Properties

Label 416.2.bd.a.83.16
Level $416$
Weight $2$
Character 416.83
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 83.16
Character \(\chi\) \(=\) 416.83
Dual form 416.2.bd.a.411.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.873613 + 1.11212i) q^{2} +(-0.260922 - 0.108078i) q^{3} +(-0.473600 - 1.94312i) q^{4} +(0.260195 - 0.628165i) q^{5} +(0.348140 - 0.195758i) q^{6} -0.282606i q^{7} +(2.57471 + 1.17084i) q^{8} +(-2.06492 - 2.06492i) q^{9} +O(q^{10})\) \(q+(-0.873613 + 1.11212i) q^{2} +(-0.260922 - 0.108078i) q^{3} +(-0.473600 - 1.94312i) q^{4} +(0.260195 - 0.628165i) q^{5} +(0.348140 - 0.195758i) q^{6} -0.282606i q^{7} +(2.57471 + 1.17084i) q^{8} +(-2.06492 - 2.06492i) q^{9} +(0.471283 + 0.838140i) q^{10} +(-2.03693 - 0.843724i) q^{11} +(-0.0864346 + 0.558188i) q^{12} +(-0.892268 + 3.49340i) q^{13} +(0.314291 + 0.246889i) q^{14} +(-0.135781 + 0.135781i) q^{15} +(-3.55141 + 1.84052i) q^{16} -6.04570 q^{17} +(4.10037 - 0.492487i) q^{18} +(-2.40819 - 5.81388i) q^{19} +(-1.34383 - 0.208090i) q^{20} +(-0.0305434 + 0.0737383i) q^{21} +(2.71781 - 1.52821i) q^{22} +(-2.04676 - 2.04676i) q^{23} +(-0.545259 - 0.583766i) q^{24} +(3.20864 + 3.20864i) q^{25} +(-3.10557 - 4.04419i) q^{26} +(0.639845 + 1.54472i) q^{27} +(-0.549137 + 0.133842i) q^{28} +(1.09830 - 2.65152i) q^{29} +(-0.0323841 - 0.269625i) q^{30} +(-5.51050 - 5.51050i) q^{31} +(1.05569 - 5.55747i) q^{32} +(0.440293 + 0.440293i) q^{33} +(5.28161 - 6.72352i) q^{34} +(-0.177523 - 0.0735326i) q^{35} +(-3.03444 + 4.99033i) q^{36} +(2.61117 + 1.08158i) q^{37} +(8.56953 + 2.40090i) q^{38} +(0.610371 - 0.815073i) q^{39} +(1.40540 - 1.31270i) q^{40} -3.13573 q^{41} +(-0.0553224 - 0.0983865i) q^{42} +(0.517219 + 1.24868i) q^{43} +(-0.674765 + 4.35758i) q^{44} +(-1.83439 + 0.759830i) q^{45} +(4.06431 - 0.488157i) q^{46} +(-7.13337 - 7.13337i) q^{47} +(1.12556 - 0.0964053i) q^{48} +6.92013 q^{49} +(-6.37149 + 0.765267i) q^{50} +(1.57746 + 0.653405i) q^{51} +(7.21067 + 0.0793070i) q^{52} +(-0.291326 - 0.703323i) q^{53} +(-2.27689 - 0.637909i) q^{54} +(-1.06000 + 1.06000i) q^{55} +(0.330885 - 0.727630i) q^{56} +1.77724i q^{57} +(1.98931 + 3.53783i) q^{58} +(-1.89329 + 4.57081i) q^{59} +(0.328145 + 0.199533i) q^{60} +(5.43896 - 13.1308i) q^{61} +(10.9424 - 1.31426i) q^{62} +(-0.583559 + 0.583559i) q^{63} +(5.25829 + 6.02913i) q^{64} +(1.96227 + 1.46946i) q^{65} +(-0.874302 + 0.105011i) q^{66} +(7.74615 - 3.20856i) q^{67} +(2.86324 + 11.7475i) q^{68} +(0.312837 + 0.755256i) q^{69} +(0.236864 - 0.133187i) q^{70} +2.15857 q^{71} +(-2.89890 - 7.73426i) q^{72} +14.1432i q^{73} +(-3.48400 + 1.95904i) q^{74} +(-0.490425 - 1.18399i) q^{75} +(-10.1565 + 7.43285i) q^{76} +(-0.238442 + 0.575649i) q^{77} +(0.373226 + 1.39086i) q^{78} -11.9453 q^{79} +(0.232094 + 2.70976i) q^{80} +8.28851i q^{81} +(2.73942 - 3.48730i) q^{82} +(-1.32818 - 3.20651i) q^{83} +(0.157747 + 0.0244270i) q^{84} +(-1.57306 + 3.79770i) q^{85} +(-1.84052 - 0.515653i) q^{86} +(-0.573140 + 0.573140i) q^{87} +(-4.25665 - 4.55725i) q^{88} -16.0542 q^{89} +(0.757531 - 2.70385i) q^{90} +(0.987257 + 0.252161i) q^{91} +(-3.00775 + 4.94644i) q^{92} +(0.842251 + 2.03337i) q^{93} +(14.1649 - 1.70132i) q^{94} -4.27868 q^{95} +(-0.876091 + 1.33597i) q^{96} +(0.886969 - 0.886969i) q^{97} +(-6.04552 + 7.69598i) q^{98} +(2.46387 + 5.94832i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24} - 4 q^{26} - 8 q^{27} + 56 q^{28} - 8 q^{29} - 16 q^{30} - 44 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} - 28 q^{39} - 8 q^{40} - 8 q^{41} - 48 q^{42} - 32 q^{43} + 12 q^{44} - 36 q^{45} - 48 q^{46} - 8 q^{47} - 8 q^{48} - 168 q^{49} + 76 q^{50} - 4 q^{52} - 8 q^{53} - 28 q^{54} - 40 q^{55} + 56 q^{56} + 32 q^{58} + 52 q^{59} - 36 q^{60} - 8 q^{61} + 72 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} + 20 q^{70} + 56 q^{71} + 8 q^{72} - 8 q^{74} - 68 q^{76} + 56 q^{77} - 48 q^{78} - 16 q^{79} + 28 q^{80} - 88 q^{82} + 36 q^{83} + 100 q^{84} - 24 q^{85} + 96 q^{86} - 8 q^{87} + 64 q^{88} - 8 q^{89} - 64 q^{90} + 72 q^{91} - 8 q^{92} - 40 q^{93} - 56 q^{94} + 36 q^{96} - 8 q^{97} + 52 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.873613 + 1.11212i −0.617738 + 0.786384i
\(3\) −0.260922 0.108078i −0.150644 0.0623986i 0.306088 0.952003i \(-0.400980\pi\)
−0.456731 + 0.889605i \(0.650980\pi\)
\(4\) −0.473600 1.94312i −0.236800 0.971558i
\(5\) 0.260195 0.628165i 0.116363 0.280924i −0.854958 0.518697i \(-0.826417\pi\)
0.971321 + 0.237773i \(0.0764173\pi\)
\(6\) 0.348140 0.195758i 0.142128 0.0799178i
\(7\) 0.282606i 0.106815i −0.998573 0.0534075i \(-0.982992\pi\)
0.998573 0.0534075i \(-0.0170082\pi\)
\(8\) 2.57471 + 1.17084i 0.910298 + 0.413953i
\(9\) −2.06492 2.06492i −0.688307 0.688307i
\(10\) 0.471283 + 0.838140i 0.149033 + 0.265043i
\(11\) −2.03693 0.843724i −0.614157 0.254392i 0.0538476 0.998549i \(-0.482851\pi\)
−0.668005 + 0.744157i \(0.732851\pi\)
\(12\) −0.0864346 + 0.558188i −0.0249515 + 0.161135i
\(13\) −0.892268 + 3.49340i −0.247471 + 0.968895i
\(14\) 0.314291 + 0.246889i 0.0839977 + 0.0659837i
\(15\) −0.135781 + 0.135781i −0.0350586 + 0.0350586i
\(16\) −3.55141 + 1.84052i −0.887852 + 0.460130i
\(17\) −6.04570 −1.46630 −0.733149 0.680068i \(-0.761950\pi\)
−0.733149 + 0.680068i \(0.761950\pi\)
\(18\) 4.10037 0.492487i 0.966467 0.116080i
\(19\) −2.40819 5.81388i −0.552476 1.33380i −0.915613 0.402060i \(-0.868294\pi\)
0.363137 0.931736i \(-0.381706\pi\)
\(20\) −1.34383 0.208090i −0.300489 0.0465302i
\(21\) −0.0305434 + 0.0737383i −0.00666512 + 0.0160910i
\(22\) 2.71781 1.52821i 0.579438 0.325816i
\(23\) −2.04676 2.04676i −0.426779 0.426779i 0.460750 0.887530i \(-0.347580\pi\)
−0.887530 + 0.460750i \(0.847580\pi\)
\(24\) −0.545259 0.583766i −0.111301 0.119161i
\(25\) 3.20864 + 3.20864i 0.641729 + 0.641729i
\(26\) −3.10557 4.04419i −0.609052 0.793130i
\(27\) 0.639845 + 1.54472i 0.123138 + 0.297282i
\(28\) −0.549137 + 0.133842i −0.103777 + 0.0252938i
\(29\) 1.09830 2.65152i 0.203948 0.492375i −0.788500 0.615034i \(-0.789142\pi\)
0.992449 + 0.122659i \(0.0391422\pi\)
\(30\) −0.0323841 0.269625i −0.00591250 0.0492265i
\(31\) −5.51050 5.51050i −0.989715 0.989715i 0.0102329 0.999948i \(-0.496743\pi\)
−0.999948 + 0.0102329i \(0.996743\pi\)
\(32\) 1.05569 5.55747i 0.186621 0.982432i
\(33\) 0.440293 + 0.440293i 0.0766452 + 0.0766452i
\(34\) 5.28161 6.72352i 0.905788 1.15307i
\(35\) −0.177523 0.0735326i −0.0300069 0.0124293i
\(36\) −3.03444 + 4.99033i −0.505739 + 0.831721i
\(37\) 2.61117 + 1.08158i 0.429274 + 0.177811i 0.586850 0.809696i \(-0.300368\pi\)
−0.157576 + 0.987507i \(0.550368\pi\)
\(38\) 8.56953 + 2.40090i 1.39016 + 0.389478i
\(39\) 0.610371 0.815073i 0.0977377 0.130516i
\(40\) 1.40540 1.31270i 0.222214 0.207556i
\(41\) −3.13573 −0.489719 −0.244860 0.969559i \(-0.578742\pi\)
−0.244860 + 0.969559i \(0.578742\pi\)
\(42\) −0.0553224 0.0983865i −0.00853642 0.0151814i
\(43\) 0.517219 + 1.24868i 0.0788751 + 0.190421i 0.958398 0.285435i \(-0.0921381\pi\)
−0.879523 + 0.475857i \(0.842138\pi\)
\(44\) −0.674765 + 4.35758i −0.101725 + 0.656930i
\(45\) −1.83439 + 0.759830i −0.273455 + 0.113269i
\(46\) 4.06431 0.488157i 0.599250 0.0719748i
\(47\) −7.13337 7.13337i −1.04051 1.04051i −0.999144 0.0413650i \(-0.986829\pi\)
−0.0413650 0.999144i \(-0.513171\pi\)
\(48\) 1.12556 0.0964053i 0.162461 0.0139149i
\(49\) 6.92013 0.988591
\(50\) −6.37149 + 0.765267i −0.901065 + 0.108225i
\(51\) 1.57746 + 0.653405i 0.220889 + 0.0914950i
\(52\) 7.21067 + 0.0793070i 0.999940 + 0.0109979i
\(53\) −0.291326 0.703323i −0.0400167 0.0966089i 0.902608 0.430464i \(-0.141650\pi\)
−0.942624 + 0.333856i \(0.891650\pi\)
\(54\) −2.27689 0.637909i −0.309845 0.0868084i
\(55\) −1.06000 + 1.06000i −0.142930 + 0.142930i
\(56\) 0.330885 0.727630i 0.0442164 0.0972336i
\(57\) 1.77724i 0.235402i
\(58\) 1.98931 + 3.53783i 0.261209 + 0.464540i
\(59\) −1.89329 + 4.57081i −0.246485 + 0.595069i −0.997901 0.0647610i \(-0.979372\pi\)
0.751415 + 0.659830i \(0.229372\pi\)
\(60\) 0.328145 + 0.199533i 0.0423633 + 0.0257596i
\(61\) 5.43896 13.1308i 0.696387 1.68123i −0.0351096 0.999383i \(-0.511178\pi\)
0.731497 0.681845i \(-0.238822\pi\)
\(62\) 10.9424 1.31426i 1.38968 0.166912i
\(63\) −0.583559 + 0.583559i −0.0735216 + 0.0735216i
\(64\) 5.25829 + 6.02913i 0.657286 + 0.753641i
\(65\) 1.96227 + 1.46946i 0.243390 + 0.182264i
\(66\) −0.874302 + 0.105011i −0.107619 + 0.0129259i
\(67\) 7.74615 3.20856i 0.946343 0.391988i 0.144488 0.989507i \(-0.453846\pi\)
0.801855 + 0.597518i \(0.203846\pi\)
\(68\) 2.86324 + 11.7475i 0.347219 + 1.42459i
\(69\) 0.312837 + 0.755256i 0.0376612 + 0.0909221i
\(70\) 0.236864 0.133187i 0.0283106 0.0159189i
\(71\) 2.15857 0.256175 0.128088 0.991763i \(-0.459116\pi\)
0.128088 + 0.991763i \(0.459116\pi\)
\(72\) −2.89890 7.73426i −0.341638 0.911491i
\(73\) 14.1432i 1.65534i 0.561214 + 0.827671i \(0.310335\pi\)
−0.561214 + 0.827671i \(0.689665\pi\)
\(74\) −3.48400 + 1.95904i −0.405007 + 0.227734i
\(75\) −0.490425 1.18399i −0.0566294 0.136715i
\(76\) −10.1565 + 7.43285i −1.16503 + 0.852606i
\(77\) −0.238442 + 0.575649i −0.0271729 + 0.0656013i
\(78\) 0.373226 + 1.39086i 0.0422595 + 0.157484i
\(79\) −11.9453 −1.34395 −0.671975 0.740574i \(-0.734554\pi\)
−0.671975 + 0.740574i \(0.734554\pi\)
\(80\) 0.232094 + 2.70976i 0.0259489 + 0.302961i
\(81\) 8.28851i 0.920946i
\(82\) 2.73942 3.48730i 0.302518 0.385108i
\(83\) −1.32818 3.20651i −0.145787 0.351961i 0.834071 0.551657i \(-0.186004\pi\)
−0.979858 + 0.199697i \(0.936004\pi\)
\(84\) 0.157747 + 0.0244270i 0.0172117 + 0.00266520i
\(85\) −1.57306 + 3.79770i −0.170622 + 0.411918i
\(86\) −1.84052 0.515653i −0.198468 0.0556043i
\(87\) −0.573140 + 0.573140i −0.0614471 + 0.0614471i
\(88\) −4.25665 4.55725i −0.453760 0.485805i
\(89\) −16.0542 −1.70174 −0.850872 0.525373i \(-0.823926\pi\)
−0.850872 + 0.525373i \(0.823926\pi\)
\(90\) 0.757531 2.70385i 0.0798508 0.285011i
\(91\) 0.987257 + 0.252161i 0.103493 + 0.0264336i
\(92\) −3.00775 + 4.94644i −0.313580 + 0.515703i
\(93\) 0.842251 + 2.03337i 0.0873374 + 0.210851i
\(94\) 14.1649 1.70132i 1.46100 0.175478i
\(95\) −4.27868 −0.438983
\(96\) −0.876091 + 1.33597i −0.0894157 + 0.136352i
\(97\) 0.886969 0.886969i 0.0900581 0.0900581i −0.660643 0.750701i \(-0.729716\pi\)
0.750701 + 0.660643i \(0.229716\pi\)
\(98\) −6.04552 + 7.69598i −0.610690 + 0.777412i
\(99\) 2.46387 + 5.94832i 0.247629 + 0.597829i
\(100\) 4.71516 7.75438i 0.471516 0.775438i
\(101\) 6.40724 + 15.4685i 0.637545 + 1.53917i 0.829941 + 0.557852i \(0.188374\pi\)
−0.192396 + 0.981317i \(0.561626\pi\)
\(102\) −2.10475 + 1.18349i −0.208401 + 0.117183i
\(103\) 4.28955 4.28955i 0.422662 0.422662i −0.463457 0.886119i \(-0.653391\pi\)
0.886119 + 0.463457i \(0.153391\pi\)
\(104\) −6.38753 + 7.94981i −0.626349 + 0.779543i
\(105\) 0.0383726 + 0.0383726i 0.00374478 + 0.00374478i
\(106\) 1.03668 + 0.290444i 0.100692 + 0.0282105i
\(107\) −12.8066 + 5.30467i −1.23806 + 0.512822i −0.903108 0.429413i \(-0.858720\pi\)
−0.334953 + 0.942235i \(0.608720\pi\)
\(108\) 2.69855 1.97487i 0.259668 0.190032i
\(109\) 3.84478 1.59256i 0.368263 0.152540i −0.190875 0.981614i \(-0.561132\pi\)
0.559138 + 0.829075i \(0.311132\pi\)
\(110\) −0.252811 2.10486i −0.0241046 0.200691i
\(111\) −0.564418 0.564418i −0.0535722 0.0535722i
\(112\) 0.520142 + 1.00365i 0.0491488 + 0.0948360i
\(113\) 10.5073i 0.988447i 0.869335 + 0.494224i \(0.164548\pi\)
−0.869335 + 0.494224i \(0.835452\pi\)
\(114\) −1.97650 1.55262i −0.185116 0.145417i
\(115\) −1.81826 + 0.753149i −0.169554 + 0.0702315i
\(116\) −5.67237 0.878357i −0.526666 0.0815534i
\(117\) 9.05606 5.37113i 0.837233 0.496562i
\(118\) −3.42926 6.09868i −0.315689 0.561429i
\(119\) 1.70855i 0.156623i
\(120\) −0.508575 + 0.190620i −0.0464263 + 0.0174012i
\(121\) −4.34096 4.34096i −0.394633 0.394633i
\(122\) 9.85143 + 17.5200i 0.891906 + 1.58619i
\(123\) 0.818183 + 0.338903i 0.0737731 + 0.0305578i
\(124\) −8.09777 + 13.3173i −0.727201 + 1.19593i
\(125\) 5.99126 2.48166i 0.535874 0.221966i
\(126\) −0.139180 1.15879i −0.0123991 0.103233i
\(127\) 20.3611 1.80676 0.903379 0.428844i \(-0.141079\pi\)
0.903379 + 0.428844i \(0.141079\pi\)
\(128\) −11.2988 + 0.580697i −0.998682 + 0.0513269i
\(129\) 0.381707i 0.0336075i
\(130\) −3.34847 + 0.898534i −0.293680 + 0.0788067i
\(131\) 14.6141 + 6.05336i 1.27684 + 0.528885i 0.915037 0.403369i \(-0.132161\pi\)
0.361804 + 0.932254i \(0.382161\pi\)
\(132\) 0.647018 1.06406i 0.0563157 0.0926148i
\(133\) −1.64304 + 0.680569i −0.142470 + 0.0590128i
\(134\) −3.19885 + 11.4177i −0.276339 + 0.986335i
\(135\) 1.13683 0.0978424
\(136\) −15.5659 7.07852i −1.33477 0.606978i
\(137\) 12.4752i 1.06583i −0.846169 0.532915i \(-0.821096\pi\)
0.846169 0.532915i \(-0.178904\pi\)
\(138\) −1.11323 0.311890i −0.0947644 0.0265499i
\(139\) 15.3366 6.35263i 1.30083 0.538823i 0.378637 0.925545i \(-0.376393\pi\)
0.922196 + 0.386722i \(0.126393\pi\)
\(140\) −0.0588074 + 0.379774i −0.00497013 + 0.0320967i
\(141\) 1.09030 + 2.63221i 0.0918197 + 0.221672i
\(142\) −1.88576 + 2.40058i −0.158249 + 0.201452i
\(143\) 4.76495 6.36298i 0.398465 0.532100i
\(144\) 11.1339 + 3.53285i 0.927825 + 0.294404i
\(145\) −1.37982 1.37982i −0.114588 0.114588i
\(146\) −15.7289 12.3557i −1.30173 1.02257i
\(147\) −1.80562 0.747912i −0.148925 0.0616867i
\(148\) 0.864991 5.58605i 0.0711018 0.459170i
\(149\) 7.18617 + 2.97661i 0.588714 + 0.243853i 0.657097 0.753806i \(-0.271784\pi\)
−0.0683833 + 0.997659i \(0.521784\pi\)
\(150\) 1.74517 + 0.488941i 0.142493 + 0.0399218i
\(151\) −18.1729 −1.47889 −0.739443 0.673219i \(-0.764911\pi\)
−0.739443 + 0.673219i \(0.764911\pi\)
\(152\) 0.606704 17.7887i 0.0492102 1.44285i
\(153\) 12.4839 + 12.4839i 1.00926 + 1.00926i
\(154\) −0.431882 0.768069i −0.0348020 0.0618927i
\(155\) −4.89531 + 2.02770i −0.393200 + 0.162869i
\(156\) −1.87285 0.800005i −0.149948 0.0640516i
\(157\) 1.67897 4.05340i 0.133997 0.323497i −0.842612 0.538521i \(-0.818983\pi\)
0.976609 + 0.215025i \(0.0689832\pi\)
\(158\) 10.4356 13.2845i 0.830208 1.05686i
\(159\) 0.214999i 0.0170505i
\(160\) −3.21633 2.10917i −0.254273 0.166745i
\(161\) −0.578428 + 0.578428i −0.0455865 + 0.0455865i
\(162\) −9.21778 7.24095i −0.724217 0.568903i
\(163\) 0.396215 + 0.956548i 0.0310340 + 0.0749226i 0.938637 0.344907i \(-0.112090\pi\)
−0.907603 + 0.419830i \(0.862090\pi\)
\(164\) 1.48508 + 6.09310i 0.115965 + 0.475791i
\(165\) 0.391139 0.162015i 0.0304501 0.0126128i
\(166\) 4.72633 + 1.32416i 0.366834 + 0.102775i
\(167\) 11.8366i 0.915944i −0.888967 0.457972i \(-0.848576\pi\)
0.888967 0.457972i \(-0.151424\pi\)
\(168\) −0.164976 + 0.154094i −0.0127282 + 0.0118886i
\(169\) −11.4077 6.23410i −0.877517 0.479546i
\(170\) −2.84923 5.06714i −0.218526 0.388632i
\(171\) −7.03249 + 16.9779i −0.537788 + 1.29833i
\(172\) 2.18137 1.59639i 0.166328 0.121723i
\(173\) 0.838952 2.02541i 0.0637844 0.153989i −0.888773 0.458347i \(-0.848442\pi\)
0.952558 + 0.304358i \(0.0984418\pi\)
\(174\) −0.136695 1.13810i −0.0103628 0.0862792i
\(175\) 0.906782 0.906782i 0.0685463 0.0685463i
\(176\) 8.78685 0.752602i 0.662334 0.0567295i
\(177\) 0.988004 0.988004i 0.0742629 0.0742629i
\(178\) 14.0252 17.8541i 1.05123 1.33822i
\(179\) 6.48813 + 2.68747i 0.484945 + 0.200871i 0.611741 0.791058i \(-0.290469\pi\)
−0.126796 + 0.991929i \(0.540469\pi\)
\(180\) 2.34521 + 3.20458i 0.174801 + 0.238856i
\(181\) 2.55985 1.06033i 0.190272 0.0788134i −0.285513 0.958375i \(-0.592164\pi\)
0.475785 + 0.879561i \(0.342164\pi\)
\(182\) −1.14291 + 0.877653i −0.0847183 + 0.0650559i
\(183\) −2.83829 + 2.83829i −0.209813 + 0.209813i
\(184\) −2.87340 7.66625i −0.211830 0.565163i
\(185\) 1.35883 1.35883i 0.0999028 0.0999028i
\(186\) −2.99715 0.839703i −0.219762 0.0615700i
\(187\) 12.3147 + 5.10090i 0.900538 + 0.373015i
\(188\) −10.4826 + 17.2393i −0.764523 + 1.25731i
\(189\) 0.436548 0.180824i 0.0317542 0.0131530i
\(190\) 3.73791 4.75838i 0.271176 0.345209i
\(191\) 20.9197i 1.51370i −0.653589 0.756850i \(-0.726737\pi\)
0.653589 0.756850i \(-0.273263\pi\)
\(192\) −0.720392 2.14144i −0.0519898 0.154545i
\(193\) 5.58085 + 5.58085i 0.401718 + 0.401718i 0.878838 0.477120i \(-0.158319\pi\)
−0.477120 + 0.878838i \(0.658319\pi\)
\(194\) 0.211544 + 1.76128i 0.0151880 + 0.126453i
\(195\) −0.353185 0.595492i −0.0252921 0.0426441i
\(196\) −3.27737 13.4466i −0.234098 0.960473i
\(197\) 3.05333 7.37140i 0.217541 0.525191i −0.777004 0.629495i \(-0.783262\pi\)
0.994545 + 0.104305i \(0.0332617\pi\)
\(198\) −8.76769 2.45642i −0.623093 0.174570i
\(199\) 3.56028 3.56028i 0.252381 0.252381i −0.569565 0.821946i \(-0.692888\pi\)
0.821946 + 0.569565i \(0.192888\pi\)
\(200\) 4.50454 + 12.0181i 0.318519 + 0.849810i
\(201\) −2.36792 −0.167020
\(202\) −22.8002 6.38786i −1.60421 0.449448i
\(203\) −0.749336 0.310385i −0.0525931 0.0217848i
\(204\) 0.522558 3.37464i 0.0365864 0.236272i
\(205\) −0.815901 + 1.96976i −0.0569850 + 0.137574i
\(206\) 1.02307 + 8.51788i 0.0712804 + 0.593469i
\(207\) 8.45280i 0.587510i
\(208\) −3.26087 14.0487i −0.226100 0.974104i
\(209\) 13.8743i 0.959706i
\(210\) −0.0761976 + 0.00915194i −0.00525813 + 0.000631544i
\(211\) 1.62941 3.93374i 0.112173 0.270810i −0.857817 0.513956i \(-0.828179\pi\)
0.969990 + 0.243146i \(0.0781795\pi\)
\(212\) −1.22867 + 0.899174i −0.0843852 + 0.0617555i
\(213\) −0.563220 0.233293i −0.0385912 0.0159850i
\(214\) 5.28862 18.8767i 0.361522 1.29038i
\(215\) 0.918952 0.0626720
\(216\) −0.161199 + 4.72637i −0.0109682 + 0.321589i
\(217\) −1.55730 + 1.55730i −0.105716 + 0.105716i
\(218\) −1.58774 + 5.66712i −0.107535 + 0.383826i
\(219\) 1.52857 3.69029i 0.103291 0.249367i
\(220\) 2.56171 + 1.55768i 0.172710 + 0.105019i
\(221\) 5.39439 21.1201i 0.362866 1.42069i
\(222\) 1.12078 0.134615i 0.0752219 0.00903475i
\(223\) −13.4570 13.4570i −0.901145 0.901145i 0.0943903 0.995535i \(-0.469910\pi\)
−0.995535 + 0.0943903i \(0.969910\pi\)
\(224\) −1.57058 0.298343i −0.104939 0.0199339i
\(225\) 13.2512i 0.883413i
\(226\) −11.6854 9.17935i −0.777299 0.610601i
\(227\) 11.7519 4.86781i 0.780003 0.323088i 0.0430860 0.999071i \(-0.486281\pi\)
0.736917 + 0.675984i \(0.236281\pi\)
\(228\) 3.45339 0.841702i 0.228707 0.0557431i
\(229\) 2.88840 + 1.19642i 0.190871 + 0.0790614i 0.476072 0.879406i \(-0.342060\pi\)
−0.285201 + 0.958468i \(0.592060\pi\)
\(230\) 0.750870 2.68008i 0.0495109 0.176719i
\(231\) 0.124430 0.124430i 0.00818686 0.00818686i
\(232\) 5.93229 5.54098i 0.389474 0.363783i
\(233\) 3.04877 3.04877i 0.199732 0.199732i −0.600153 0.799885i \(-0.704894\pi\)
0.799885 + 0.600153i \(0.204894\pi\)
\(234\) −1.93817 + 14.7637i −0.126702 + 0.965132i
\(235\) −6.33700 + 2.62487i −0.413380 + 0.171228i
\(236\) 9.77828 + 1.51415i 0.636512 + 0.0985629i
\(237\) 3.11679 + 1.29102i 0.202457 + 0.0838606i
\(238\) −1.90011 1.49261i −0.123166 0.0967518i
\(239\) −13.0845 + 13.0845i −0.846366 + 0.846366i −0.989678 0.143311i \(-0.954225\pi\)
0.143311 + 0.989678i \(0.454225\pi\)
\(240\) 0.232306 0.732122i 0.0149953 0.0472583i
\(241\) −2.74904 + 2.74904i −0.177081 + 0.177081i −0.790082 0.613001i \(-0.789962\pi\)
0.613001 + 0.790082i \(0.289962\pi\)
\(242\) 8.61997 1.03533i 0.554113 0.0665534i
\(243\) 2.81534 6.79683i 0.180604 0.436017i
\(244\) −28.0906 4.34979i −1.79832 0.278466i
\(245\) 1.80058 4.34699i 0.115035 0.277719i
\(246\) −1.09167 + 0.613844i −0.0696026 + 0.0391373i
\(247\) 22.4590 3.22523i 1.42903 0.205216i
\(248\) −7.73606 20.6398i −0.491241 1.31063i
\(249\) 0.980198i 0.0621175i
\(250\) −2.47415 + 8.83098i −0.156479 + 0.558520i
\(251\) −22.9971 + 9.52570i −1.45156 + 0.601257i −0.962571 0.271031i \(-0.912635\pi\)
−0.488992 + 0.872288i \(0.662635\pi\)
\(252\) 1.41030 + 0.857550i 0.0888404 + 0.0540206i
\(253\) 2.44221 + 5.89601i 0.153540 + 0.370679i
\(254\) −17.7877 + 22.6439i −1.11610 + 1.42081i
\(255\) 0.820893 0.820893i 0.0514063 0.0514063i
\(256\) 9.22498 13.0729i 0.576561 0.817054i
\(257\) 14.4688i 0.902536i −0.892388 0.451268i \(-0.850972\pi\)
0.892388 0.451268i \(-0.149028\pi\)
\(258\) 0.424503 + 0.333465i 0.0264284 + 0.0207606i
\(259\) 0.305662 0.737933i 0.0189929 0.0458529i
\(260\) 1.92599 4.50886i 0.119445 0.279627i
\(261\) −7.74307 + 3.20729i −0.479284 + 0.198526i
\(262\) −19.4991 + 10.9643i −1.20466 + 0.677375i
\(263\) 12.5918 + 12.5918i 0.776444 + 0.776444i 0.979224 0.202780i \(-0.0649976\pi\)
−0.202780 + 0.979224i \(0.564998\pi\)
\(264\) 0.618117 + 1.64914i 0.0380425 + 0.101497i
\(265\) −0.517605 −0.0317962
\(266\) 0.678510 2.42180i 0.0416021 0.148490i
\(267\) 4.18891 + 1.73510i 0.256357 + 0.106187i
\(268\) −9.90319 13.5321i −0.604934 0.826605i
\(269\) −13.3942 5.54805i −0.816658 0.338271i −0.0650509 0.997882i \(-0.520721\pi\)
−0.751607 + 0.659611i \(0.770721\pi\)
\(270\) −0.993146 + 1.26428i −0.0604410 + 0.0769417i
\(271\) 0.972234 + 0.972234i 0.0590590 + 0.0590590i 0.736019 0.676960i \(-0.236703\pi\)
−0.676960 + 0.736019i \(0.736703\pi\)
\(272\) 21.4707 11.1272i 1.30186 0.674688i
\(273\) −0.230345 0.172495i −0.0139411 0.0104399i
\(274\) 13.8739 + 10.8985i 0.838152 + 0.658404i
\(275\) −3.82857 9.24299i −0.230872 0.557373i
\(276\) 1.31939 0.965568i 0.0794180 0.0581204i
\(277\) −0.700755 + 0.290262i −0.0421043 + 0.0174402i −0.403636 0.914920i \(-0.632254\pi\)
0.361532 + 0.932360i \(0.382254\pi\)
\(278\) −6.33340 + 22.6058i −0.379852 + 1.35581i
\(279\) 22.7575i 1.36245i
\(280\) −0.370977 0.397176i −0.0221701 0.0237358i
\(281\) −21.9696 −1.31060 −0.655299 0.755370i \(-0.727457\pi\)
−0.655299 + 0.755370i \(0.727457\pi\)
\(282\) −3.87983 1.08700i −0.231040 0.0647299i
\(283\) 20.0043 8.28604i 1.18913 0.492554i 0.301659 0.953416i \(-0.402460\pi\)
0.887472 + 0.460862i \(0.152460\pi\)
\(284\) −1.02230 4.19436i −0.0606623 0.248889i
\(285\) 1.11640 + 0.462429i 0.0661300 + 0.0273919i
\(286\) 2.91364 + 10.8580i 0.172287 + 0.642045i
\(287\) 0.886178i 0.0523094i
\(288\) −13.6557 + 9.29584i −0.804667 + 0.547762i
\(289\) 19.5505 1.15003
\(290\) 2.73995 0.329090i 0.160896 0.0193248i
\(291\) −0.327292 + 0.135569i −0.0191862 + 0.00794718i
\(292\) 27.4820 6.69824i 1.60826 0.391985i
\(293\) −18.3061 7.58264i −1.06945 0.442982i −0.222656 0.974897i \(-0.571473\pi\)
−0.846798 + 0.531915i \(0.821473\pi\)
\(294\) 2.40918 1.35467i 0.140506 0.0790060i
\(295\) 2.37860 + 2.37860i 0.138487 + 0.138487i
\(296\) 5.45666 + 5.84201i 0.317162 + 0.339560i
\(297\) 3.68634i 0.213903i
\(298\) −9.58826 + 5.39144i −0.555433 + 0.312318i
\(299\) 8.97643 5.32390i 0.519120 0.307889i
\(300\) −2.06837 + 1.51369i −0.119417 + 0.0873929i
\(301\) 0.352884 0.146169i 0.0203399 0.00842505i
\(302\) 15.8760 20.2103i 0.913564 1.16297i
\(303\) 4.72855i 0.271648i
\(304\) 19.2530 + 16.2151i 1.10424 + 0.930002i
\(305\) −6.83313 6.83313i −0.391264 0.391264i
\(306\) −24.7896 + 2.97743i −1.41713 + 0.170208i
\(307\) −6.56460 + 2.71914i −0.374661 + 0.155190i −0.562065 0.827093i \(-0.689993\pi\)
0.187403 + 0.982283i \(0.439993\pi\)
\(308\) 1.23148 + 0.190693i 0.0701700 + 0.0108657i
\(309\) −1.58284 + 0.655636i −0.0900449 + 0.0372978i
\(310\) 2.02157 7.21557i 0.114817 0.409817i
\(311\) 7.46767 + 7.46767i 0.423452 + 0.423452i 0.886391 0.462938i \(-0.153205\pi\)
−0.462938 + 0.886391i \(0.653205\pi\)
\(312\) 2.52585 1.38393i 0.142998 0.0783498i
\(313\) −17.2657 + 17.2657i −0.975915 + 0.975915i −0.999717 0.0238021i \(-0.992423\pi\)
0.0238021 + 0.999717i \(0.492423\pi\)
\(314\) 3.04107 + 5.40832i 0.171618 + 0.305209i
\(315\) 0.214733 + 0.518411i 0.0120988 + 0.0292091i
\(316\) 5.65728 + 23.2111i 0.318247 + 1.30573i
\(317\) −11.6879 28.2171i −0.656458 1.58483i −0.803237 0.595660i \(-0.796891\pi\)
0.146779 0.989169i \(-0.453109\pi\)
\(318\) −0.239103 0.187826i −0.0134082 0.0105327i
\(319\) −4.47430 + 4.47430i −0.250513 + 0.250513i
\(320\) 5.15547 1.73433i 0.288199 0.0969519i
\(321\) 3.91485 0.218505
\(322\) −0.137956 1.14860i −0.00768799 0.0640090i
\(323\) 14.5592 + 35.1490i 0.810095 + 1.95574i
\(324\) 16.1055 3.92544i 0.894752 0.218080i
\(325\) −14.0721 + 8.34611i −0.780577 + 0.462959i
\(326\) −1.40993 0.395016i −0.0780888 0.0218779i
\(327\) −1.17531 −0.0649947
\(328\) −8.07361 3.67143i −0.445791 0.202721i
\(329\) −2.01593 + 2.01593i −0.111142 + 0.111142i
\(330\) −0.161525 + 0.576530i −0.00889164 + 0.0317369i
\(331\) −13.0563 + 31.5207i −0.717639 + 1.73253i −0.0376720 + 0.999290i \(0.511994\pi\)
−0.679967 + 0.733243i \(0.738006\pi\)
\(332\) −5.60160 + 4.09942i −0.307428 + 0.224985i
\(333\) −3.15848 7.62524i −0.173084 0.417861i
\(334\) 13.1637 + 10.3406i 0.720284 + 0.565813i
\(335\) 5.70072i 0.311463i
\(336\) −0.0272447 0.318090i −0.00148632 0.0173533i
\(337\) 1.80056 0.0980829 0.0490414 0.998797i \(-0.484383\pi\)
0.0490414 + 0.998797i \(0.484383\pi\)
\(338\) 16.8990 7.24050i 0.919183 0.393831i
\(339\) 1.13561 2.74160i 0.0616778 0.148903i
\(340\) 8.12438 + 1.25805i 0.440606 + 0.0682272i
\(341\) 6.57516 + 15.8738i 0.356065 + 0.859616i
\(342\) −12.7377 22.6531i −0.688778 1.22494i
\(343\) 3.93392i 0.212411i
\(344\) −0.130305 + 3.82056i −0.00702556 + 0.205991i
\(345\) 0.555824 0.0299246
\(346\) 1.51957 + 2.70244i 0.0816926 + 0.145284i
\(347\) 4.08680 + 9.86642i 0.219391 + 0.529657i 0.994805 0.101796i \(-0.0324589\pi\)
−0.775414 + 0.631453i \(0.782459\pi\)
\(348\) 1.38512 + 0.842239i 0.0742501 + 0.0451488i
\(349\) 5.12264 2.12187i 0.274209 0.113581i −0.241342 0.970440i \(-0.577587\pi\)
0.515550 + 0.856859i \(0.327587\pi\)
\(350\) 0.216269 + 1.80062i 0.0115601 + 0.0962474i
\(351\) −5.96725 + 0.856929i −0.318508 + 0.0457395i
\(352\) −6.83933 + 10.4295i −0.364538 + 0.555893i
\(353\) 15.9839 15.9839i 0.850739 0.850739i −0.139485 0.990224i \(-0.544545\pi\)
0.990224 + 0.139485i \(0.0445449\pi\)
\(354\) 0.235641 + 1.96191i 0.0125242 + 0.104274i
\(355\) 0.561649 1.35594i 0.0298092 0.0719658i
\(356\) 7.60328 + 31.1952i 0.402973 + 1.65334i
\(357\) 0.184656 0.445800i 0.00977305 0.0235942i
\(358\) −8.65689 + 4.86773i −0.457531 + 0.257268i
\(359\) 3.29165i 0.173727i 0.996220 + 0.0868633i \(0.0276843\pi\)
−0.996220 + 0.0868633i \(0.972316\pi\)
\(360\) −5.61267 0.191427i −0.295814 0.0100891i
\(361\) −14.5668 + 14.5668i −0.766675 + 0.766675i
\(362\) −1.05712 + 3.77317i −0.0555608 + 0.198313i
\(363\) 0.663494 + 1.60182i 0.0348244 + 0.0840735i
\(364\) 0.0224127 2.03778i 0.00117474 0.106809i
\(365\) 8.88430 + 3.68000i 0.465025 + 0.192620i
\(366\) −0.676938 5.63608i −0.0353841 0.294603i
\(367\) −18.4748 −0.964376 −0.482188 0.876068i \(-0.660158\pi\)
−0.482188 + 0.876068i \(0.660158\pi\)
\(368\) 11.0360 + 3.50178i 0.575291 + 0.182543i
\(369\) 6.47504 + 6.47504i 0.337077 + 0.337077i
\(370\) 0.324082 + 2.69826i 0.0168482 + 0.140276i
\(371\) −0.198764 + 0.0823305i −0.0103193 + 0.00427439i
\(372\) 3.55219 2.59960i 0.184173 0.134783i
\(373\) 5.29041 + 12.7722i 0.273927 + 0.661318i 0.999644 0.0266750i \(-0.00849192\pi\)
−0.725717 + 0.687993i \(0.758492\pi\)
\(374\) −16.4310 + 9.23911i −0.849629 + 0.477743i
\(375\) −1.83147 −0.0945765
\(376\) −10.0144 26.7184i −0.516452 1.37790i
\(377\) 8.28285 + 6.20266i 0.426589 + 0.319453i
\(378\) −0.180277 + 0.643462i −0.00927245 + 0.0330961i
\(379\) −18.8555 7.81019i −0.968540 0.401183i −0.158372 0.987380i \(-0.550624\pi\)
−0.810169 + 0.586197i \(0.800624\pi\)
\(380\) 2.02638 + 8.31397i 0.103951 + 0.426498i
\(381\) −5.31267 2.20058i −0.272177 0.112739i
\(382\) 23.2652 + 18.2758i 1.19035 + 0.935070i
\(383\) −15.1077 15.1077i −0.771968 0.771968i 0.206482 0.978450i \(-0.433798\pi\)
−0.978450 + 0.206482i \(0.933798\pi\)
\(384\) 3.01087 + 1.06963i 0.153648 + 0.0545843i
\(385\) 0.299561 + 0.299561i 0.0152671 + 0.0152671i
\(386\) −11.0820 + 1.33104i −0.564061 + 0.0677482i
\(387\) 1.51040 3.64643i 0.0767780 0.185359i
\(388\) −2.14355 1.30342i −0.108822 0.0661710i
\(389\) −2.23421 5.39386i −0.113279 0.273479i 0.857065 0.515208i \(-0.172285\pi\)
−0.970344 + 0.241729i \(0.922285\pi\)
\(390\) 0.970803 + 0.127447i 0.0491585 + 0.00645353i
\(391\) 12.3741 + 12.3741i 0.625786 + 0.625786i
\(392\) 17.8174 + 8.10234i 0.899912 + 0.409230i
\(393\) −3.15892 3.15892i −0.159346 0.159346i
\(394\) 5.53041 + 9.83541i 0.278618 + 0.495501i
\(395\) −3.10810 + 7.50361i −0.156385 + 0.377548i
\(396\) 10.3914 7.60472i 0.522187 0.382152i
\(397\) −11.5934 27.9889i −0.581854 1.40472i −0.891130 0.453748i \(-0.850087\pi\)
0.309276 0.950972i \(-0.399913\pi\)
\(398\) 0.849132 + 7.06974i 0.0425632 + 0.354374i
\(399\) 0.502260 0.0251445
\(400\) −17.3008 5.48963i −0.865038 0.274481i
\(401\) 14.3486 14.3486i 0.716533 0.716533i −0.251360 0.967894i \(-0.580878\pi\)
0.967894 + 0.251360i \(0.0808779\pi\)
\(402\) 2.06865 2.63340i 0.103175 0.131342i
\(403\) 24.1672 14.3335i 1.20386 0.714005i
\(404\) 27.0226 19.7759i 1.34442 0.983887i
\(405\) 5.20655 + 2.15663i 0.258716 + 0.107164i
\(406\) 0.999814 0.562191i 0.0496199 0.0279011i
\(407\) −4.40621 4.40621i −0.218408 0.218408i
\(408\) 3.29648 + 3.52928i 0.163200 + 0.174725i
\(409\) 0.741498i 0.0366647i 0.999832 + 0.0183323i \(0.00583570\pi\)
−0.999832 + 0.0183323i \(0.994164\pi\)
\(410\) −1.47782 2.62818i −0.0729842 0.129797i
\(411\) −1.34829 + 3.25507i −0.0665064 + 0.160561i
\(412\) −10.3666 6.30357i −0.510727 0.310555i
\(413\) 1.29174 + 0.535056i 0.0635623 + 0.0263284i
\(414\) −9.40049 7.38448i −0.462009 0.362927i
\(415\) −2.35981 −0.115838
\(416\) 18.4725 + 8.64669i 0.905691 + 0.423939i
\(417\) −4.68824 −0.229584
\(418\) −15.4298 12.1208i −0.754698 0.592847i
\(419\) −22.7454 9.42147i −1.11119 0.460269i −0.249841 0.968287i \(-0.580378\pi\)
−0.861346 + 0.508018i \(0.830378\pi\)
\(420\) 0.0563892 0.0927357i 0.00275151 0.00452504i
\(421\) 3.11280 7.51495i 0.151708 0.366256i −0.829694 0.558219i \(-0.811485\pi\)
0.981402 + 0.191962i \(0.0614851\pi\)
\(422\) 2.95130 + 5.24865i 0.143667 + 0.255500i
\(423\) 29.4597i 1.43238i
\(424\) 0.0733948 2.15195i 0.00356437 0.104508i
\(425\) −19.3985 19.3985i −0.940966 0.940966i
\(426\) 0.751485 0.422557i 0.0364096 0.0204730i
\(427\) −3.71085 1.53708i −0.179581 0.0743847i
\(428\) 16.3728 + 22.3724i 0.791409 + 1.08141i
\(429\) −1.93098 + 1.14526i −0.0932286 + 0.0552937i
\(430\) −0.802809 + 1.02198i −0.0387149 + 0.0492843i
\(431\) −7.92616 + 7.92616i −0.381790 + 0.381790i −0.871747 0.489957i \(-0.837012\pi\)
0.489957 + 0.871747i \(0.337012\pi\)
\(432\) −5.11544 4.30829i −0.246117 0.207283i
\(433\) −21.1579 −1.01678 −0.508391 0.861126i \(-0.669759\pi\)
−0.508391 + 0.861126i \(0.669759\pi\)
\(434\) −0.371419 3.09238i −0.0178287 0.148439i
\(435\) 0.210899 + 0.509155i 0.0101118 + 0.0244121i
\(436\) −4.91542 6.71662i −0.235406 0.321668i
\(437\) −6.97065 + 16.8286i −0.333451 + 0.805022i
\(438\) 2.76865 + 4.92383i 0.132291 + 0.235270i
\(439\) −9.09265 9.09265i −0.433968 0.433968i 0.456008 0.889976i \(-0.349279\pi\)
−0.889976 + 0.456008i \(0.849279\pi\)
\(440\) −3.97027 + 1.48810i −0.189275 + 0.0709426i
\(441\) −14.2895 14.2895i −0.680454 0.680454i
\(442\) 18.7753 + 24.4499i 0.893052 + 1.16297i
\(443\) 8.51732 + 20.5626i 0.404670 + 0.976961i 0.986517 + 0.163662i \(0.0523305\pi\)
−0.581846 + 0.813299i \(0.697669\pi\)
\(444\) −0.829422 + 1.36404i −0.0393626 + 0.0647344i
\(445\) −4.17722 + 10.0847i −0.198019 + 0.478061i
\(446\) 26.7219 3.20951i 1.26532 0.151975i
\(447\) −1.55333 1.55333i −0.0734699 0.0734699i
\(448\) 1.70387 1.48603i 0.0805002 0.0702081i
\(449\) 4.86192 + 4.86192i 0.229448 + 0.229448i 0.812462 0.583014i \(-0.198127\pi\)
−0.583014 + 0.812462i \(0.698127\pi\)
\(450\) 14.7368 + 11.5764i 0.694702 + 0.545717i
\(451\) 6.38727 + 2.64569i 0.300765 + 0.124581i
\(452\) 20.4170 4.97627i 0.960334 0.234064i
\(453\) 4.74171 + 1.96408i 0.222785 + 0.0922805i
\(454\) −4.85308 + 17.3221i −0.227766 + 0.812965i
\(455\) 0.415277 0.554550i 0.0194685 0.0259977i
\(456\) −2.08086 + 4.57589i −0.0974452 + 0.214286i
\(457\) 8.65628 0.404924 0.202462 0.979290i \(-0.435106\pi\)
0.202462 + 0.979290i \(0.435106\pi\)
\(458\) −3.85390 + 2.16703i −0.180081 + 0.101259i
\(459\) −3.86831 9.33894i −0.180557 0.435904i
\(460\) 2.32458 + 3.17640i 0.108384 + 0.148101i
\(461\) 19.8707 8.23073i 0.925473 0.383343i 0.131513 0.991314i \(-0.458016\pi\)
0.793959 + 0.607971i \(0.208016\pi\)
\(462\) 0.0296767 + 0.247083i 0.00138068 + 0.0114954i
\(463\) 14.8083 + 14.8083i 0.688201 + 0.688201i 0.961834 0.273633i \(-0.0882254\pi\)
−0.273633 + 0.961834i \(0.588225\pi\)
\(464\) 0.979680 + 11.4381i 0.0454805 + 0.530999i
\(465\) 1.49644 0.0693960
\(466\) 0.727138 + 6.05404i 0.0336840 + 0.280448i
\(467\) −7.72769 3.20091i −0.357595 0.148121i 0.196651 0.980474i \(-0.436993\pi\)
−0.554246 + 0.832353i \(0.686993\pi\)
\(468\) −14.7257 15.0532i −0.680695 0.695835i
\(469\) −0.906760 2.18911i −0.0418703 0.101084i
\(470\) 2.61693 9.34060i 0.120710 0.430850i
\(471\) −0.876164 + 0.876164i −0.0403715 + 0.0403715i
\(472\) −10.2263 + 9.55179i −0.470706 + 0.439657i
\(473\) 2.97985i 0.137014i
\(474\) −4.15863 + 2.33838i −0.191012 + 0.107405i
\(475\) 10.9277 26.3817i 0.501395 1.21048i
\(476\) 3.31992 0.809170i 0.152168 0.0370883i
\(477\) −0.850742 + 2.05387i −0.0389528 + 0.0940403i
\(478\) −3.12068 25.9823i −0.142736 1.18840i
\(479\) 20.4948 20.4948i 0.936433 0.936433i −0.0616638 0.998097i \(-0.519641\pi\)
0.998097 + 0.0616638i \(0.0196407\pi\)
\(480\) 0.611258 + 0.897943i 0.0279000 + 0.0409853i
\(481\) −6.10827 + 8.15681i −0.278513 + 0.371918i
\(482\) −0.655650 5.45884i −0.0298640 0.248643i
\(483\) 0.213440 0.0884097i 0.00971185 0.00402278i
\(484\) −6.37912 + 10.4909i −0.289960 + 0.476858i
\(485\) −0.326379 0.787948i −0.0148201 0.0357789i
\(486\) 5.09934 + 9.06878i 0.231311 + 0.411368i
\(487\) 21.9551 0.994879 0.497440 0.867499i \(-0.334274\pi\)
0.497440 + 0.867499i \(0.334274\pi\)
\(488\) 29.3778 27.4399i 1.32987 1.24215i
\(489\) 0.292407i 0.0132231i
\(490\) 3.26134 + 5.80004i 0.147332 + 0.262019i
\(491\) 2.17847 + 5.25930i 0.0983131 + 0.237349i 0.965382 0.260839i \(-0.0839991\pi\)
−0.867069 + 0.498188i \(0.833999\pi\)
\(492\) 0.271036 1.75033i 0.0122192 0.0789110i
\(493\) −6.63997 + 16.0303i −0.299049 + 0.721968i
\(494\) −16.0336 + 27.7946i −0.721387 + 1.25054i
\(495\) 4.37762 0.196759
\(496\) 29.7122 + 9.42784i 1.33412 + 0.423322i
\(497\) 0.610026i 0.0273634i
\(498\) −1.09009 0.856314i −0.0488482 0.0383724i
\(499\) −7.77766 18.7769i −0.348176 0.840571i −0.996835 0.0794923i \(-0.974670\pi\)
0.648660 0.761079i \(-0.275330\pi\)
\(500\) −7.65961 10.4664i −0.342548 0.468072i
\(501\) −1.27927 + 3.08844i −0.0571537 + 0.137981i
\(502\) 9.49688 33.8972i 0.423866 1.51291i
\(503\) −0.317643 + 0.317643i −0.0141630 + 0.0141630i −0.714153 0.699990i \(-0.753188\pi\)
0.699990 + 0.714153i \(0.253188\pi\)
\(504\) −2.18575 + 0.819246i −0.0973610 + 0.0364921i
\(505\) 11.3839 0.506576
\(506\) −8.69059 2.43482i −0.386344 0.108241i
\(507\) 2.30276 + 2.85954i 0.102269 + 0.126996i
\(508\) −9.64302 39.5640i −0.427840 1.75537i
\(509\) −15.3890 37.1523i −0.682105 1.64675i −0.760110 0.649794i \(-0.774855\pi\)
0.0780053 0.996953i \(-0.475145\pi\)
\(510\) 0.195784 + 1.63007i 0.00866948 + 0.0721807i
\(511\) 3.99697 0.176816
\(512\) 6.47947 + 21.6799i 0.286355 + 0.958124i
\(513\) 7.43997 7.43997i 0.328483 0.328483i
\(514\) 16.0909 + 12.6401i 0.709740 + 0.557531i
\(515\) −1.57843 3.81067i −0.0695539 0.167918i
\(516\) −0.741702 + 0.180777i −0.0326516 + 0.00795824i
\(517\) 8.51158 + 20.5488i 0.374339 + 0.903734i
\(518\) 0.553636 + 0.984599i 0.0243254 + 0.0432608i
\(519\) −0.437803 + 0.437803i −0.0192174 + 0.0192174i
\(520\) 3.33179 + 6.08092i 0.146109 + 0.266666i
\(521\) −19.4624 19.4624i −0.852662 0.852662i 0.137798 0.990460i \(-0.455997\pi\)
−0.990460 + 0.137798i \(0.955997\pi\)
\(522\) 3.19758 11.4131i 0.139954 0.499538i
\(523\) −8.85204 + 3.66663i −0.387073 + 0.160331i −0.567729 0.823216i \(-0.692178\pi\)
0.180656 + 0.983546i \(0.442178\pi\)
\(524\) 4.84115 31.2638i 0.211487 1.36577i
\(525\) −0.334603 + 0.138597i −0.0146033 + 0.00604887i
\(526\) −25.0039 + 3.00317i −1.09022 + 0.130944i
\(527\) 33.3148 + 33.3148i 1.45122 + 1.45122i
\(528\) −2.37403 0.753291i −0.103316 0.0327828i
\(529\) 14.6215i 0.635719i
\(530\) 0.452186 0.575636i 0.0196417 0.0250040i
\(531\) 13.3479 5.52886i 0.579247 0.239932i
\(532\) 2.10057 + 2.87030i 0.0910712 + 0.124443i
\(533\) 2.79792 10.9544i 0.121191 0.474487i
\(534\) −5.58912 + 3.14274i −0.241865 + 0.136000i
\(535\) 9.42491i 0.407475i
\(536\) 23.7008 + 0.808345i 1.02372 + 0.0349152i
\(537\) −1.40244 1.40244i −0.0605199 0.0605199i
\(538\) 17.8714 10.0490i 0.770491 0.433244i
\(539\) −14.0958 5.83868i −0.607150 0.251490i
\(540\) −0.538401 2.20899i −0.0231691 0.0950596i
\(541\) −33.1814 + 13.7442i −1.42658 + 0.590908i −0.956504 0.291718i \(-0.905773\pi\)
−0.470075 + 0.882627i \(0.655773\pi\)
\(542\) −1.93059 + 0.231879i −0.0829260 + 0.00996008i
\(543\) −0.782521 −0.0335812
\(544\) −6.38236 + 33.5988i −0.273642 + 1.44054i
\(545\) 2.82953i 0.121204i
\(546\) 0.393066 0.105476i 0.0168217 0.00451396i
\(547\) −18.2730 7.56894i −0.781298 0.323624i −0.0438589 0.999038i \(-0.513965\pi\)
−0.737439 + 0.675413i \(0.763965\pi\)
\(548\) −24.2408 + 5.90826i −1.03552 + 0.252389i
\(549\) −38.3451 + 15.8831i −1.63653 + 0.677873i
\(550\) 13.6240 + 3.81699i 0.580927 + 0.162757i
\(551\) −18.0605 −0.769404
\(552\) −0.0788142 + 2.31085i −0.00335455 + 0.0983562i
\(553\) 3.37581i 0.143554i
\(554\) 0.289384 1.03290i 0.0122947 0.0438836i
\(555\) −0.501407 + 0.207689i −0.0212835 + 0.00881593i
\(556\) −19.6073 26.7922i −0.831535 1.13624i
\(557\) −6.19695 14.9608i −0.262573 0.633908i 0.736523 0.676413i \(-0.236466\pi\)
−0.999096 + 0.0425045i \(0.986466\pi\)
\(558\) −25.3089 19.8812i −1.07141 0.841640i
\(559\) −4.82362 + 0.692698i −0.204018 + 0.0292980i
\(560\) 0.765796 0.0655911i 0.0323608 0.00277173i
\(561\) −2.66188 2.66188i −0.112385 0.112385i
\(562\) 19.1930 24.4328i 0.809606 1.03063i
\(563\) −24.0961 9.98094i −1.01553 0.420646i −0.188061 0.982157i \(-0.560220\pi\)
−0.827469 + 0.561511i \(0.810220\pi\)
\(564\) 4.59834 3.36519i 0.193625 0.141700i
\(565\) 6.60034 + 2.73395i 0.277679 + 0.115018i
\(566\) −8.26097 + 29.4859i −0.347234 + 1.23938i
\(567\) 2.34238 0.0983709
\(568\) 5.55770 + 2.52733i 0.233196 + 0.106044i
\(569\) 4.33433 + 4.33433i 0.181704 + 0.181704i 0.792098 0.610394i \(-0.208989\pi\)
−0.610394 + 0.792098i \(0.708989\pi\)
\(570\) −1.48958 + 0.837584i −0.0623916 + 0.0350825i
\(571\) 17.0643 7.06828i 0.714120 0.295798i 0.00411197 0.999992i \(-0.498691\pi\)
0.710008 + 0.704193i \(0.248691\pi\)
\(572\) −14.6207 6.24535i −0.611322 0.261131i
\(573\) −2.26096 + 5.45843i −0.0944528 + 0.228029i
\(574\) −0.985532 0.774177i −0.0411353 0.0323135i
\(575\) 13.1347i 0.547753i
\(576\) 1.59172 23.3076i 0.0663217 0.971151i
\(577\) 3.83875 3.83875i 0.159809 0.159809i −0.622673 0.782482i \(-0.713953\pi\)
0.782482 + 0.622673i \(0.213953\pi\)
\(578\) −17.0796 + 21.7424i −0.710417 + 0.904365i
\(579\) −0.853004 2.05933i −0.0354496 0.0855829i
\(580\) −2.02767 + 3.33464i −0.0841945 + 0.138463i
\(581\) −0.906181 + 0.375352i −0.0375947 + 0.0155722i
\(582\) 0.135158 0.482421i 0.00560250 0.0199970i
\(583\) 1.67842i 0.0695130i
\(584\) −16.5594 + 36.4148i −0.685233 + 1.50686i
\(585\) −1.01762 7.08624i −0.0420735 0.292980i
\(586\) 24.4252 13.7342i 1.00900 0.567355i
\(587\) 2.03592 4.91515i 0.0840315 0.202870i −0.876278 0.481805i \(-0.839981\pi\)
0.960310 + 0.278935i \(0.0899814\pi\)
\(588\) −0.598139 + 3.86274i −0.0246668 + 0.159297i
\(589\) −18.7671 + 45.3077i −0.773284 + 1.86687i
\(590\) −4.72325 + 0.567300i −0.194453 + 0.0233554i
\(591\) −1.59337 + 1.59337i −0.0655424 + 0.0655424i
\(592\) −11.2640 + 0.964772i −0.462948 + 0.0396519i
\(593\) −3.87551 + 3.87551i −0.159148 + 0.159148i −0.782189 0.623041i \(-0.785897\pi\)
0.623041 + 0.782189i \(0.285897\pi\)
\(594\) 4.09964 + 3.22044i 0.168210 + 0.132136i
\(595\) 1.07325 + 0.444556i 0.0439991 + 0.0182250i
\(596\) 2.38053 15.3733i 0.0975103 0.629714i
\(597\) −1.31374 + 0.544170i −0.0537679 + 0.0222714i
\(598\) −1.92113 + 14.6338i −0.0785609 + 0.598423i
\(599\) 12.4332 12.4332i 0.508008 0.508008i −0.405907 0.913914i \(-0.633044\pi\)
0.913914 + 0.405907i \(0.133044\pi\)
\(600\) 0.123554 3.62264i 0.00504409 0.147894i
\(601\) 20.0191 20.0191i 0.816594 0.816594i −0.169019 0.985613i \(-0.554060\pi\)
0.985613 + 0.169019i \(0.0540598\pi\)
\(602\) −0.145727 + 0.520142i −0.00593938 + 0.0211994i
\(603\) −22.6206 9.36977i −0.921183 0.381566i
\(604\) 8.60666 + 35.3120i 0.350200 + 1.43682i
\(605\) −3.85634 + 1.59735i −0.156782 + 0.0649414i
\(606\) 5.25869 + 4.13092i 0.213620 + 0.167807i
\(607\) 40.9597i 1.66250i 0.555898 + 0.831251i \(0.312375\pi\)
−0.555898 + 0.831251i \(0.687625\pi\)
\(608\) −34.8528 + 7.24581i −1.41347 + 0.293857i
\(609\) 0.161973 + 0.161973i 0.00656347 + 0.00656347i
\(610\) 13.5687 1.62971i 0.549382 0.0659852i
\(611\) 31.2846 18.5549i 1.26564 0.750649i
\(612\) 18.3453 30.1700i 0.741565 1.21955i
\(613\) 10.2714 24.7973i 0.414856 1.00155i −0.568959 0.822366i \(-0.692654\pi\)
0.983815 0.179186i \(-0.0573464\pi\)
\(614\) 2.71092 9.67607i 0.109404 0.390494i
\(615\) 0.425774 0.425774i 0.0171689 0.0171689i
\(616\) −1.28791 + 1.20295i −0.0518913 + 0.0484684i
\(617\) 21.0141 0.845997 0.422998 0.906130i \(-0.360978\pi\)
0.422998 + 0.906130i \(0.360978\pi\)
\(618\) 0.653652 2.33308i 0.0262937 0.0938502i
\(619\) −34.9999 14.4975i −1.40677 0.582702i −0.455268 0.890355i \(-0.650456\pi\)
−0.951499 + 0.307653i \(0.900456\pi\)
\(620\) 6.25848 + 8.55183i 0.251347 + 0.343450i
\(621\) 1.85207 4.47129i 0.0743210 0.179427i
\(622\) −14.8288 + 1.78105i −0.594579 + 0.0714137i
\(623\) 4.53702i 0.181772i
\(624\) −0.667520 + 4.01806i −0.0267222 + 0.160851i
\(625\) 18.2793i 0.731173i
\(626\) −4.11790 34.2850i −0.164584 1.37030i
\(627\) 1.49950 3.62012i 0.0598844 0.144574i
\(628\) −8.67139 1.34275i −0.346026 0.0535816i
\(629\) −15.7864 6.53893i −0.629443 0.260724i
\(630\) −0.764126 0.214083i −0.0304435 0.00852927i
\(631\) 2.71247 0.107982 0.0539909 0.998541i \(-0.482806\pi\)
0.0539909 + 0.998541i \(0.482806\pi\)
\(632\) −30.7557 13.9860i −1.22339 0.556331i
\(633\) −0.850298 + 0.850298i −0.0337963 + 0.0337963i
\(634\) 41.5913 + 11.6525i 1.65180 + 0.462781i
\(635\) 5.29785 12.7902i 0.210239 0.507562i
\(636\) 0.417768 0.101823i 0.0165656 0.00403756i
\(637\) −6.17462 + 24.1748i −0.244647 + 0.957841i
\(638\) −1.06713 8.88475i −0.0422480 0.351750i
\(639\) −4.45728 4.45728i −0.176327 0.176327i
\(640\) −2.57511 + 7.24861i −0.101790 + 0.286526i
\(641\) 16.1073i 0.636198i −0.948057 0.318099i \(-0.896956\pi\)
0.948057 0.318099i \(-0.103044\pi\)
\(642\) −3.42006 + 4.35376i −0.134979 + 0.171829i
\(643\) −27.1671 + 11.2530i −1.07137 + 0.443775i −0.847473 0.530839i \(-0.821877\pi\)
−0.223894 + 0.974613i \(0.571877\pi\)
\(644\) 1.39790 + 0.850009i 0.0550848 + 0.0334951i
\(645\) −0.239775 0.0993182i −0.00944115 0.00391065i
\(646\) −51.8088 14.5151i −2.03839 0.571090i
\(647\) 6.27188 6.27188i 0.246573 0.246573i −0.572990 0.819563i \(-0.694216\pi\)
0.819563 + 0.572990i \(0.194216\pi\)
\(648\) −9.70448 + 21.3405i −0.381228 + 0.838335i
\(649\) 7.71300 7.71300i 0.302762 0.302762i
\(650\) 3.01170 22.9410i 0.118128 0.899821i
\(651\) 0.574644 0.238025i 0.0225221 0.00932895i
\(652\) 1.67104 1.22291i 0.0654429 0.0478930i
\(653\) 44.4464 + 18.4103i 1.73932 + 0.720451i 0.998829 + 0.0483880i \(0.0154084\pi\)
0.740494 + 0.672063i \(0.234592\pi\)
\(654\) 1.02677 1.30708i 0.0401497 0.0511108i
\(655\) 7.60503 7.60503i 0.297153 0.297153i
\(656\) 11.1363 5.77138i 0.434798 0.225335i
\(657\) 29.2047 29.2047i 1.13938 1.13938i
\(658\) −0.480804 4.00310i −0.0187437 0.156057i
\(659\) −8.44866 + 20.3969i −0.329113 + 0.794550i 0.669545 + 0.742771i \(0.266489\pi\)
−0.998659 + 0.0517785i \(0.983511\pi\)
\(660\) −0.500057 0.683298i −0.0194647 0.0265973i
\(661\) −0.212156 + 0.512189i −0.00825190 + 0.0199218i −0.927952 0.372700i \(-0.878432\pi\)
0.919700 + 0.392622i \(0.128432\pi\)
\(662\) −23.6485 42.0570i −0.919124 1.63459i
\(663\) −3.69012 + 4.92769i −0.143313 + 0.191376i
\(664\) 0.334613 9.81093i 0.0129855 0.380738i
\(665\) 1.20918i 0.0468900i
\(666\) 11.2394 + 3.14892i 0.435519 + 0.122018i
\(667\) −7.67498 + 3.17908i −0.297176 + 0.123095i
\(668\) −22.9999 + 5.60582i −0.889893 + 0.216896i
\(669\) 2.05683 + 4.96562i 0.0795215 + 0.191982i
\(670\) 6.33985 + 4.98022i 0.244930 + 0.192403i
\(671\) −22.1576 + 22.1576i −0.855383 + 0.855383i
\(672\) 0.377555 + 0.247589i 0.0145645 + 0.00955094i
\(673\) 43.2117i 1.66569i 0.553506 + 0.832845i \(0.313289\pi\)
−0.553506 + 0.832845i \(0.686711\pi\)
\(674\) −1.57299 + 2.00243i −0.0605895 + 0.0771308i
\(675\) −2.90343 + 7.00950i −0.111753 + 0.269796i
\(676\) −6.71090 + 25.1190i −0.258112 + 0.966115i
\(677\) −0.290380 + 0.120279i −0.0111602 + 0.00462272i −0.388257 0.921551i \(-0.626923\pi\)
0.377096 + 0.926174i \(0.376923\pi\)
\(678\) 2.05689 + 3.65802i 0.0789945 + 0.140486i
\(679\) −0.250663 0.250663i −0.00961956 0.00961956i
\(680\) −8.49666 + 7.93619i −0.325832 + 0.304339i
\(681\) −3.59244 −0.137663
\(682\) −23.3977 6.55526i −0.895943 0.251014i
\(683\) 4.35633 + 1.80445i 0.166690 + 0.0690455i 0.464468 0.885590i \(-0.346245\pi\)
−0.297778 + 0.954635i \(0.596245\pi\)
\(684\) 36.3207 + 5.62420i 1.38876 + 0.215047i
\(685\) −7.83650 3.24599i −0.299417 0.124023i
\(686\) 4.37497 + 3.43672i 0.167037 + 0.131215i
\(687\) −0.624344 0.624344i −0.0238202 0.0238202i
\(688\) −4.13507 3.48261i −0.157648 0.132773i
\(689\) 2.71693 0.390166i 0.103507 0.0148641i
\(690\) −0.485575 + 0.618140i −0.0184855 + 0.0235322i
\(691\) 19.9104 + 48.0681i 0.757429 + 1.82860i 0.511428 + 0.859326i \(0.329117\pi\)
0.246001 + 0.969269i \(0.420883\pi\)
\(692\) −4.33294 0.670949i −0.164714 0.0255056i
\(693\) 1.68103 0.696306i 0.0638571 0.0264505i
\(694\) −14.5429 4.07444i −0.552040 0.154663i
\(695\) 11.2868i 0.428134i
\(696\) −2.14672 + 0.804618i −0.0813713 + 0.0304990i
\(697\) 18.9577 0.718075
\(698\) −2.11545 + 7.55066i −0.0800708 + 0.285797i
\(699\) −1.12500 + 0.465990i −0.0425513 + 0.0176253i
\(700\) −2.19144 1.33253i −0.0828285 0.0503650i
\(701\) 33.0389 + 13.6851i 1.24786 + 0.516881i 0.906163 0.422929i \(-0.138998\pi\)
0.341698 + 0.939810i \(0.388998\pi\)
\(702\) 4.26007 7.38490i 0.160786 0.278725i
\(703\) 17.7857i 0.670800i
\(704\) −5.62385 16.7175i −0.211957 0.630063i
\(705\) 1.93716 0.0729575
\(706\) 3.81220 + 31.7397i 0.143474 + 1.19454i
\(707\) 4.37148 1.81073i 0.164406 0.0680994i
\(708\) −2.38773 1.45189i −0.0897363 0.0545653i
\(709\) −11.7799 4.87940i −0.442404 0.183250i 0.150351 0.988633i \(-0.451960\pi\)
−0.592755 + 0.805383i \(0.701960\pi\)
\(710\) 1.01730 + 1.80918i 0.0381785 + 0.0678975i
\(711\) 24.6661 + 24.6661i 0.925049 + 0.925049i
\(712\) −41.3350 18.7968i −1.54909 0.704442i
\(713\) 22.5574i 0.844780i
\(714\) 0.334462 + 0.594816i 0.0125169 + 0.0222604i
\(715\) −2.75719 4.64879i −0.103113 0.173855i
\(716\) 2.14929 13.8800i 0.0803228 0.518719i
\(717\) 4.82818 1.99990i 0.180312 0.0746876i
\(718\) −3.66069 2.87563i −0.136616 0.107317i
\(719\) 37.5746i 1.40130i −0.713506 0.700649i \(-0.752894\pi\)
0.713506 0.700649i \(-0.247106\pi\)
\(720\) 5.11619 6.07470i 0.190669 0.226391i
\(721\) −1.21225 1.21225i −0.0451467 0.0451467i
\(722\) −3.47422 28.9258i −0.129297 1.07651i
\(723\) 1.01439 0.420176i 0.0377257 0.0156265i
\(724\) −3.27268 4.47192i −0.121628 0.166198i
\(725\) 12.0318 4.98374i 0.446851 0.185092i
\(726\) −2.36104 0.661486i −0.0876264 0.0245501i
\(727\) −6.30421 6.30421i −0.233810 0.233810i 0.580471 0.814281i \(-0.302868\pi\)
−0.814281 + 0.580471i \(0.802868\pi\)
\(728\) 2.24666 + 1.80516i 0.0832669 + 0.0669035i
\(729\) 16.1134 16.1134i 0.596793 0.596793i
\(730\) −11.8540 + 6.66547i −0.438737 + 0.246700i
\(731\) −3.12695 7.54912i −0.115654 0.279214i
\(732\) 6.85935 + 4.17092i 0.253529 + 0.154162i
\(733\) −1.08822 2.62719i −0.0401942 0.0970374i 0.902508 0.430674i \(-0.141724\pi\)
−0.942702 + 0.333637i \(0.891724\pi\)
\(734\) 16.1398 20.5461i 0.595732 0.758370i
\(735\) −0.939624 + 0.939624i −0.0346586 + 0.0346586i
\(736\) −13.5356 + 9.21409i −0.498928 + 0.339636i
\(737\) −18.4855 −0.680922
\(738\) −12.8577 + 1.54431i −0.473297 + 0.0568468i
\(739\) −17.5935 42.4744i −0.647186 1.56245i −0.816791 0.576934i \(-0.804249\pi\)
0.169605 0.985512i \(-0.445751\pi\)
\(740\) −3.28390 1.99682i −0.120718 0.0734045i
\(741\) −6.20863 1.58578i −0.228080 0.0582550i
\(742\) 0.0820814 0.292973i 0.00301330 0.0107554i
\(743\) −16.0980 −0.590580 −0.295290 0.955408i \(-0.595416\pi\)
−0.295290 + 0.955408i \(0.595416\pi\)
\(744\) −0.212191 + 6.22149i −0.00777931 + 0.228091i
\(745\) 3.73961 3.73961i 0.137009 0.137009i
\(746\) −18.8259 5.27440i −0.689265 0.193109i
\(747\) −3.87861 + 9.36378i −0.141911 + 0.342603i
\(748\) 4.07943 26.3446i 0.149159 0.963255i
\(749\) 1.49913 + 3.61923i 0.0547771 + 0.132244i
\(750\) 1.59999 2.03680i 0.0584235 0.0743734i
\(751\) 42.2312i 1.54104i −0.637417 0.770519i \(-0.719997\pi\)
0.637417 0.770519i \(-0.280003\pi\)
\(752\) 38.4626 + 12.2044i 1.40259 + 0.445048i
\(753\) 7.02997 0.256186
\(754\) −14.1341 + 3.79276i −0.514733 + 0.138124i
\(755\) −4.72848 + 11.4156i −0.172087 + 0.415455i
\(756\) −0.558112 0.762626i −0.0202983 0.0277364i
\(757\) −1.45774 3.51930i −0.0529826 0.127911i 0.895172 0.445721i \(-0.147053\pi\)
−0.948154 + 0.317810i \(0.897053\pi\)
\(758\) 25.1582 14.1464i 0.913788 0.513819i
\(759\) 1.80235i 0.0654212i
\(760\) −11.0164 5.00963i −0.399606 0.181718i
\(761\) 15.2167 0.551606 0.275803 0.961214i \(-0.411056\pi\)
0.275803 + 0.961214i \(0.411056\pi\)
\(762\) 7.08852 3.98585i 0.256790 0.144392i
\(763\) −0.450067 1.08656i −0.0162935 0.0393360i
\(764\) −40.6495 + 9.90759i −1.47065 + 0.358444i
\(765\) 11.0902 4.59371i 0.400967 0.166086i
\(766\) 29.9998 3.60322i 1.08394 0.130190i
\(767\) −14.2783 10.6924i −0.515561 0.386081i
\(768\) −3.81989 + 2.41399i −0.137838 + 0.0871074i