 1.36555 + 0.705043i
\(173\) −6.07124 + 14.6573i −0.461588 + 1.11437i 0.506158 + 0.862441i \(0.331065\pi\)
−0.967745 + 0.251930i \(0.918935\pi\)
\(174\) 7.11292 15.3208i 0.539229 1.16147i
\(175\) −6.99068 + 6.99068i −0.528446 + 0.528446i
\(176\) 6.24540 9.95008i 0.470764 0.750015i
\(177\) 0.320716 0.320716i 0.0241065 0.0241065i
\(178\) −7.99959 + 2.92682i −0.599594 + 0.219375i
\(179\) −22.4299 9.29077i −1.67649 0.694425i −0.677340 0.735670i \(-0.736867\pi\)
−0.999149 + 0.0412454i \(0.986867\pi\)
\(180\) −0.531785 + 1.02997i −0.0396369 + 0.0767698i
\(181\) 10.9956 4.55455i 0.817300 0.338537i 0.0654375 0.997857i \(-0.479156\pi\)
0.751863 + 0.659320i \(0.229156\pi\)
\(182\) 6.68301 + 8.26611i 0.495378 + 0.612725i
\(183\) 3.43906 3.43906i 0.254223 0.254223i
\(184\) 5.63815 1.54120i 0.415650 0.113619i
\(185\) 0.414580 0.414580i 0.0304805 0.0304805i
\(186\) 13.3354 + 14.5041i 0.977799 + 1.06349i
\(187\) 14.4173 + 5.97186i 1.05430 + 0.436706i
\(188\) 20.5352 + 1.72717i 1.49768 + 0.125967i
\(189\) −10.8739 + 4.50411i −0.790959 + 0.327626i
\(190\) −0.187862 + 0.0687336i −0.0136290 + 0.00498646i
\(191\) 2.39853i 0.173552i 0.996228 + 0.0867759i \(0.0276564\pi\)
−0.996228 + 0.0867759i \(0.972344\pi\)
\(192\) 1.53216 + 10.7967i 0.110574 + 0.779185i
\(193\) 4.90919 + 4.90919i 0.353371 + 0.353371i 0.861362 0.507991i \(-0.169612\pi\)
−0.507991 + 0.861362i \(0.669612\pi\)
\(194\) −6.24140 + 13.4436i −0.448107 + 0.965193i
\(195\) 1.09901 2.23929i 0.0787019 0.160359i
\(196\) 4.05496 3.42578i 0.289640 0.244698i
\(197\) −5.13706 + 12.4020i −0.366000 + 0.883603i 0.628397 + 0.777893i \(0.283712\pi\)
−0.994397 + 0.105710i \(0.966288\pi\)
\(198\) 3.21016 + 3.49150i 0.228136 + 0.248130i
\(199\) 6.31126 6.31126i 0.447393 0.447393i −0.447094 0.894487i \(-0.647541\pi\)
0.894487 + 0.447094i \(0.147541\pi\)
\(200\) −12.9388 + 3.53687i −0.914914 + 0.250094i
\(201\) −5.71471 −0.403085
\(202\) 12.2451 + 13.3182i 0.861559 + 0.937065i
\(203\) 16.8761 + 6.99031i 1.18447 + 0.490623i
\(204\) −13.8005 + 4.40225i −0.966226 + 0.308219i
\(205\) −0.132285 + 0.319363i −0.00923916 + 0.0223053i
\(206\) 6.20330 13.3615i 0.432204 0.930941i
\(207\) 2.35983i 0.164020i
\(208\) 2.31662 + 14.2349i 0.160629 + 0.987015i
\(209\) 0.818518i 0.0566181i
\(210\) 1.84998 + 0.858883i 0.127661 + 0.0592686i
\(211\) 0.785392 1.89610i 0.0540686 0.130533i −0.894537 0.446994i \(-0.852495\pi\)
0.948606 + 0.316461i \(0.102495\pi\)
\(212\) −15.4718 7.98823i −1.06261 0.548634i
\(213\) −5.03051 2.08370i −0.344685 0.142773i
\(214\) −4.24077 + 3.89906i −0.289893 + 0.266534i
\(215\) 5.11477 0.348825
\(216\) −15.8427 2.00464i −1.07796 0.136399i
\(217\) −15.0662 + 15.0662i −1.02276 + 1.02276i
\(218\) 17.2495 15.8596i 1.16828 1.07415i
\(219\) 0.816844 1.97204i 0.0551972 0.133258i
\(220\) 0.249861 2.97073i 0.0168456 0.200287i
\(221\) −18.1295 + 6.19254i −1.21952 + 0.416555i
\(222\) 2.01982 + 0.937734i 0.135561 + 0.0629366i
\(223\) 0.908648 + 0.908648i 0.0608476 + 0.0608476i 0.736876 0.676028i \(-0.236300\pi\)
−0.676028 + 0.736876i \(0.736300\pi\)
\(224\) −11.5959 + 2.14514i −0.774783 + 0.143328i
\(225\) 5.41551i 0.361034i
\(226\) −8.79481 24.0380i −0.585022 1.59898i
\(227\) 5.81035 2.40673i 0.385647 0.159740i −0.181433 0.983403i \(-0.558073\pi\)
0.567079 + 0.823663i \(0.308073\pi\)
\(228\) −0.490336 0.580392i −0.0324733 0.0384374i
\(229\) 19.7265 + 8.17099i 1.30356 + 0.539954i 0.923000 0.384800i \(-0.125730\pi\)
0.380565 + 0.924754i \(0.375730\pi\)
\(230\) 1.09191 1.00393i 0.0719985 0.0661971i
\(231\) 5.90127 5.90127i 0.388275 0.388275i
\(232\) 15.1861 + 19.5860i 0.997019 + 1.28588i
\(233\) 5.78713 5.78713i 0.379127 0.379127i −0.491660 0.870787i \(-0.663610\pi\)
0.870787 + 0.491660i \(0.163610\pi\)
\(234\) −5.79037 0.613195i −0.378528 0.0400858i
\(235\) 4.83155 2.00129i 0.315175 0.130550i
\(236\) 0.202243 + 0.634005i 0.0131649 + 0.0412702i
\(237\) 9.46173 + 3.91918i 0.614606 + 0.254578i
\(238\) −5.38240 14.7112i −0.348889 0.953583i
\(239\) −9.44526 + 9.44526i −0.610963 + 0.610963i −0.943197 0.332234i \(-0.892198\pi\)
0.332234 + 0.943197i \(0.392198\pi\)
\(240\) 1.60246 + 2.25616i 0.103438 + 0.145634i
\(241\) 13.6672 13.6672i 0.880385 0.880385i −0.113189 0.993573i \(-0.536107\pi\)
0.993573 + 0.113189i \(0.0361065\pi\)
\(242\) 3.04572 + 1.41403i 0.195787 + 0.0908971i
\(243\) 4.25429 10.2708i 0.272913 0.658870i
\(244\) 2.16866 + 6.79847i 0.138834 + 0.435228i
\(245\) 0.515514 1.24456i 0.0329350 0.0795121i
\(246\) −1.31178 0.0550683i −0.0836363 0.00351102i
\(247\) −0.663984 0.754235i −0.0422483 0.0479908i
\(248\) −27.8856 + 7.62260i −1.77074 + 0.484036i
\(249\) 21.7066i 1.37560i
\(250\) −5.14771 + 4.73292i −0.325570 + 0.299336i
\(251\) 3.08730 1.27880i 0.194868 0.0807172i −0.283115 0.959086i \(-0.591368\pi\)
0.477984 + 0.878369i \(0.341368\pi\)
\(252\) 0.399035 4.74434i 0.0251369 0.298866i
\(253\) −2.32259 5.60724i −0.146020 0.352524i
\(254\) 23.4470 8.57859i 1.47119 0.538269i
\(255\) −2.59934 + 2.59934i −0.162777 + 0.162777i
\(256\) −15.1072 5.26998i −0.944200 0.329374i
\(257\) 10.5251i 0.656539i −0.944584 0.328270i \(-0.893535\pi\)
0.944584 0.328270i \(-0.106465\pi\)
\(258\) 6.67498 + 18.2440i 0.415566 + 1.13582i
\(259\) −0.921569 + 2.22486i −0.0572635 + 0.138246i
\(260\) 2.17963 + 2.94011i 0.135175 + 0.182338i
\(261\) −9.24436 + 3.82914i −0.572212 + 0.237018i
\(262\) −27.4347 1.15170i −1.69492 0.0711522i
\(263\) −7.49375 7.49375i −0.462085 0.462085i 0.437254 0.899338i \(-0.355951\pi\)
−0.899338 + 0.437254i \(0.855951\pi\)
\(264\) 10.9225 2.98569i 0.672232 0.183756i
\(265\) −4.41873 −0.271440
\(266\) 0.604849 0.556112i 0.0370857 0.0340974i
\(267\) −7.58540 3.14198i −0.464219 0.192286i
\(268\) 3.84670 7.45038i 0.234974 0.455105i
\(269\) 2.02867 + 0.840302i 0.123690 + 0.0512341i 0.443670 0.896190i \(-0.353676\pi\)
−0.319980 + 0.947424i \(0.603676\pi\)
\(270\) −3.80574 + 1.39241i −0.231610 + 0.0847396i
\(271\) 1.06697 + 1.06697i 0.0648136 + 0.0648136i 0.738771 0.673957i \(-0.235407\pi\)
−0.673957 + 0.738771i \(0.735407\pi\)
\(272\) 3.55009 20.9552i 0.215256 1.27059i
\(273\) −0.650680 + 10.2249i −0.0393810 + 0.618841i
\(274\) −7.98167 21.8155i −0.482190 1.31792i
\(275\) 5.33006 + 12.8679i 0.321414 + 0.775963i
\(276\) 5.00593 + 2.58461i 0.301322 + 0.155575i
\(277\) 15.2732 6.32636i 0.917676 0.380114i 0.126686 0.991943i \(-0.459566\pi\)
0.790990 + 0.611829i \(0.209566\pi\)
\(278\) 9.90532 9.10718i 0.594082 0.546212i
\(279\) 11.6714i 0.698750i
\(280\) −2.36500 + 1.83372i −0.141336 + 0.109586i
\(281\) 11.4982 0.685923 0.342961 0.939350i \(-0.388570\pi\)
0.342961 + 0.939350i \(0.388570\pi\)
\(282\) 13.4438 + 14.6220i 0.800568 + 0.870729i
\(283\) −2.97701 + 1.23312i −0.176965 + 0.0733014i −0.469407 0.882982i \(-0.655532\pi\)
0.292442 + 0.956283i \(0.405532\pi\)
\(284\) 6.10271 5.15578i 0.362129 0.305940i
\(285\) −0.178136 0.0737862i −0.0105518 0.00437072i
\(286\) 14.3621 4.24197i 0.849250 0.250833i
\(287\) 1.41982i 0.0838096i
\(288\) 3.66063 5.32242i 0.215705 0.313627i
\(289\) 11.2327 0.660746
\(290\) 5.70455 + 2.64843i 0.334983 + 0.155521i
\(291\) −13.1987 + 5.46708i −0.773722 + 0.320486i
\(292\) 2.02115 + 2.39235i 0.118279 + 0.140002i
\(293\) −10.4946 4.34699i −0.613099 0.253954i 0.0544537 0.998516i \(-0.482658\pi\)
−0.667553 + 0.744562i \(0.732658\pi\)
\(294\) 5.11203 + 0.214602i 0.298140 + 0.0125158i
\(295\) 0.119416 + 0.119416i 0.00695265 + 0.00695265i
\(296\) −2.58213 + 2.00207i −0.150083 + 0.116368i
\(297\) 16.5816i 0.962164i
\(298\) 0.158185 + 0.00664055i 0.00916340 + 0.000384677i
\(299\) 6.68880 + 3.28277i 0.386823 + 0.189848i
\(300\) −11.4880 5.93134i −0.663259 0.342446i
\(301\) −19.4092 + 8.03954i −1.11873 + 0.463391i
\(302\) 4.23352 1.54893i 0.243612 0.0891306i
\(303\) 17.4381i 1.00179i
\(304\) 1.08672 0.248586i 0.0623279 0.0142574i
\(305\) 1.28050 + 1.28050i 0.0733213 + 0.0733213i
\(306\) 7.78300 + 3.61338i 0.444925 + 0.206563i
\(307\) −11.2705 + 4.66838i −0.643239 + 0.266438i −0.680366 0.732872i \(-0.738179\pi\)
0.0371271 + 0.999311i \(0.488179\pi\)
\(308\) 3.72132 + 11.6659i 0.212042 + 0.664724i
\(309\) 13.1181 5.43370i 0.746264 0.309113i
\(310\) −5.40046 + 4.96531i −0.306725 + 0.282010i
\(311\) −0.866663 0.866663i −0.0491440 0.0491440i 0.682108 0.731252i \(-0.261064\pi\)
−0.731252 + 0.682108i \(0.761064\pi\)
\(312\) −7.64268 + 11.6116i −0.432681 + 0.657375i
\(313\) 22.4794 22.4794i 1.27061 1.27061i 0.324841 0.945769i \(-0.394689\pi\)
0.945769 0.324841i \(-0.105311\pi\)
\(314\) 0.129212 3.07798i 0.00729188 0.173700i
\(315\) −0.462368 1.11625i −0.0260515 0.0628938i
\(316\) −11.4784 + 9.69736i −0.645711 + 0.545519i
\(317\) −10.5362 25.4365i −0.591769 1.42866i −0.881792 0.471638i \(-0.843663\pi\)
0.290023 0.957020i \(-0.406337\pi\)
\(318\) −5.76662 15.7613i −0.323376 0.883850i
\(319\) 18.1970 18.1970i 1.01884 1.01884i
\(320\) −4.02005 + 0.570485i −0.224727 + 0.0318911i
\(321\) −5.55262 −0.309917
\(322\) −2.56550 + 5.52593i −0.142970 + 0.307948i
\(323\) 0.566696 + 1.36813i 0.0315318 + 0.0761245i
\(324\) −5.51157 6.52384i −0.306198 0.362435i
\(325\) −15.3499 7.53355i −0.851461 0.417886i
\(326\) 8.23808 + 8.96005i 0.456265 + 0.496251i
\(327\) 22.5855 1.24898
\(328\) 0.954783 1.67313i 0.0527191 0.0923831i
\(329\) −15.1887 + 15.1887i −0.837381 + 0.837381i
\(330\) 2.11530 1.94486i 0.116443 0.107061i
\(331\) 1.40066 3.38150i 0.0769874 0.185864i −0.880700 0.473675i \(-0.842927\pi\)
0.957687 + 0.287810i \(0.0929273\pi\)
\(332\) −28.2993 14.6112i −1.55313 0.801893i
\(333\) −0.504816 1.21873i −0.0276637 0.0667862i
\(334\) 6.84536 + 18.7097i 0.374561 + 1.02375i
\(335\) 2.12782i 0.116255i
\(336\) −9.62718 6.04272i −0.525206 0.329658i
\(337\) −24.6026 −1.34019 −0.670095 0.742276i \(-0.733747\pi\)
−0.670095 + 0.742276i \(0.733747\pi\)
\(338\) −9.79308 + 15.5594i −0.532673 + 0.846321i
\(339\) 9.44132 22.7934i 0.512782 1.23797i
\(340\) −1.63914 5.13847i −0.0888946 0.278673i
\(341\) 11.4873 + 27.7327i 0.622070 + 1.50181i
\(342\) −0.0188776 + 0.449685i −0.00102079 + 0.0243162i
\(343\) 20.1257i 1.08669i
\(344\) −28.2782 3.57815i −1.52466 0.192921i
\(345\) 1.42969 0.0769718
\(346\) 0.941043 22.4166i 0.0505908 1.20513i
\(347\) −7.64871 18.4656i −0.410604 0.991287i −0.984976 0.172692i \(-0.944753\pi\)
0.574371 0.818595i \(-0.305247\pi\)
\(348\) −2.00210 + 23.8040i −0.107324 + 1.27603i
\(349\) −18.3498 + 7.60073i −0.982242 + 0.406858i −0.815256 0.579101i \(-0.803404\pi\)
−0.166986 + 0.985959i \(0.553404\pi\)
\(350\) 5.88750 12.6813i 0.314700 0.677845i
\(351\) −13.4511 15.2794i −0.717966 0.815554i
\(352\) −3.45966 + 16.2496i −0.184400 + 0.866105i
\(353\) 16.0310 16.0310i 0.853244 0.853244i −0.137287 0.990531i \(-0.543838\pi\)
0.990531 + 0.137287i \(0.0438383\pi\)
\(354\) −0.270105 + 0.581789i −0.0143559 + 0.0309218i
\(355\) 0.775848 1.87306i 0.0411777 0.0994118i
\(356\) 9.20215 7.77430i 0.487713 0.412037i
\(357\) 5.77806 13.9495i 0.305807 0.738285i
\(358\) 34.3040 + 1.44007i 1.81302 + 0.0761101i
\(359\) 5.90681i 0.311750i 0.987777 + 0.155875i \(0.0498196\pi\)
−0.987777 + 0.155875i \(0.950180\pi\)
\(360\) 0.205786 1.62633i 0.0108459 0.0857149i
\(361\) 13.3801 13.3801i 0.704216 0.704216i
\(362\) −12.3903 + 11.3919i −0.651221 + 0.598747i
\(363\) 1.23860 + 2.99024i 0.0650096 + 0.156947i
\(364\) −12.8925 7.73093i −0.675748 0.405211i
\(365\) 0.734269 + 0.304144i 0.0384334 + 0.0159196i
\(366\) −2.89635 + 6.23856i −0.151395 + 0.326095i
\(367\) 11.6274 0.606944 0.303472 0.952840i \(-0.401854\pi\)
0.303472 + 0.952840i \(0.401854\pi\)
\(368\) −6.73920 + 4.78658i −0.351305 + 0.249518i
\(369\) 0.549952 + 0.549952i 0.0286294 + 0.0286294i
\(370\) −0.349156 + 0.752061i −0.0181518 + 0.0390978i
\(371\) 16.7679 6.94548i 0.870545 0.360591i
\(372\) −24.7587 12.7831i −1.28368 0.662775i
\(373\) −1.32770 3.20536i −0.0687459 0.165967i 0.885772 0.464120i \(-0.153629\pi\)
−0.954518 + 0.298153i \(0.903629\pi\)
\(374\) −22.0497 0.925639i −1.14016 0.0478637i
\(375\) −6.74012 −0.348058
\(376\) −28.1123 + 7.68458i −1.44978 + 0.396302i
\(377\) −2.00642 + 31.5293i −0.103336 + 1.62384i
\(378\) 12.2531 11.2658i 0.630232 0.579450i
\(379\) 6.67458 + 2.76470i 0.342850 + 0.142013i 0.547463 0.836830i \(-0.315594\pi\)
−0.204613 + 0.978843i \(0.565594\pi\)
\(380\) 0.216103 0.182572i 0.0110859 0.00936574i
\(381\) 22.2330 + 9.20921i 1.13903 + 0.471802i
\(382\) −1.16549 3.18552i −0.0596318 0.162985i
\(383\) −16.7020 16.7020i −0.853433 0.853433i 0.137121 0.990554i \(-0.456215\pi\)
−0.990554 + 0.137121i \(0.956215\pi\)
\(384\) −7.28120 13.5947i −0.371567 0.693753i
\(385\) 2.19728 + 2.19728i 0.111984 + 0.111984i
\(386\) −8.90542 4.13448i −0.453274 0.210440i
\(387\) 4.40389 10.6319i 0.223862 0.540451i
\(388\) 1.75679 20.8874i 0.0891875 1.06040i
\(389\) 13.2343 + 31.9504i 0.671005 + 1.61995i 0.779905 + 0.625898i \(0.215267\pi\)
−0.108900 + 0.994053i \(0.534733\pi\)
\(390\) −0.371500 + 3.50805i −0.0188116 + 0.177637i
\(391\) −7.76428 7.76428i −0.392656 0.392656i
\(392\) −3.72080 + 6.52020i −0.187929 + 0.329320i
\(393\) −18.7147 18.7147i −0.944032 0.944032i
\(394\) 0.796245 18.9674i 0.0401143 0.955564i
\(395\) −1.45927 + 3.52299i −0.0734238 + 0.177261i
\(396\) −5.96004 3.07722i −0.299503 0.154636i
\(397\) 10.3137 + 24.8994i 0.517628 + 1.24966i 0.939357 + 0.342942i \(0.111423\pi\)
−0.421729 + 0.906722i \(0.638577\pi\)
\(398\) −5.31530 + 11.4488i −0.266432 + 0.573877i
\(399\) 0.791956 0.0396474
\(400\) 15.4656 10.9846i 0.773280 0.549229i
\(401\) −9.05462 + 9.05462i −0.452166 + 0.452166i −0.896073 0.443907i \(-0.853592\pi\)
0.443907 + 0.896073i \(0.353592\pi\)
\(402\) 7.58978 2.77689i 0.378544 0.138499i
\(403\) −33.0820 16.2362i −1.64793 0.808782i
\(404\) −22.7344 11.7380i −1.13108 0.583985i
\(405\) −2.00232 0.829386i −0.0994959 0.0412125i
\(406\) −25.8101 1.08350i −1.28093 0.0537731i
\(407\) 2.39900 + 2.39900i 0.118914 + 0.118914i
\(408\) 16.1894 12.5526i 0.801497 0.621446i
\(409\) 7.42900i 0.367341i −0.982988 0.183670i \(-0.941202\pi\)
0.982988 0.183670i \(-0.0587979\pi\)
\(410\) 0.0205041 0.488430i 0.00101263 0.0241218i
\(411\) 8.56841 20.6860i 0.422648 1.02036i
\(412\) −1.74607 + 20.7599i −0.0860225 + 1.02277i
\(413\) −0.640850 0.265449i −0.0315342 0.0130619i
\(414\) −1.14669 3.13412i −0.0563566 0.154034i
\(415\) −8.08225 −0.396742
\(416\) −9.99376 17.7799i −0.489984 0.871731i
\(417\) 12.9695 0.635118
\(418\) −0.397733 1.08708i −0.0194538 0.0531710i
\(419\) −1.63004 0.675186i −0.0796329 0.0329850i 0.342511 0.939514i \(-0.388722\pi\)
−0.422144 + 0.906529i \(0.638722\pi\)
\(420\) −2.87433 0.241753i −0.140253 0.0117963i
\(421\) 1.15708 2.79343i 0.0563924 0.136143i −0.893172 0.449715i \(-0.851526\pi\)
0.949565 + 0.313572i \(0.101526\pi\)
\(422\) −0.121736 + 2.89988i −0.00592601 + 0.141164i
\(423\) 11.7663i 0.572099i
\(424\) 24.4300 + 3.09122i 1.18642 + 0.150123i
\(425\) 17.8180 + 17.8180i 0.864301 + 0.864301i
\(426\) 7.69359 + 0.322975i 0.372756 + 0.0156482i
\(427\) −6.87188 2.84643i −0.332554 0.137748i
\(428\) 3.73759 7.23906i 0.180663 0.349913i
\(429\) 12.9578 + 6.35954i 0.625610 + 0.307041i
\(430\) −6.79299 + 2.48537i −0.327587 + 0.119855i
\(431\) −18.5498 + 18.5498i −0.893511 + 0.893511i −0.994852 0.101340i \(-0.967687\pi\)
0.101340 + 0.994852i \(0.467687\pi\)
\(432\) 22.0150 5.03588i 1.05920 0.242289i
\(433\) −22.6751 −1.08969 −0.544847 0.838535i \(-0.683412\pi\)
−0.544847 + 0.838535i \(0.683412\pi\)
\(434\) 12.6887 27.3306i 0.609075 1.31191i
\(435\) 2.31986 + 5.60063i 0.111229 + 0.268530i
\(436\) −15.2028 + 29.4452i −0.728083 + 1.41017i
\(437\) 0.220401 0.532095i 0.0105432 0.0254536i
\(438\) −0.126611 + 3.01600i −0.00604971 + 0.144110i
\(439\) −16.0097 16.0097i −0.764100 0.764100i 0.212961 0.977061i \(-0.431689\pi\)
−0.977061 + 0.212961i \(0.931689\pi\)
\(440\) 1.11169 + 4.06688i 0.0529978 + 0.193881i
\(441\) −2.14317 2.14317i −0.102056 0.102056i
\(442\) 21.0689 17.0338i 1.00214 0.810217i
\(443\) 2.72198 + 6.57145i 0.129325 + 0.312219i 0.975258 0.221071i \(-0.0709553\pi\)
−0.845932 + 0.533290i \(0.820955\pi\)
\(444\) −3.13821 0.263947i −0.148933 0.0125264i
\(445\) 1.16988 2.82435i 0.0554579 0.133887i
\(446\) −1.64832 0.765257i −0.0780500 0.0362360i
\(447\) 0.107907 + 0.107907i 0.00510380 + 0.00510380i
\(448\) 14.3583 8.48365i 0.678365 0.400815i
\(449\) −19.3195 19.3195i −0.911744 0.911744i 0.0846659 0.996409i \(-0.473018\pi\)
−0.996409 + 0.0846659i \(0.973018\pi\)
\(450\) 2.63150 + 7.19241i 0.124050 + 0.339053i
\(451\) −1.84803 0.765477i −0.0870201 0.0360449i
\(452\) 23.3610 + 27.6515i 1.09881 + 1.30062i
\(453\) 4.01432 + 1.66279i 0.188609 + 0.0781246i
\(454\) −6.54733 + 6.01976i −0.307281 + 0.282521i
\(455\) −3.80716 0.242275i −0.178482 0.0113580i
\(456\) 0.933245 + 0.532563i 0.0437032 + 0.0249395i
\(457\) −3.56967 −0.166982 −0.0834911 0.996509i \(-0.526607\pi\)
−0.0834911 + 0.996509i \(0.526607\pi\)
\(458\) −30.1695 1.26650i −1.40973 0.0591799i
\(459\) 11.4802 + 27.7157i 0.535850 + 1.29366i
\(460\) −0.962353 + 1.86391i −0.0448699 + 0.0869053i
\(461\) −1.61875 + 0.670507i −0.0753925 + 0.0312286i −0.420061 0.907496i \(-0.637991\pi\)
0.344668 + 0.938724i \(0.387991\pi\)
\(462\) −4.97001 + 10.7051i −0.231226 + 0.498045i
\(463\) 8.52614 + 8.52614i 0.396243 + 0.396243i 0.876906 0.480663i \(-0.159604\pi\)
−0.480663 + 0.876906i \(0.659604\pi\)
\(464\) −29.6861 18.6332i −1.37814 0.865024i
\(465\) −7.07106 −0.327912
\(466\) −4.87388 + 10.4980i −0.225778 + 0.486312i
\(467\) −0.549711 0.227698i −0.0254376 0.0105366i 0.369928 0.929060i \(-0.379382\pi\)
−0.395366 + 0.918524i \(0.629382\pi\)
\(468\) 7.98822 1.99926i 0.369256 0.0924157i
\(469\) 3.34456 + 8.07449i 0.154438 + 0.372845i
\(470\) −5.44437 + 5.00568i −0.251130 + 0.230895i
\(471\) 2.09966 2.09966i 0.0967470 0.0967470i
\(472\) −0.576676 0.743756i −0.0265437 0.0342341i
\(473\) 29.5971i 1.36088i
\(474\) −14.4707 0.607473i −0.664659 0.0279022i
\(475\) −0.505793 + 1.22109i −0.0232074 + 0.0560275i
\(476\) 14.2969 + 16.9227i 0.655296 + 0.775649i
\(477\) −3.80459 + 9.18509i −0.174200 + 0.420556i
\(478\) 7.95474 17.1340i 0.363841 0.783691i
\(479\) 8.30563 8.30563i 0.379494 0.379494i −0.491426 0.870920i \(-0.663524\pi\)
0.870920 + 0.491426i \(0.163524\pi\)
\(480\) −3.22455 2.21777i −0.147180 0.101227i
\(481\) −4.15668 0.264517i −0.189528 0.0120609i
\(482\) −11.5105 + 24.7928i −0.524287 + 1.12928i
\(483\) −5.42527 + 2.24722i −0.246858 + 0.102252i
\(484\) −4.73217 0.398011i −0.215098 0.0180914i
\(485\) −2.03562 4.91441i −0.0924325 0.223152i
\(486\) −0.659416 + 15.7080i −0.0299117 + 0.712528i
\(487\) 35.9242 1.62788 0.813940 0.580948i \(-0.197318\pi\)
0.813940 + 0.580948i \(0.197318\pi\)
\(488\) −6.18374 7.97534i −0.279925 0.361027i
\(489\) 11.7318i 0.530530i
\(490\) −0.0799048 + 1.90342i −0.00360973 + 0.0859876i
\(491\) 2.43257 + 5.87275i 0.109781 + 0.265034i 0.969217 0.246210i \(-0.0791851\pi\)
−0.859436 + 0.511243i \(0.829185\pi\)
\(492\) 1.76895 0.564284i 0.0797506 0.0254399i
\(493\) 17.8171 43.0142i 0.802441 1.93726i
\(494\) 1.24834 + 0.679066i 0.0561656 + 0.0305526i
\(495\) −1.70218 −0.0765073
\(496\) 33.3312 23.6738i 1.49662 1.06299i
\(497\) 8.32726i 0.373528i
\(498\) −10.5477 28.8288i −0.472652 1.29185i
\(499\) 10.1255 + 24.4450i 0.453278 + 1.09431i 0.971068 + 0.238803i \(0.0767549\pi\)
−0.517790 + 0.855508i \(0.673245\pi\)
\(500\) 4.53692 8.78722i 0.202897 0.392976i
\(501\) −7.34856 + 17.7410i −0.328310 + 0.792609i
\(502\) −3.47888 + 3.19857i −0.155270 + 0.142759i
\(503\) 27.1661 27.1661i 1.21128 1.21128i 0.240669 0.970607i \(-0.422633\pi\)
0.970607 0.240669i \(-0.0773667\pi\)
\(504\) 1.77540 + 6.49492i 0.0790828 + 0.289307i
\(505\) −6.49291 −0.288931
\(506\) 5.80933 + 6.31845i 0.258256 + 0.280889i
\(507\) −17.0991 + 4.65135i −0.759396 + 0.206574i
\(508\) −26.9717 + 22.7867i −1.19668 + 1.01099i
\(509\) 3.08613 + 7.45057i 0.136790 + 0.330241i 0.977399 0.211402i \(-0.0678028\pi\)
−0.840609 + 0.541642i \(0.817803\pi\)
\(510\) 2.18914 4.71528i 0.0969369 0.208796i
\(511\) −3.26441 −0.144409
\(512\) 22.6248 0.341742i 0.999886 0.0151030i
\(513\) −1.11264 + 1.11264i −0.0491241 + 0.0491241i
\(514\) 5.11436 + 13.9785i 0.225585 + 0.616567i
\(515\) 2.02319 + 4.88441i 0.0891523 + 0.215233i
\(516\) −17.7303 20.9866i −0.780531 0.923885i
\(517\) 11.5807 + 27.9582i 0.509317 + 1.22960i
\(518\) 0.142843 3.40268i 0.00627618 0.149505i
\(519\) 15.2916 15.2916i 0.671227 0.671227i
\(520\) −4.32345 2.84568i −0.189596 0.124791i
\(521\) 18.4517 + 18.4517i 0.808386 + 0.808386i 0.984389 0.176004i \(-0.0563171\pi\)
−0.176004 + 0.984389i \(0.556317\pi\)
\(522\) 10.4169 9.57754i 0.455935 0.419198i
\(523\) −24.4761 + 10.1383i −1.07026 + 0.443318i −0.847084 0.531459i \(-0.821644\pi\)
−0.223180 + 0.974777i \(0.571644\pi\)
\(524\) 36.9960 11.8014i 1.61618 0.515549i
\(525\) 12.4503 5.15709i 0.543376 0.225074i
\(526\) 13.5939 + 6.31119i 0.592722 + 0.275181i
\(527\) 38.4011 + 38.4011i 1.67278 + 1.67278i
\(528\) −13.0555 + 9.27277i −0.568167 + 0.403545i
\(529\) 18.7295i 0.814326i
\(530\) 5.86857 2.14715i 0.254914 0.0932660i
\(531\) 0.351044 0.145407i 0.0152340 0.00631014i
\(532\) −0.533082 + 1.03249i −0.0231120 + 0.0447640i
\(533\) 2.32385 0.793765i 0.100657 0.0343818i
\(534\) 11.6010 + 0.487007i 0.502025 + 0.0210749i
\(535\) 2.06746i 0.0893843i
\(536\) −1.48856 + 11.7641i −0.0642961 + 0.508133i
\(537\) 23.4006 + 23.4006i 1.00981 + 1.00981i
\(538\) −3.10262 0.130247i −0.133763 0.00561534i
\(539\) 7.20177 + 2.98307i 0.310202 + 0.128490i
\(540\) 4.37785 3.69856i 0.188393 0.159161i
\(541\) 22.4171 9.28547i 0.963786 0.399213i 0.155391 0.987853i \(-0.450336\pi\)
0.808396 + 0.588640i \(0.200336\pi\)
\(542\) −1.93551 0.898593i −0.0831374 0.0385979i
\(543\) −16.2232 −0.696203
\(544\) 5.46760 + 29.5559i 0.234421 + 1.26720i
\(545\) 8.40951i 0.360224i
\(546\) −4.10431 13.8960i −0.175648 0.594696i
\(547\) −7.53430 3.12081i −0.322143 0.133436i 0.215751 0.976448i \(-0.430780\pi\)
−0.537894 + 0.843012i \(0.680780\pi\)
\(548\) 21.2011 + 25.0950i 0.905667 + 1.07200i
\(549\) 3.76427 1.55921i 0.160655 0.0665455i
\(550\) −13.3317 14.5000i −0.568464 0.618284i
\(551\) 2.44205 0.104035
\(552\) −7.90435 1.00017i −0.336431 0.0425700i
\(553\) 15.6625i 0.666037i
\(554\) −17.2104 + 15.8236i −0.731200 + 0.672282i
\(555\) −0.738361 + 0.305839i −0.0313417 + 0.0129822i
\(556\) −8.73003 + 16.9085i −0.370236 + 0.717082i
\(557\) −1.13162 2.73198i −0.0479484 0.115758i 0.898091 0.439811i \(-0.144954\pi\)
−0.946039 + 0.324053i \(0.894954\pi\)
\(558\) 5.67137 + 15.5010i 0.240088 + 0.656208i
\(559\) −24.0093 27.2727i −1.01548 1.15351i
\(560\) 2.24995 3.58459i 0.0950777 0.151477i
\(561\) −15.0413 15.0413i −0.635044 0.635044i
\(562\) −15.2708 + 5.58717i −0.644162 + 0.235681i
\(563\) 25.8867 + 10.7226i 1.09100 + 0.451905i 0.854354 0.519692i \(-0.173953\pi\)
0.236642 + 0.971597i \(0.423953\pi\)
\(564\) −24.9600 12.8871i −1.05101 0.542644i
\(565\) 8.48689 + 3.51539i 0.357046 + 0.147893i
\(566\) 3.35461 3.08431i 0.141005 0.129643i
\(567\) 8.90189 0.373844
\(568\) −5.59979 + 9.81288i −0.234962 + 0.411739i
\(569\) 9.17870 + 9.17870i 0.384791 + 0.384791i 0.872825 0.488034i \(-0.162286\pi\)
−0.488034 + 0.872825i \(0.662286\pi\)
\(570\) 0.272438 + 0.0114369i 0.0114112 + 0.000479038i
\(571\) 21.5955 8.94513i 0.903742 0.374342i 0.118084 0.993004i \(-0.462325\pi\)
0.785658 + 0.618661i \(0.212325\pi\)
\(572\) −17.0132 + 12.6126i −0.711360 + 0.527361i
\(573\) 1.25117 3.02059i 0.0522683 0.126187i
\(574\) 0.689920 + 1.88569i 0.0287967 + 0.0787071i
\(575\) 9.80027i 0.408700i
\(576\) −2.27547 + 8.84755i −0.0948110 + 0.368648i
\(577\) −27.3036 + 27.3036i −1.13667 + 1.13667i −0.147622 + 0.989044i \(0.547162\pi\)
−0.989044 + 0.147622i \(0.952838\pi\)
\(578\) −14.9183 + 5.45818i −0.620518 + 0.227030i
\(579\) −3.62155 8.74320i −0.150507 0.363355i
\(580\) −8.86320 0.745463i −0.368024 0.0309537i
\(581\) 30.6699 12.7039i 1.27240 0.527047i
\(582\) 14.8728 13.6744i 0.616498 0.566822i
\(583\) 25.5694i 1.05898i
\(584\) −3.84680 2.19520i −0.159182 0.0908381i
\(585\) 1.56850 1.38081i 0.0648494 0.0570897i
\(586\) 16.0503 + 0.673785i 0.663030 + 0.0278338i
\(587\) −0.786805 + 1.89952i −0.0324749 + 0.0784014i −0.939285 0.343138i \(-0.888510\pi\)
0.906810 + 0.421540i \(0.138510\pi\)
\(588\) −6.89363 + 2.19902i −0.284289 + 0.0906860i
\(589\) −1.09008 + 2.63168i −0.0449158 + 0.108436i
\(590\) −0.216624 0.100571i −0.00891826 0.00414044i
\(591\) 12.9387 12.9387i 0.532227 0.532227i
\(592\) 2.45651 3.91368i 0.100962 0.160851i
\(593\) 25.2611 25.2611i 1.03735 1.03735i 0.0380735 0.999275i \(-0.487878\pi\)
0.999275 0.0380735i \(-0.0121221\pi\)
\(594\) −8.05733 22.0223i −0.330596 0.903585i
\(595\) 5.19395 + 2.15141i 0.212931 + 0.0881991i
\(596\) −0.213314 + 0.0680456i −0.00873768 + 0.00278726i
\(597\) −11.2403 + 4.65587i −0.460034 + 0.190552i
\(598\) −10.4786 1.10968i −0.428503 0.0453782i
\(599\) 6.64216 6.64216i 0.271391 0.271391i −0.558269 0.829660i \(-0.688534\pi\)
0.829660 + 0.558269i \(0.188534\pi\)
\(600\) 18.1395 + 2.29526i 0.740541 + 0.0937037i
\(601\) 27.3596 27.3596i 1.11602 1.11602i 0.123704 0.992319i \(-0.460523\pi\)
0.992319 0.123704i \(-0.0394773\pi\)
\(602\) 21.8710 20.1087i 0.891395 0.819569i
\(603\) −4.42304 1.83208i −0.180120 0.0746081i
\(604\) −4.86994 + 4.11429i −0.198155 + 0.167408i
\(605\) −1.11339 + 0.461181i −0.0452657 + 0.0187497i
\(606\) −8.47350 23.1597i −0.344212 0.940801i
\(607\) 18.2383i 0.740269i 0.928978 + 0.370135i \(0.120688\pi\)
−0.928978 + 0.370135i \(0.879312\pi\)
\(608\) −1.32250 + 0.858210i −0.0536344 + 0.0348050i
\(609\) −17.6065 17.6065i −0.713450 0.713450i
\(610\) −2.32287 1.07843i −0.0940502 0.0436643i
\(611\) −33.3510 16.3682i −1.34924 0.662187i
\(612\) −12.0925 1.01707i −0.488811 0.0411127i
\(613\) 8.29495 20.0258i 0.335030 0.808834i −0.663148 0.748489i \(-0.730780\pi\)
0.998178 0.0603453i \(-0.0192202\pi\)
\(614\) 12.7000 11.6767i 0.512530 0.471232i
\(615\) 0.333185 0.333185i 0.0134353 0.0134353i
\(616\) −10.6110 13.6853i −0.427529 0.551397i
\(617\) −46.9045 −1.88830 −0.944151 0.329512i \(-0.893116\pi\)
−0.944151 + 0.329512i \(0.893116\pi\)
\(618\) −14.7820 + 13.5909i −0.594619 + 0.546707i
\(619\) −17.6988 7.33109i −0.711376 0.294661i −0.00250190 0.999997i \(-0.500796\pi\)
−0.708874 + 0.705335i \(0.750796\pi\)
\(620\) 4.75968 9.21867i 0.191153 0.370231i
\(621\) 4.46491 10.7793i 0.179171 0.432557i
\(622\) 1.57215 + 0.729898i 0.0630377 + 0.0292663i
\(623\) 12.5565i 0.503066i
\(624\) 4.50806 19.1352i 0.180467 0.766020i
\(625\) 21.2024i 0.848096i
\(626\) −18.9320 + 40.7783i −0.756674 + 1.62983i
\(627\) 0.426971 1.03080i 0.0170516 0.0411661i
\(628\) 1.32404 + 4.15068i 0.0528349 + 0.165630i
\(629\) 5.67079 + 2.34892i 0.226109 + 0.0936575i
\(630\) 1.15649 + 1.25784i 0.0460755 + 0.0501135i
\(631\) −11.2410 −0.447498 −0.223749 0.974647i \(-0.571830\pi\)
−0.223749 + 0.974647i \(0.571830\pi\)
\(632\) 10.5325 18.4568i 0.418960 0.734171i
\(633\) −1.97816 + 1.97816i −0.0786250 + 0.0786250i
\(634\) 26.3533 + 28.6628i 1.04662 + 1.13835i
\(635\) −3.42896 + 8.27824i −0.136074 + 0.328512i
\(636\) 15.3174 + 18.1307i 0.607376 + 0.718928i
\(637\) −9.05606 + 3.09331i −0.358814 + 0.122561i
\(638\) −15.3254 + 33.0099i −0.606738 + 1.30687i
\(639\) −3.22546 3.22546i −0.127597 0.127597i
\(640\) 5.06187 2.71109i 0.200088 0.107165i
\(641\) 11.2701i 0.445143i 0.974916 + 0.222572i \(0.0714451\pi\)
−0.974916 + 0.222572i \(0.928555\pi\)
\(642\) 7.37450 2.69812i 0.291048 0.106486i
\(643\) −24.8174 + 10.2797i −0.978703 + 0.405392i −0.813945 0.580942i \(-0.802684\pi\)
−0.164758 + 0.986334i \(0.552684\pi\)
\(644\) 0.722121 8.58568i 0.0284556 0.338323i
\(645\) −6.44128 2.66807i −0.253625 0.105055i
\(646\) −1.41743 1.54166i −0.0557682 0.0606556i
\(647\) −6.63607 + 6.63607i −0.260891 + 0.260891i −0.825416 0.564525i \(-0.809059\pi\)
0.564525 + 0.825416i \(0.309059\pi\)
\(648\) 10.4900 + 5.98622i 0.412088 + 0.235161i
\(649\) −0.691010 + 0.691010i −0.0271245 + 0.0271245i
\(650\) 24.0471 + 2.54657i 0.943206 + 0.0998848i
\(651\) 26.8327 11.1145i 1.05166 0.435611i
\(652\) −15.2949 7.89691i −0.598996 0.309267i
\(653\) −19.7892 8.19697i −0.774413 0.320772i −0.0397544 0.999209i \(-0.512658\pi\)
−0.734658 + 0.678437i \(0.762658\pi\)
\(654\) −29.9961 + 10.9747i −1.17294 + 0.429147i
\(655\) 6.96824 6.96824i 0.272272 0.272272i
\(656\) −0.455054 + 2.68605i −0.0177669 + 0.104873i
\(657\) 1.26443 1.26443i 0.0493301 0.0493301i
\(658\) 12.7918 27.5528i 0.498678 1.07412i
\(659\) 4.29124 10.3600i 0.167163 0.403567i −0.817993 0.575228i \(-0.804913\pi\)
0.985156 + 0.171661i \(0.0549134\pi\)
\(660\) −1.86431 + 3.61085i −0.0725683 + 0.140552i
\(661\) −6.03274 + 14.5643i −0.234647 + 0.566487i −0.996713 0.0810117i \(-0.974185\pi\)
0.762067 + 0.647499i \(0.224185\pi\)
\(662\) −0.217103 + 5.17162i −0.00843795 + 0.201001i
\(663\) 26.0616 + 1.65847i 1.01215 + 0.0644097i
\(664\) 44.6845 + 5.65412i 1.73410 + 0.219422i
\(665\) 0.294877i 0.0114348i
\(666\) 1.26266 + 1.37332i 0.0489270 + 0.0532149i
\(667\) −16.7292 + 6.92947i −0.647758 + 0.268310i
\(668\) −18.1828 21.5223i −0.703514 0.832723i
\(669\) −0.670318 1.61829i −0.0259160 0.0625667i
\(670\) 1.03395 + 2.82598i 0.0399449 + 0.109177i
\(671\) −7.40974 + 7.40974i −0.286050 + 0.286050i
\(672\) 15.7223 + 3.34739i 0.606499 + 0.129128i
\(673\) 12.3717i 0.476895i −0.971155 0.238447i \(-0.923362\pi\)
0.971155 0.238447i \(-0.0766384\pi\)
\(674\) 32.6750 11.9549i 1.25860 0.460485i
\(675\) −10.2464 + 24.7370i −0.394385 + 0.952129i
\(676\) 5.44569 25.4233i 0.209450 0.977819i
\(677\) −2.54875 + 1.05573i −0.0979565 + 0.0405749i −0.431124 0.902293i \(-0.641883\pi\)
0.333167 + 0.942868i \(0.391883\pi\)
\(678\) −1.46341 + 34.8599i −0.0562018 + 1.33879i
\(679\) 15.4492 + 15.4492i 0.592886 + 0.592886i
\(680\) 4.67384 + 6.02798i 0.179234 + 0.231163i
\(681\) −8.57270 −0.328507
\(682\) −28.7322 31.2503i −1.10021 1.19663i
\(683\) −16.9478 7.02001i −0.648490 0.268613i 0.0340962 0.999419i \(-0.489145\pi\)
−0.682586 + 0.730805i \(0.739145\pi\)
\(684\) −0.193439 0.606405i −0.00739632 0.0231865i
\(685\) 7.70222 + 3.19037i 0.294287 + 0.121898i
\(686\) −9.77947 26.7292i −0.373382 1.02053i
\(687\) −20.5802 20.5802i −0.785185 0.785185i
\(688\) 39.2953 8.98872i 1.49812 0.342692i
\(689\) 20.7420 + 23.5613i 0.790207 + 0.897614i
\(690\) −1.89879 + 0.694712i −0.0722855 + 0.0264472i
\(691\) 15.4250 + 37.2393i 0.586795 + 1.41665i 0.886550 + 0.462632i \(0.153095\pi\)
−0.299756 + 0.954016i \(0.596905\pi\)
\(692\) 9.64285 + 30.2291i 0.366566 + 1.14914i
\(693\) 6.45931 2.67553i 0.245369 0.101635i
\(694\) 19.1312 + 20.8078i 0.726209 + 0.789852i
\(695\) 4.82906i 0.183177i
\(696\) −8.90782 32.5873i −0.337650 1.23522i
\(697\) −3.61889 −0.137075
\(698\) 20.6772 19.0111i 0.782645 0.719582i
\(699\) −10.3068 + 4.26922i −0.389839 + 0.161477i
\(700\) −1.65718 + 19.7031i −0.0626354 + 0.744705i
\(701\) −40.7324 16.8719i −1.53844 0.637244i −0.557263 0.830336i \(-0.688148\pi\)
−0.981181 + 0.193092i \(0.938148\pi\)
\(702\) 25.2891 + 13.7566i 0.954476 + 0.519210i
\(703\) 0.321949i 0.0121425i
\(704\) −3.30116 23.2624i −0.124417 0.876734i
\(705\) −7.12855 −0.268477
\(706\) −13.5012 + 29.0807i −0.508125 + 1.09447i
\(707\) 24.6388 10.2057i 0.926638 0.383826i
\(708\) 0.0760275 0.903931i 0.00285729 0.0339718i
\(709\) −31.7641 13.1571i −1.19293 0.494126i −0.304219 0.952602i \(-0.598395\pi\)
−0.888707 + 0.458476i \(0.848395\pi\)
\(710\) −0.120257 + 2.86464i −0.00451315 + 0.107508i
\(711\) 6.06668 + 6.06668i 0.227518 + 0.227518i
\(712\) −8.44381 + 14.7966i −0.316445 + 0.554528i
\(713\) 21.1214i 0.791003i
\(714\) −0.895601 + 21.3341i −0.0335170 + 0.798410i
\(715\) −2.36791 + 4.82473i −0.0885549 + 0.180435i
\(716\) −46.2593 + 14.7564i −1.72879 + 0.551472i
\(717\) 16.8219 6.96786i 0.628225 0.260219i
\(718\) −2.87023 7.84491i −0.107116 0.292769i
\(719\) 42.7587i 1.59463i −0.603564 0.797315i \(-0.706253\pi\)
0.603564 0.797315i \(-0.293747\pi\)
\(720\) 0.516956 + 2.25994i 0.0192658 + 0.0842230i
\(721\) −15.3549 15.3549i −0.571846 0.571846i
\(722\) −11.2686 + 24.2719i −0.419375 + 0.903308i
\(723\) −24.3412 + 10.0825i −0.905259 + 0.374970i
\(724\) 10.9202 21.1505i 0.405845 0.786051i
\(725\) 38.3914 15.9023i 1.42582 0.590595i
\(726\) −3.09802 3.36952i −0.114978 0.125055i
\(727\) −13.0837 13.0837i −0.485249 0.485249i 0.421554 0.906803i \(-0.361485\pi\)
−0.906803 + 0.421554i \(0.861485\pi\)
\(728\) 20.8792 + 4.00285i 0.773836 + 0.148355i
\(729\) −19.7737 + 19.7737i −0.732359 + 0.732359i
\(730\) −1.12298 0.0471424i −0.0415634 0.00174482i
\(731\) 20.4914 + 49.4706i 0.757902 + 1.82974i
\(732\) 0.815247 9.69291i 0.0301324 0.358260i
\(733\) −6.51107 15.7191i −0.240492 0.580599i 0.756840 0.653600i \(-0.226742\pi\)
−0.997332 + 0.0730013i \(0.976742\pi\)
\(734\) −15.4425 + 5.64996i −0.569992 + 0.208544i
\(735\) −1.29842 + 1.29842i −0.0478931 + 0.0478931i
\(736\) 6.62453 9.63182i 0.244183 0.355033i
\(737\) 12.3128 0.453549
\(738\) −0.997631 0.463166i −0.0367233 0.0170494i
\(739\) 16.3901 + 39.5691i 0.602918 + 1.45557i 0.870563 + 0.492056i \(0.163755\pi\)
−0.267645 + 0.963518i \(0.586245\pi\)
\(740\) 0.0982783 1.16848i 0.00361278 0.0429543i
\(741\) 0.442749 + 1.29621i 0.0162648 + 0.0476173i
\(742\) −18.8947 + 17.3722i −0.693646 + 0.637754i
\(743\) −16.5640 −0.607673 −0.303837 0.952724i \(-0.598268\pi\)
−0.303837 + 0.952724i \(0.598268\pi\)
\(744\) 39.0939 + 4.94671i 1.43325 + 0.181355i
\(745\) −0.0401780 + 0.0401780i −0.00147201 + 0.00147201i
\(746\) 3.32088 + 3.61192i 0.121586 + 0.132242i
\(747\) −6.95893 + 16.8003i −0.254614 + 0.614692i
\(748\) 29.7343 9.48501i 1.08719 0.346806i
\(749\) 3.24970 + 7.84546i 0.118741 + 0.286667i
\(750\) 8.95163 3.27515i 0.326867 0.119592i
\(751\) 10.5081i 0.383446i −0.981449 0.191723i \(-0.938593\pi\)
0.981449 0.191723i \(-0.0614075\pi\)
\(752\) 33.6023 23.8663i 1.22535 0.870315i
\(753\) −4.55506 −0.165995
\(754\) −12.6559 42.8495i −0.460902 1.56048i
\(755\) −0.619123 + 1.49470i −0.0225322 + 0.0543975i
\(756\) −10.7992 + 20.9163i −0.392765 + 0.760717i
\(757\) −15.9231 38.4417i −0.578735 1.39719i −0.893949 0.448169i \(-0.852076\pi\)
0.315214 0.949020i \(-0.397924\pi\)
\(758\) −10.2080 0.428529i −0.370772 0.0155649i
\(759\) 8.27302i 0.300292i
\(760\) −0.198295 + 0.347485i −0.00719290 + 0.0126046i
\(761\) −27.8286 −1.00879 −0.504394 0.863474i \(-0.668284\pi\)
−0.504394 + 0.863474i \(0.668284\pi\)
\(762\) −34.0028 1.42743i −1.23179 0.0517103i
\(763\) −13.2183 31.9118i −0.478535 1.15528i
\(764\) 3.09581 + 3.66440i 0.112003 + 0.132573i
\(765\) −2.84514 + 1.17849i −0.102866 + 0.0426086i
\(766\) 30.2980 + 14.0663i 1.09471 + 0.508237i
\(767\) 0.0761915 1.19729i 0.00275112 0.0432316i
\(768\) 16.2762 + 14.5172i 0.587316 + 0.523846i
\(769\) 6.33433 &