Properties

Label 416.2.bd.a.83.7
Level $416$
Weight $2$
Character 416.83
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 83.7
Character \(\chi\) \(=\) 416.83
Dual form 416.2.bd.a.411.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.29289 - 0.573103i) q^{2} +(-0.377788 - 0.156485i) q^{3} +(1.34311 + 1.48191i) q^{4} +(-0.605904 + 1.46278i) q^{5} +(0.398755 + 0.418829i) q^{6} -0.514771i q^{7} +(-0.887196 - 2.68568i) q^{8} +(-2.00308 - 2.00308i) q^{9} +O(q^{10})\) \(q+(-1.29289 - 0.573103i) q^{2} +(-0.377788 - 0.156485i) q^{3} +(1.34311 + 1.48191i) q^{4} +(-0.605904 + 1.46278i) q^{5} +(0.398755 + 0.418829i) q^{6} -0.514771i q^{7} +(-0.887196 - 2.68568i) q^{8} +(-2.00308 - 2.00308i) q^{9} +(1.62169 - 1.54396i) q^{10} +(1.18377 + 0.490335i) q^{11} +(-0.275513 - 0.770025i) q^{12} +(3.33495 - 1.37044i) q^{13} +(-0.295017 + 0.665540i) q^{14} +(0.457807 - 0.457807i) q^{15} +(-0.392128 + 3.98073i) q^{16} +2.14260 q^{17} +(1.44179 + 3.73773i) q^{18} +(2.46054 + 5.94027i) q^{19} +(-2.98151 + 1.06678i) q^{20} +(-0.0805540 + 0.194475i) q^{21} +(-1.24947 - 1.31237i) q^{22} +(2.48571 + 2.48571i) q^{23} +(-0.0850968 + 1.15345i) q^{24} +(1.76292 + 1.76292i) q^{25} +(-5.09711 - 0.139444i) q^{26} +(0.912744 + 2.20356i) q^{27} +(0.762846 - 0.691393i) q^{28} +(2.05949 - 4.97205i) q^{29} +(-0.854263 + 0.329522i) q^{30} +(0.734578 + 0.734578i) q^{31} +(2.78835 - 4.92190i) q^{32} +(-0.370486 - 0.370486i) q^{33} +(-2.77014 - 1.22793i) q^{34} +(0.752998 + 0.311902i) q^{35} +(0.278039 - 5.65875i) q^{36} +(10.8217 + 4.48250i) q^{37} +(0.223187 - 9.09023i) q^{38} +(-1.47436 - 0.00413299i) q^{39} +(4.46612 + 0.329491i) q^{40} -3.72832 q^{41} +(0.215601 - 0.205268i) q^{42} +(-1.07795 - 2.60239i) q^{43} +(0.863300 + 2.41282i) q^{44} +(4.14375 - 1.71640i) q^{45} +(-1.78917 - 4.63830i) q^{46} +(-0.193010 - 0.193010i) q^{47} +(0.771067 - 1.44251i) q^{48} +6.73501 q^{49} +(-1.26892 - 3.28959i) q^{50} +(-0.809450 - 0.335285i) q^{51} +(6.51007 + 3.10145i) q^{52} +(-1.51275 - 3.65211i) q^{53} +(0.0827918 - 3.37205i) q^{54} +(-1.43451 + 1.43451i) q^{55} +(-1.38251 + 0.456703i) q^{56} -2.62920i q^{57} +(-5.51218 + 5.24799i) q^{58} +(-3.98767 + 9.62709i) q^{59} +(1.29331 + 0.0635461i) q^{60} +(5.11727 - 12.3542i) q^{61} +(-0.528737 - 1.37071i) q^{62} +(-1.03113 + 1.03113i) q^{63} +(-6.42577 + 4.76545i) q^{64} +(-0.0160028 + 5.70866i) q^{65} +(0.266669 + 0.691322i) q^{66} +(10.1248 - 4.19384i) q^{67} +(2.87774 + 3.17515i) q^{68} +(-0.550095 - 1.32805i) q^{69} +(-0.794789 - 0.834799i) q^{70} -13.8983 q^{71} +(-3.60252 + 7.15677i) q^{72} +1.32072i q^{73} +(-11.4223 - 11.9973i) q^{74} +(-0.390141 - 0.941883i) q^{75} +(-5.49819 + 11.6247i) q^{76} +(0.252410 - 0.609372i) q^{77} +(1.90381 + 0.850302i) q^{78} -9.86871 q^{79} +(-5.58535 - 2.98554i) q^{80} +7.52305i q^{81} +(4.82029 + 2.13671i) q^{82} +(2.34587 + 5.66344i) q^{83} +(-0.396387 + 0.141826i) q^{84} +(-1.29821 + 3.13416i) q^{85} +(-0.0977765 + 3.98237i) q^{86} +(-1.55610 + 1.55610i) q^{87} +(0.266645 - 3.61426i) q^{88} +4.73380 q^{89} +(-6.34107 - 0.155688i) q^{90} +(-0.705464 - 1.71674i) q^{91} +(-0.345030 + 7.02217i) q^{92} +(-0.162565 - 0.392466i) q^{93} +(0.138925 + 0.360154i) q^{94} -10.1802 q^{95} +(-1.82361 + 1.42310i) q^{96} +(-10.7268 + 10.7268i) q^{97} +(-8.70760 - 3.85985i) q^{98} +(-1.38901 - 3.35338i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24} - 4 q^{26} - 8 q^{27} + 56 q^{28} - 8 q^{29} - 16 q^{30} - 44 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} - 28 q^{39} - 8 q^{40} - 8 q^{41} - 48 q^{42} - 32 q^{43} + 12 q^{44} - 36 q^{45} - 48 q^{46} - 8 q^{47} - 8 q^{48} - 168 q^{49} + 76 q^{50} - 4 q^{52} - 8 q^{53} - 28 q^{54} - 40 q^{55} + 56 q^{56} + 32 q^{58} + 52 q^{59} - 36 q^{60} - 8 q^{61} + 72 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} + 20 q^{70} + 56 q^{71} + 8 q^{72} - 8 q^{74} - 68 q^{76} + 56 q^{77} - 48 q^{78} - 16 q^{79} + 28 q^{80} - 88 q^{82} + 36 q^{83} + 100 q^{84} - 24 q^{85} + 96 q^{86} - 8 q^{87} + 64 q^{88} - 8 q^{89} - 64 q^{90} + 72 q^{91} - 8 q^{92} - 40 q^{93} - 56 q^{94} + 36 q^{96} - 8 q^{97} + 52 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.29289 0.573103i −0.914208 0.405245i
\(3\) −0.377788 0.156485i −0.218116 0.0903467i 0.270950 0.962593i \(-0.412662\pi\)
−0.489066 + 0.872247i \(0.662662\pi\)
\(4\) 1.34311 + 1.48191i 0.671553 + 0.740956i
\(5\) −0.605904 + 1.46278i −0.270969 + 0.654176i −0.999525 0.0308095i \(-0.990191\pi\)
0.728557 + 0.684985i \(0.240191\pi\)
\(6\) 0.398755 + 0.418829i 0.162791 + 0.170986i
\(7\) 0.514771i 0.194565i −0.995257 0.0972826i \(-0.968985\pi\)
0.995257 0.0972826i \(-0.0310151\pi\)
\(8\) −0.887196 2.68568i −0.313671 0.949532i
\(9\) −2.00308 2.00308i −0.667695 0.667695i
\(10\) 1.62169 1.54396i 0.512823 0.488244i
\(11\) 1.18377 + 0.490335i 0.356921 + 0.147842i 0.553937 0.832559i \(-0.313125\pi\)
−0.197016 + 0.980400i \(0.563125\pi\)
\(12\) −0.275513 0.770025i −0.0795338 0.222287i
\(13\) 3.33495 1.37044i 0.924949 0.380092i
\(14\) −0.295017 + 0.665540i −0.0788465 + 0.177873i
\(15\) 0.457807 0.457807i 0.118205 0.118205i
\(16\) −0.392128 + 3.98073i −0.0980321 + 0.995183i
\(17\) 2.14260 0.519657 0.259829 0.965655i \(-0.416334\pi\)
0.259829 + 0.965655i \(0.416334\pi\)
\(18\) 1.44179 + 3.73773i 0.339832 + 0.880992i
\(19\) 2.46054 + 5.94027i 0.564487 + 1.36279i 0.906145 + 0.422967i \(0.139012\pi\)
−0.341658 + 0.939824i \(0.610988\pi\)
\(20\) −2.98151 + 1.06678i −0.666686 + 0.238538i
\(21\) −0.0805540 + 0.194475i −0.0175783 + 0.0424378i
\(22\) −1.24947 1.31237i −0.266388 0.279798i
\(23\) 2.48571 + 2.48571i 0.518305 + 0.518305i 0.917058 0.398753i \(-0.130557\pi\)
−0.398753 + 0.917058i \(0.630557\pi\)
\(24\) −0.0850968 + 1.15345i −0.0173703 + 0.235447i
\(25\) 1.76292 + 1.76292i 0.352585 + 0.352585i
\(26\) −5.09711 0.139444i −0.999626 0.0273473i
\(27\) 0.912744 + 2.20356i 0.175658 + 0.424075i
\(28\) 0.762846 0.691393i 0.144164 0.130661i
\(29\) 2.05949 4.97205i 0.382438 0.923286i −0.609055 0.793128i \(-0.708451\pi\)
0.991493 0.130159i \(-0.0415487\pi\)
\(30\) −0.854263 + 0.329522i −0.155966 + 0.0601622i
\(31\) 0.734578 + 0.734578i 0.131934 + 0.131934i 0.769990 0.638056i \(-0.220261\pi\)
−0.638056 + 0.769990i \(0.720261\pi\)
\(32\) 2.78835 4.92190i 0.492914 0.870078i
\(33\) −0.370486 0.370486i −0.0644933 0.0644933i
\(34\) −2.77014 1.22793i −0.475075 0.210588i
\(35\) 0.752998 + 0.311902i 0.127280 + 0.0527211i
\(36\) 0.278039 5.65875i 0.0463398 0.943125i
\(37\) 10.8217 + 4.48250i 1.77908 + 0.736919i 0.992904 + 0.118916i \(0.0379420\pi\)
0.786176 + 0.618003i \(0.212058\pi\)
\(38\) 0.223187 9.09023i 0.0362057 1.47463i
\(39\) −1.47436 0.00413299i −0.236086 0.000661809i
\(40\) 4.46612 + 0.329491i 0.706156 + 0.0520972i
\(41\) −3.72832 −0.582266 −0.291133 0.956683i \(-0.594032\pi\)
−0.291133 + 0.956683i \(0.594032\pi\)
\(42\) 0.215601 0.205268i 0.0332680 0.0316735i
\(43\) −1.07795 2.60239i −0.164385 0.396861i 0.820126 0.572183i \(-0.193903\pi\)
−0.984511 + 0.175322i \(0.943903\pi\)
\(44\) 0.863300 + 2.41282i 0.130147 + 0.363746i
\(45\) 4.14375 1.71640i 0.617714 0.255866i
\(46\) −1.78917 4.63830i −0.263799 0.683880i
\(47\) −0.193010 0.193010i −0.0281533 0.0281533i 0.692890 0.721043i \(-0.256337\pi\)
−0.721043 + 0.692890i \(0.756337\pi\)
\(48\) 0.771067 1.44251i 0.111294 0.208209i
\(49\) 6.73501 0.962144
\(50\) −1.26892 3.28959i −0.179453 0.465219i
\(51\) −0.809450 0.335285i −0.113346 0.0469493i
\(52\) 6.51007 + 3.10145i 0.902784 + 0.430094i
\(53\) −1.51275 3.65211i −0.207793 0.501656i 0.785282 0.619138i \(-0.212518\pi\)
−0.993075 + 0.117482i \(0.962518\pi\)
\(54\) 0.0827918 3.37205i 0.0112665 0.458877i
\(55\) −1.43451 + 1.43451i −0.193429 + 0.193429i
\(56\) −1.38251 + 0.456703i −0.184746 + 0.0610295i
\(57\) 2.62920i 0.348247i
\(58\) −5.51218 + 5.24799i −0.723785 + 0.689095i
\(59\) −3.98767 + 9.62709i −0.519150 + 1.25334i 0.419275 + 0.907859i \(0.362284\pi\)
−0.938426 + 0.345481i \(0.887716\pi\)
\(60\) 1.29331 + 0.0635461i 0.166966 + 0.00820377i
\(61\) 5.11727 12.3542i 0.655199 1.58179i −0.149935 0.988696i \(-0.547906\pi\)
0.805133 0.593094i \(-0.202094\pi\)
\(62\) −0.528737 1.37071i −0.0671497 0.174081i
\(63\) −1.03113 + 1.03113i −0.129910 + 0.129910i
\(64\) −6.42577 + 4.76545i −0.803221 + 0.595681i
\(65\) −0.0160028 + 5.70866i −0.00198490 + 0.708072i
\(66\) 0.266669 + 0.691322i 0.0328247 + 0.0850958i
\(67\) 10.1248 4.19384i 1.23694 0.512359i 0.334186 0.942507i \(-0.391539\pi\)
0.902759 + 0.430148i \(0.141539\pi\)
\(68\) 2.87774 + 3.17515i 0.348978 + 0.385043i
\(69\) −0.550095 1.32805i −0.0662237 0.159878i
\(70\) −0.794789 0.834799i −0.0949954 0.0997775i
\(71\) −13.8983 −1.64943 −0.824714 0.565550i \(-0.808664\pi\)
−0.824714 + 0.565550i \(0.808664\pi\)
\(72\) −3.60252 + 7.15677i −0.424561 + 0.843434i
\(73\) 1.32072i 0.154578i 0.997009 + 0.0772890i \(0.0246264\pi\)
−0.997009 + 0.0772890i \(0.975374\pi\)
\(74\) −11.4223 11.9973i −1.32782 1.39466i
\(75\) −0.390141 0.941883i −0.0450496 0.108759i
\(76\) −5.49819 + 11.6247i −0.630686 + 1.33345i
\(77\) 0.252410 0.609372i 0.0287648 0.0694444i
\(78\) 1.90381 + 0.850302i 0.215564 + 0.0962778i
\(79\) −9.86871 −1.11032 −0.555159 0.831745i \(-0.687342\pi\)
−0.555159 + 0.831745i \(0.687342\pi\)
\(80\) −5.58535 2.98554i −0.624461 0.333794i
\(81\) 7.52305i 0.835895i
\(82\) 4.82029 + 2.13671i 0.532312 + 0.235960i
\(83\) 2.34587 + 5.66344i 0.257493 + 0.621643i 0.998771 0.0495546i \(-0.0157802\pi\)
−0.741278 + 0.671198i \(0.765780\pi\)
\(84\) −0.396387 + 0.141826i −0.0432494 + 0.0154745i
\(85\) −1.29821 + 3.13416i −0.140811 + 0.339947i
\(86\) −0.0977765 + 3.98237i −0.0105435 + 0.429430i
\(87\) −1.55610 + 1.55610i −0.166832 + 0.166832i
\(88\) 0.266645 3.61426i 0.0284244 0.385281i
\(89\) 4.73380 0.501782 0.250891 0.968015i \(-0.419276\pi\)
0.250891 + 0.968015i \(0.419276\pi\)
\(90\) −6.34107 0.155688i −0.668407 0.0164110i
\(91\) −0.705464 1.71674i −0.0739527 0.179963i
\(92\) −0.345030 + 7.02217i −0.0359718 + 0.732111i
\(93\) −0.162565 0.392466i −0.0168572 0.0406968i
\(94\) 0.138925 + 0.360154i 0.0143290 + 0.0371470i
\(95\) −10.1802 −1.04446
\(96\) −1.82361 + 1.42310i −0.186121 + 0.145245i
\(97\) −10.7268 + 10.7268i −1.08914 + 1.08914i −0.0935226 + 0.995617i \(0.529813\pi\)
−0.995617 + 0.0935226i \(0.970187\pi\)
\(98\) −8.70760 3.85985i −0.879600 0.389904i
\(99\) −1.38901 3.35338i −0.139601 0.337027i
\(100\) −0.244703 + 4.98029i −0.0244703 + 0.498029i
\(101\) −1.99734 4.82202i −0.198743 0.479808i 0.792816 0.609461i \(-0.208614\pi\)
−0.991560 + 0.129652i \(0.958614\pi\)
\(102\) 0.854373 + 0.897383i 0.0845956 + 0.0888542i
\(103\) 2.48603 2.48603i 0.244956 0.244956i −0.573941 0.818897i \(-0.694586\pi\)
0.818897 + 0.573941i \(0.194586\pi\)
\(104\) −6.63932 7.74076i −0.651039 0.759044i
\(105\) −0.235666 0.235666i −0.0229986 0.0229986i
\(106\) −0.137217 + 5.58873i −0.0133276 + 0.542825i
\(107\) 6.53452 2.70669i 0.631716 0.261665i −0.0437660 0.999042i \(-0.513936\pi\)
0.675482 + 0.737377i \(0.263936\pi\)
\(108\) −2.03957 + 4.31222i −0.196258 + 0.414944i
\(109\) 7.24080 2.99924i 0.693542 0.287275i −0.00793280 0.999969i \(-0.502525\pi\)
0.701475 + 0.712694i \(0.252525\pi\)
\(110\) 2.67677 1.03253i 0.255220 0.0984482i
\(111\) −3.38688 3.38688i −0.321468 0.321468i
\(112\) 2.04917 + 0.201856i 0.193628 + 0.0190736i
\(113\) 8.10966i 0.762893i −0.924391 0.381447i \(-0.875426\pi\)
0.924391 0.381447i \(-0.124574\pi\)
\(114\) −1.50680 + 3.39926i −0.141125 + 0.318370i
\(115\) −5.14214 + 2.12995i −0.479507 + 0.198618i
\(116\) 10.1343 3.62601i 0.940942 0.336667i
\(117\) −9.42529 3.93507i −0.871369 0.363798i
\(118\) 10.6729 10.1614i 0.982521 0.935431i
\(119\) 1.10295i 0.101107i
\(120\) −1.63569 0.823359i −0.149317 0.0751621i
\(121\) −6.61728 6.61728i −0.601571 0.601571i
\(122\) −13.6962 + 13.0398i −1.24000 + 1.18057i
\(123\) 1.40852 + 0.583427i 0.127002 + 0.0526058i
\(124\) −0.101964 + 2.07520i −0.00915659 + 0.186358i
\(125\) −10.9608 + 4.54013i −0.980368 + 0.406082i
\(126\) 1.92408 0.742190i 0.171410 0.0661195i
\(127\) 4.05354 0.359693 0.179847 0.983695i \(-0.442440\pi\)
0.179847 + 0.983695i \(0.442440\pi\)
\(128\) 11.0389 2.47856i 0.975708 0.219076i
\(129\) 1.15184i 0.101413i
\(130\) 3.29234 7.37147i 0.288757 0.646521i
\(131\) −2.66614 1.10435i −0.232942 0.0964876i 0.263159 0.964752i \(-0.415235\pi\)
−0.496101 + 0.868265i \(0.665235\pi\)
\(132\) 0.0514254 1.04663i 0.00447601 0.0910974i
\(133\) 3.05788 1.26662i 0.265152 0.109830i
\(134\) −15.4937 0.380408i −1.33846 0.0328623i
\(135\) −3.77636 −0.325018
\(136\) −1.90091 5.75434i −0.163001 0.493431i
\(137\) 4.60029i 0.393029i 0.980501 + 0.196514i \(0.0629623\pi\)
−0.980501 + 0.196514i \(0.937038\pi\)
\(138\) −0.0498971 + 2.03227i −0.00424753 + 0.172999i
\(139\) −16.8029 + 6.95999i −1.42520 + 0.590339i −0.956162 0.292837i \(-0.905401\pi\)
−0.469042 + 0.883176i \(0.655401\pi\)
\(140\) 0.549145 + 1.53479i 0.0464113 + 0.129714i
\(141\) 0.0427137 + 0.103120i 0.00359714 + 0.00868426i
\(142\) 17.9690 + 7.96517i 1.50792 + 0.668422i
\(143\) 4.61980 + 0.0129504i 0.386327 + 0.00108297i
\(144\) 8.75921 7.18828i 0.729934 0.599023i
\(145\) 6.02517 + 6.02517i 0.500363 + 0.500363i
\(146\) 0.756905 1.70753i 0.0626419 0.141317i
\(147\) −2.54441 1.05393i −0.209859 0.0869266i
\(148\) 7.89205 + 22.0573i 0.648723 + 1.81310i
\(149\) −11.5774 4.79550i −0.948455 0.392863i −0.145805 0.989313i \(-0.546577\pi\)
−0.802650 + 0.596450i \(0.796577\pi\)
\(150\) −0.0353883 + 1.44134i −0.00288944 + 0.117685i
\(151\) −4.77195 −0.388336 −0.194168 0.980968i \(-0.562201\pi\)
−0.194168 + 0.980968i \(0.562201\pi\)
\(152\) 13.7707 11.8784i 1.11695 0.963467i
\(153\) −4.29181 4.29181i −0.346972 0.346972i
\(154\) −0.675570 + 0.643192i −0.0544390 + 0.0518299i
\(155\) −1.51961 + 0.629444i −0.122058 + 0.0505581i
\(156\) −1.97410 2.19042i −0.158054 0.175374i
\(157\) −1.10263 + 2.66198i −0.0879994 + 0.212449i −0.961752 0.273921i \(-0.911679\pi\)
0.873753 + 0.486370i \(0.161679\pi\)
\(158\) 12.7591 + 5.65579i 1.01506 + 0.449950i
\(159\) 1.61645i 0.128193i
\(160\) 5.51020 + 7.06094i 0.435620 + 0.558216i
\(161\) 1.27957 1.27957i 0.100844 0.100844i
\(162\) 4.31148 9.72645i 0.338742 0.764182i
\(163\) 1.57513 + 3.80270i 0.123374 + 0.297850i 0.973484 0.228754i \(-0.0734650\pi\)
−0.850111 + 0.526604i \(0.823465\pi\)
\(164\) −5.00754 5.52505i −0.391023 0.431434i
\(165\) 0.766418 0.317461i 0.0596656 0.0247143i
\(166\) 0.212786 8.66660i 0.0165154 0.672659i
\(167\) 17.4490i 1.35025i 0.737705 + 0.675123i \(0.235910\pi\)
−0.737705 + 0.675123i \(0.764090\pi\)
\(168\) 0.593764 + 0.0438054i 0.0458099 + 0.00337966i
\(169\) 9.24378 9.14071i 0.711060 0.703131i
\(170\) 3.47463 3.30810i 0.266492 0.253720i
\(171\) 6.97019 16.8275i 0.533024 1.28683i
\(172\) 2.40872 5.09271i 0.183663 0.388315i
\(173\) 5.19257 12.5360i 0.394784 0.953092i −0.594099 0.804392i \(-0.702491\pi\)
0.988882 0.148700i \(-0.0475089\pi\)
\(174\) 2.90367 1.12006i 0.220127 0.0849113i
\(175\) 0.907502 0.907502i 0.0686007 0.0686007i
\(176\) −2.41608 + 4.52001i −0.182119 + 0.340709i
\(177\) 3.01299 3.01299i 0.226470 0.226470i
\(178\) −6.12026 2.71295i −0.458733 0.203344i
\(179\) 23.6830 + 9.80981i 1.77015 + 0.733220i 0.994819 + 0.101665i \(0.0324169\pi\)
0.775331 + 0.631555i \(0.217583\pi\)
\(180\) 8.10905 + 3.83537i 0.604413 + 0.285872i
\(181\) 3.72761 1.54403i 0.277071 0.114767i −0.239821 0.970817i \(-0.577089\pi\)
0.516892 + 0.856051i \(0.327089\pi\)
\(182\) −0.0717819 + 2.62385i −0.00532083 + 0.194492i
\(183\) −3.86649 + 3.86649i −0.285819 + 0.285819i
\(184\) 4.47051 8.88112i 0.329570 0.654725i
\(185\) −13.1139 + 13.1139i −0.964149 + 0.964149i
\(186\) −0.0147457 + 0.600580i −0.00108120 + 0.0440366i
\(187\) 2.53635 + 1.05059i 0.185477 + 0.0768269i
\(188\) 0.0267908 0.545256i 0.00195392 0.0397669i
\(189\) 1.13433 0.469855i 0.0825103 0.0341769i
\(190\) 13.1618 + 5.83428i 0.954857 + 0.423263i
\(191\) 8.82046i 0.638226i −0.947717 0.319113i \(-0.896615\pi\)
0.947717 0.319113i \(-0.103385\pi\)
\(192\) 3.17330 0.794795i 0.229013 0.0573594i
\(193\) 0.196243 + 0.196243i 0.0141259 + 0.0141259i 0.714134 0.700009i \(-0.246821\pi\)
−0.700009 + 0.714134i \(0.746821\pi\)
\(194\) 20.0161 7.72096i 1.43707 0.554332i
\(195\) 0.899366 2.15416i 0.0644049 0.154263i
\(196\) 9.04584 + 9.98070i 0.646131 + 0.712907i
\(197\) 2.51138 6.06301i 0.178928 0.431971i −0.808814 0.588065i \(-0.799890\pi\)
0.987742 + 0.156093i \(0.0498901\pi\)
\(198\) −0.125993 + 5.13158i −0.00895390 + 0.364686i
\(199\) 2.67816 2.67816i 0.189850 0.189850i −0.605781 0.795631i \(-0.707139\pi\)
0.795631 + 0.605781i \(0.207139\pi\)
\(200\) 3.17059 6.29871i 0.224195 0.445386i
\(201\) −4.48132 −0.316088
\(202\) −0.181172 + 7.37900i −0.0127472 + 0.519184i
\(203\) −2.55947 1.06017i −0.179639 0.0744091i
\(204\) −0.590315 1.64986i −0.0413303 0.115513i
\(205\) 2.25901 5.45372i 0.157776 0.380904i
\(206\) −4.63891 + 1.78941i −0.323208 + 0.124674i
\(207\) 9.95815i 0.692140i
\(208\) 4.14763 + 13.8129i 0.287587 + 0.957755i
\(209\) 8.23842i 0.569864i
\(210\) 0.169628 + 0.439750i 0.0117055 + 0.0303456i
\(211\) −7.60161 + 18.3519i −0.523316 + 1.26340i 0.412515 + 0.910951i \(0.364650\pi\)
−0.935832 + 0.352447i \(0.885350\pi\)
\(212\) 3.38032 7.14695i 0.232161 0.490854i
\(213\) 5.25063 + 2.17488i 0.359767 + 0.149020i
\(214\) −9.99960 0.245514i −0.683558 0.0167830i
\(215\) 4.45986 0.304160
\(216\) 5.10828 4.40633i 0.347574 0.299813i
\(217\) 0.378140 0.378140i 0.0256698 0.0256698i
\(218\) −11.0804 0.272050i −0.750459 0.0184255i
\(219\) 0.206672 0.498951i 0.0139656 0.0337160i
\(220\) −4.05251 0.199117i −0.273220 0.0134245i
\(221\) 7.14547 2.93631i 0.480656 0.197518i
\(222\) 2.43782 + 6.31987i 0.163615 + 0.424162i
\(223\) −15.1483 15.1483i −1.01440 1.01440i −0.999895 0.0145096i \(-0.995381\pi\)
−0.0145096 0.999895i \(-0.504619\pi\)
\(224\) −2.53365 1.43536i −0.169287 0.0959040i
\(225\) 7.06256i 0.470838i
\(226\) −4.64767 + 10.4849i −0.309158 + 0.697443i
\(227\) 20.3484 8.42859i 1.35057 0.559425i 0.414120 0.910222i \(-0.364089\pi\)
0.936451 + 0.350798i \(0.114089\pi\)
\(228\) 3.89625 3.53130i 0.258035 0.233866i
\(229\) −11.7050 4.84837i −0.773489 0.320390i −0.0392041 0.999231i \(-0.512482\pi\)
−0.734285 + 0.678842i \(0.762482\pi\)
\(230\) 7.86888 + 0.193200i 0.518859 + 0.0127392i
\(231\) −0.190715 + 0.190715i −0.0125481 + 0.0125481i
\(232\) −15.1805 1.11995i −0.996649 0.0735285i
\(233\) −2.62188 + 2.62188i −0.171765 + 0.171765i −0.787754 0.615989i \(-0.788756\pi\)
0.615989 + 0.787754i \(0.288756\pi\)
\(234\) 9.93063 + 10.4893i 0.649185 + 0.685705i
\(235\) 0.399276 0.165386i 0.0260459 0.0107886i
\(236\) −19.6224 + 7.02083i −1.27731 + 0.457017i
\(237\) 3.72829 + 1.54431i 0.242178 + 0.100313i
\(238\) −0.632103 + 1.42599i −0.0409732 + 0.0924331i
\(239\) 15.5155 15.5155i 1.00362 1.00362i 0.00362367 0.999993i \(-0.498847\pi\)
0.999993 0.00362367i \(-0.00115345\pi\)
\(240\) 1.64289 + 2.00193i 0.106048 + 0.129224i
\(241\) −1.93510 + 1.93510i −0.124651 + 0.124651i −0.766680 0.642029i \(-0.778093\pi\)
0.642029 + 0.766680i \(0.278093\pi\)
\(242\) 4.76301 + 12.3478i 0.306178 + 0.793745i
\(243\) 3.91548 9.45280i 0.251178 0.606398i
\(244\) 25.1808 9.00963i 1.61204 0.576783i
\(245\) −4.08077 + 9.85185i −0.260711 + 0.629412i
\(246\) −1.48669 1.56153i −0.0947878 0.0995594i
\(247\) 16.3466 + 16.4385i 1.04011 + 1.04596i
\(248\) 1.32113 2.62456i 0.0838917 0.166660i
\(249\) 2.50667i 0.158854i
\(250\) 16.7731 + 0.411819i 1.06082 + 0.0260457i
\(251\) −14.7881 + 6.12543i −0.933416 + 0.386633i −0.796973 0.604015i \(-0.793567\pi\)
−0.136442 + 0.990648i \(0.543567\pi\)
\(252\) −2.91296 0.143127i −0.183499 0.00901612i
\(253\) 1.72368 + 4.16134i 0.108367 + 0.261621i
\(254\) −5.24076 2.32309i −0.328834 0.145764i
\(255\) 0.980898 0.980898i 0.0614262 0.0614262i
\(256\) −15.6925 3.12192i −0.980779 0.195120i
\(257\) 11.7533i 0.733148i 0.930389 + 0.366574i \(0.119469\pi\)
−0.930389 + 0.366574i \(0.880531\pi\)
\(258\) 0.660120 1.48919i 0.0410973 0.0927130i
\(259\) 2.30746 5.57071i 0.143379 0.346147i
\(260\) −8.48123 + 7.64363i −0.525983 + 0.474038i
\(261\) −14.0848 + 5.83410i −0.871825 + 0.361122i
\(262\) 2.81411 + 2.95577i 0.173856 + 0.182608i
\(263\) −20.6729 20.6729i −1.27475 1.27475i −0.943568 0.331179i \(-0.892553\pi\)
−0.331179 0.943568i \(-0.607447\pi\)
\(264\) −0.666313 + 1.32370i −0.0410087 + 0.0814681i
\(265\) 6.25883 0.384477
\(266\) −4.67939 0.114890i −0.286912 0.00704437i
\(267\) −1.78838 0.740769i −0.109447 0.0453343i
\(268\) 19.8136 + 9.37133i 1.21031 + 0.572445i
\(269\) 8.79332 + 3.64231i 0.536138 + 0.222076i 0.634289 0.773096i \(-0.281293\pi\)
−0.0981509 + 0.995172i \(0.531293\pi\)
\(270\) 4.88241 + 2.16424i 0.297134 + 0.131712i
\(271\) −11.9871 11.9871i −0.728162 0.728162i 0.242092 0.970253i \(-0.422167\pi\)
−0.970253 + 0.242092i \(0.922167\pi\)
\(272\) −0.840174 + 8.52912i −0.0509431 + 0.517154i
\(273\) −0.00212755 + 0.758958i −0.000128765 + 0.0459342i
\(274\) 2.63644 5.94764i 0.159273 0.359310i
\(275\) 1.22248 + 2.95132i 0.0737182 + 0.177971i
\(276\) 1.22921 2.59890i 0.0739899 0.156435i
\(277\) −14.8859 + 6.16594i −0.894407 + 0.370475i −0.782067 0.623194i \(-0.785835\pi\)
−0.112340 + 0.993670i \(0.535835\pi\)
\(278\) 25.7130 + 0.631316i 1.54217 + 0.0378638i
\(279\) 2.94284i 0.176183i
\(280\) 0.169613 2.29903i 0.0101363 0.137393i
\(281\) −25.2289 −1.50503 −0.752516 0.658574i \(-0.771160\pi\)
−0.752516 + 0.658574i \(0.771160\pi\)
\(282\) 0.00387440 0.157802i 0.000230717 0.00939694i
\(283\) −5.52228 + 2.28740i −0.328265 + 0.135972i −0.540729 0.841197i \(-0.681851\pi\)
0.212463 + 0.977169i \(0.431851\pi\)
\(284\) −18.6669 20.5961i −1.10768 1.22215i
\(285\) 3.84595 + 1.59305i 0.227815 + 0.0943639i
\(286\) −5.96545 2.66436i −0.352744 0.157547i
\(287\) 1.91923i 0.113289i
\(288\) −15.4443 + 4.27369i −0.910063 + 0.251830i
\(289\) −12.4093 −0.729956
\(290\) −4.33682 11.2429i −0.254667 0.660206i
\(291\) 5.73104 2.37387i 0.335959 0.139159i
\(292\) −1.95718 + 1.77386i −0.114536 + 0.103807i
\(293\) 24.6065 + 10.1923i 1.43753 + 0.595442i 0.959197 0.282739i \(-0.0912429\pi\)
0.478328 + 0.878181i \(0.341243\pi\)
\(294\) 2.68562 + 2.82082i 0.156629 + 0.164513i
\(295\) −11.6662 11.6662i −0.679231 0.679231i
\(296\) 2.43759 33.0406i 0.141682 1.92044i
\(297\) 3.05606i 0.177331i
\(298\) 12.2199 + 12.8351i 0.707880 + 0.743515i
\(299\) 11.6962 + 4.88319i 0.676410 + 0.282402i
\(300\) 0.871787 1.84320i 0.0503327 0.106417i
\(301\) −1.33964 + 0.554895i −0.0772153 + 0.0319836i
\(302\) 6.16958 + 2.73482i 0.355020 + 0.157371i
\(303\) 2.13426i 0.122610i
\(304\) −24.6115 + 7.46541i −1.41157 + 0.428171i
\(305\) 14.9709 + 14.9709i 0.857230 + 0.857230i
\(306\) 3.08917 + 8.00847i 0.176596 + 0.457814i
\(307\) 20.7105 8.57855i 1.18201 0.489604i 0.296864 0.954920i \(-0.404059\pi\)
0.885145 + 0.465316i \(0.154059\pi\)
\(308\) 1.24205 0.444402i 0.0707724 0.0253222i
\(309\) −1.32822 + 0.550168i −0.0755599 + 0.0312979i
\(310\) 2.32542 + 0.0570946i 0.132075 + 0.00324275i
\(311\) 7.09781 + 7.09781i 0.402480 + 0.402480i 0.879106 0.476626i \(-0.158140\pi\)
−0.476626 + 0.879106i \(0.658140\pi\)
\(312\) 1.29695 + 3.96333i 0.0734251 + 0.224379i
\(313\) 8.11648 8.11648i 0.458771 0.458771i −0.439481 0.898252i \(-0.644838\pi\)
0.898252 + 0.439481i \(0.144838\pi\)
\(314\) 2.95116 2.80972i 0.166544 0.158562i
\(315\) −0.883552 2.13308i −0.0497825 0.120186i
\(316\) −13.2547 14.6246i −0.745637 0.822696i
\(317\) −2.70155 6.52212i −0.151734 0.366319i 0.829675 0.558247i \(-0.188526\pi\)
−0.981409 + 0.191928i \(0.938526\pi\)
\(318\) 0.926391 2.08988i 0.0519494 0.117195i
\(319\) 4.87594 4.87594i 0.273000 0.273000i
\(320\) −3.07741 12.2869i −0.172033 0.686859i
\(321\) −2.89222 −0.161428
\(322\) −2.38766 + 0.921013i −0.133059 + 0.0513260i
\(323\) 5.27196 + 12.7276i 0.293340 + 0.708185i
\(324\) −11.1485 + 10.1043i −0.619362 + 0.561348i
\(325\) 8.29524 + 3.46328i 0.460137 + 0.192108i
\(326\) 0.142874 5.81917i 0.00791308 0.322294i
\(327\) −3.20482 −0.177227
\(328\) 3.30775 + 10.0131i 0.182640 + 0.552880i
\(329\) −0.0993558 + 0.0993558i −0.00547766 + 0.00547766i
\(330\) −1.17283 0.0287957i −0.0645621 0.00158515i
\(331\) −4.85653 + 11.7247i −0.266939 + 0.644448i −0.999336 0.0364300i \(-0.988401\pi\)
0.732397 + 0.680878i \(0.238401\pi\)
\(332\) −5.24196 + 11.0830i −0.287690 + 0.608257i
\(333\) −12.6980 30.6556i −0.695845 1.67992i
\(334\) 10.0001 22.5596i 0.547180 1.23441i
\(335\) 17.3515i 0.948013i
\(336\) −0.742564 0.396923i −0.0405102 0.0216539i
\(337\) 13.2692 0.722818 0.361409 0.932407i \(-0.382296\pi\)
0.361409 + 0.932407i \(0.382296\pi\)
\(338\) −17.1897 + 6.52025i −0.934997 + 0.354655i
\(339\) −1.26904 + 3.06374i −0.0689249 + 0.166399i
\(340\) −6.38818 + 2.28567i −0.346448 + 0.123958i
\(341\) 0.509385 + 1.22976i 0.0275847 + 0.0665954i
\(342\) −18.6556 + 17.7614i −1.00878 + 0.960429i
\(343\) 7.07039i 0.381765i
\(344\) −6.03284 + 5.20385i −0.325269 + 0.280573i
\(345\) 2.27595 0.122533
\(346\) −13.8978 + 13.2317i −0.747150 + 0.711341i
\(347\) 1.30783 + 3.15737i 0.0702079 + 0.169497i 0.955088 0.296322i \(-0.0957600\pi\)
−0.884880 + 0.465818i \(0.845760\pi\)
\(348\) −4.39602 0.215996i −0.235651 0.0115786i
\(349\) −13.9534 + 5.77967i −0.746906 + 0.309378i −0.723478 0.690347i \(-0.757458\pi\)
−0.0234274 + 0.999726i \(0.507458\pi\)
\(350\) −1.69339 + 0.653205i −0.0905154 + 0.0349153i
\(351\) 6.06381 + 6.09790i 0.323662 + 0.325482i
\(352\) 5.71415 4.45919i 0.304565 0.237676i
\(353\) −20.6253 + 20.6253i −1.09777 + 1.09777i −0.103102 + 0.994671i \(0.532877\pi\)
−0.994671 + 0.103102i \(0.967123\pi\)
\(354\) −5.62221 + 2.16870i −0.298817 + 0.115265i
\(355\) 8.42106 20.3302i 0.446943 1.07902i
\(356\) 6.35800 + 7.01508i 0.336973 + 0.371798i
\(357\) −0.172595 + 0.416682i −0.00913470 + 0.0220531i
\(358\) −24.9974 26.2558i −1.32115 1.38766i
\(359\) 25.9460i 1.36938i 0.728836 + 0.684688i \(0.240062\pi\)
−0.728836 + 0.684688i \(0.759938\pi\)
\(360\) −8.28602 9.60601i −0.436711 0.506281i
\(361\) −15.7975 + 15.7975i −0.831449 + 0.831449i
\(362\) −5.70425 0.140053i −0.299809 0.00736102i
\(363\) 1.46443 + 3.53544i 0.0768625 + 0.185562i
\(364\) 1.59654 3.35120i 0.0836814 0.175650i
\(365\) −1.93192 0.800227i −0.101121 0.0418858i
\(366\) 7.21482 2.78303i 0.377125 0.145471i
\(367\) 14.7623 0.770586 0.385293 0.922794i \(-0.374100\pi\)
0.385293 + 0.922794i \(0.374100\pi\)
\(368\) −10.8696 + 8.92022i −0.566620 + 0.464998i
\(369\) 7.46814 + 7.46814i 0.388776 + 0.388776i
\(370\) 24.4703 9.43913i 1.27215 0.490717i
\(371\) −1.88000 + 0.778723i −0.0976049 + 0.0404293i
\(372\) 0.363258 0.768030i 0.0188341 0.0398205i
\(373\) −3.26507 7.88257i −0.169059 0.408144i 0.816530 0.577303i \(-0.195895\pi\)
−0.985589 + 0.169159i \(0.945895\pi\)
\(374\) −2.67712 2.81189i −0.138430 0.145399i
\(375\) 4.85134 0.250522
\(376\) −0.347125 + 0.689599i −0.0179016 + 0.0355634i
\(377\) 0.0543941 19.4039i 0.00280144 0.999354i
\(378\) −1.73583 0.0426188i −0.0892816 0.00219208i
\(379\) −29.8540 12.3659i −1.53350 0.635194i −0.553256 0.833011i \(-0.686615\pi\)
−0.980239 + 0.197817i \(0.936615\pi\)
\(380\) −13.6731 15.0861i −0.701413 0.773902i
\(381\) −1.53138 0.634318i −0.0784549 0.0324971i
\(382\) −5.05503 + 11.4038i −0.258638 + 0.583471i
\(383\) −15.6442 15.6442i −0.799381 0.799381i 0.183617 0.982998i \(-0.441219\pi\)
−0.982998 + 0.183617i \(0.941219\pi\)
\(384\) −4.55822 0.791049i −0.232610 0.0403680i
\(385\) 0.738442 + 0.738442i 0.0376345 + 0.0376345i
\(386\) −0.141252 0.366187i −0.00718955 0.0186384i
\(387\) −3.05359 + 7.37202i −0.155223 + 0.374741i
\(388\) −30.3034 1.48894i −1.53842 0.0755893i
\(389\) 7.23206 + 17.4597i 0.366680 + 0.885244i 0.994290 + 0.106716i \(0.0340335\pi\)
−0.627609 + 0.778528i \(0.715967\pi\)
\(390\) −2.39733 + 2.26966i −0.121394 + 0.114928i
\(391\) 5.32588 + 5.32588i 0.269341 + 0.269341i
\(392\) −5.97527 18.0881i −0.301797 0.913587i
\(393\) 0.834422 + 0.834422i 0.0420910 + 0.0420910i
\(394\) −6.72165 + 6.39950i −0.338632 + 0.322402i
\(395\) 5.97949 14.4358i 0.300861 0.726343i
\(396\) 3.10382 6.56234i 0.155973 0.329770i
\(397\) 8.33444 + 20.1211i 0.418294 + 1.00985i 0.982842 + 0.184450i \(0.0590504\pi\)
−0.564548 + 0.825400i \(0.690950\pi\)
\(398\) −4.99742 + 1.92770i −0.250498 + 0.0966268i
\(399\) −1.35344 −0.0677567
\(400\) −7.70902 + 6.32643i −0.385451 + 0.316322i
\(401\) 7.41264 7.41264i 0.370170 0.370170i −0.497369 0.867539i \(-0.665701\pi\)
0.867539 + 0.497369i \(0.165701\pi\)
\(402\) 5.79383 + 2.56825i 0.288970 + 0.128093i
\(403\) 3.45648 + 1.44309i 0.172179 + 0.0718852i
\(404\) 4.46316 9.43637i 0.222050 0.469477i
\(405\) −11.0046 4.55825i −0.546822 0.226501i
\(406\) 2.70152 + 2.83751i 0.134074 + 0.140823i
\(407\) 10.6125 + 10.6125i 0.526044 + 0.526044i
\(408\) −0.182328 + 2.47139i −0.00902660 + 0.122352i
\(409\) 9.92245i 0.490633i 0.969443 + 0.245317i \(0.0788919\pi\)
−0.969443 + 0.245317i \(0.921108\pi\)
\(410\) −6.04618 + 5.75640i −0.298599 + 0.284288i
\(411\) 0.719876 1.73793i 0.0355089 0.0857260i
\(412\) 7.02310 + 0.345075i 0.346003 + 0.0170006i
\(413\) 4.95575 + 2.05274i 0.243856 + 0.101009i
\(414\) −5.70704 + 12.8748i −0.280486 + 0.632760i
\(415\) −9.70575 −0.476436
\(416\) 2.55381 20.2356i 0.125211 0.992130i
\(417\) 7.43708 0.364195
\(418\) 4.72146 10.6513i 0.230934 0.520974i
\(419\) 6.36707 + 2.63733i 0.311052 + 0.128842i 0.532748 0.846274i \(-0.321159\pi\)
−0.221696 + 0.975116i \(0.571159\pi\)
\(420\) 0.0327117 0.665761i 0.00159617 0.0324858i
\(421\) −5.12207 + 12.3658i −0.249634 + 0.602671i −0.998173 0.0604205i \(-0.980756\pi\)
0.748539 + 0.663091i \(0.230756\pi\)
\(422\) 20.3455 19.3704i 0.990405 0.942937i
\(423\) 0.773229i 0.0375957i
\(424\) −8.46630 + 7.30292i −0.411160 + 0.354661i
\(425\) 3.77724 + 3.77724i 0.183223 + 0.183223i
\(426\) −5.54203 5.82102i −0.268512 0.282029i
\(427\) −6.35957 2.63422i −0.307761 0.127479i
\(428\) 12.7876 + 6.04822i 0.618114 + 0.292352i
\(429\) −1.74328 0.727822i −0.0841663 0.0351396i
\(430\) −5.76609 2.55596i −0.278066 0.123259i
\(431\) 25.7193 25.7193i 1.23885 1.23885i 0.278383 0.960470i \(-0.410202\pi\)
0.960470 0.278383i \(-0.0897984\pi\)
\(432\) −9.12970 + 2.76931i −0.439253 + 0.133239i
\(433\) −11.4659 −0.551014 −0.275507 0.961299i \(-0.588846\pi\)
−0.275507 + 0.961299i \(0.588846\pi\)
\(434\) −0.705604 + 0.272179i −0.0338701 + 0.0130650i
\(435\) −1.33339 3.21909i −0.0639312 0.154343i
\(436\) 14.1698 + 6.70193i 0.678609 + 0.320964i
\(437\) −8.64959 + 20.8820i −0.413766 + 0.998919i
\(438\) −0.553154 + 0.526642i −0.0264307 + 0.0251639i
\(439\) 21.2946 + 21.2946i 1.01634 + 1.01634i 0.999864 + 0.0164713i \(0.00524322\pi\)
0.0164713 + 0.999864i \(0.494757\pi\)
\(440\) 5.12531 + 2.57994i 0.244340 + 0.122994i
\(441\) −13.4908 13.4908i −0.642419 0.642419i
\(442\) −10.9211 0.298773i −0.519463 0.0142112i
\(443\) −9.67537 23.3584i −0.459691 1.10979i −0.968523 0.248926i \(-0.919922\pi\)
0.508832 0.860866i \(-0.330078\pi\)
\(444\) 0.470117 9.56799i 0.0223108 0.454077i
\(445\) −2.86823 + 6.92452i −0.135967 + 0.328254i
\(446\) 10.9035 + 28.2665i 0.516295 + 1.33846i
\(447\) 3.62337 + 3.62337i 0.171380 + 0.171380i
\(448\) 2.45312 + 3.30780i 0.115899 + 0.156279i
\(449\) −18.3921 18.3921i −0.867975 0.867975i 0.124273 0.992248i \(-0.460340\pi\)
−0.992248 + 0.124273i \(0.960340\pi\)
\(450\) −4.04757 + 9.13109i −0.190804 + 0.430444i
\(451\) −4.41349 1.82813i −0.207823 0.0860831i
\(452\) 12.0178 10.8921i 0.565270 0.512323i
\(453\) 1.80279 + 0.746739i 0.0847023 + 0.0350848i
\(454\) −31.1386 0.764527i −1.46141 0.0358810i
\(455\) 2.93865 + 0.00823778i 0.137766 + 0.000386193i
\(456\) −7.06120 + 2.33262i −0.330671 + 0.109235i
\(457\) −1.61254 −0.0754316 −0.0377158 0.999289i \(-0.512008\pi\)
−0.0377158 + 0.999289i \(0.512008\pi\)
\(458\) 12.3546 + 12.9766i 0.577294 + 0.606355i
\(459\) 1.95565 + 4.72135i 0.0912818 + 0.220374i
\(460\) −10.0628 4.75946i −0.469182 0.221911i
\(461\) 19.9388 8.25892i 0.928642 0.384656i 0.133479 0.991052i \(-0.457385\pi\)
0.795163 + 0.606395i \(0.207385\pi\)
\(462\) 0.355873 0.137274i 0.0165567 0.00638655i
\(463\) −8.70776 8.70776i −0.404684 0.404684i 0.475196 0.879880i \(-0.342377\pi\)
−0.879880 + 0.475196i \(0.842377\pi\)
\(464\) 18.9848 + 10.1480i 0.881348 + 0.471107i
\(465\) 0.672590 0.0311906
\(466\) 4.89240 1.88718i 0.226636 0.0874221i
\(467\) 8.92094 + 3.69517i 0.412812 + 0.170992i 0.579417 0.815032i \(-0.303280\pi\)
−0.166605 + 0.986024i \(0.553280\pi\)
\(468\) −6.82774 19.2527i −0.315612 0.889956i
\(469\) −2.15887 5.21197i −0.0996873 0.240666i
\(470\) −0.611001 0.0150015i −0.0281834 0.000691969i
\(471\) 0.833121 0.833121i 0.0383882 0.0383882i
\(472\) 29.3931 + 2.16850i 1.35293 + 0.0998133i
\(473\) 3.60919i 0.165951i
\(474\) −3.93520 4.13330i −0.180750 0.189849i
\(475\) −6.13450 + 14.8100i −0.281470 + 0.679529i
\(476\) 1.63447 1.48138i 0.0749160 0.0678989i
\(477\) −4.28531 + 10.3457i −0.196211 + 0.473695i
\(478\) −28.9518 + 11.1678i −1.32423 + 0.510804i
\(479\) 21.6977 21.6977i 0.991395 0.991395i −0.00856810 0.999963i \(-0.502727\pi\)
0.999963 + 0.00856810i \(0.00272735\pi\)
\(480\) −0.976758 3.52981i −0.0445827 0.161113i
\(481\) 42.2329 + 0.118389i 1.92565 + 0.00539809i
\(482\) 3.61088 1.39286i 0.164471 0.0634428i
\(483\) −0.683640 + 0.283173i −0.0311067 + 0.0128848i
\(484\) 0.918516 18.6940i 0.0417507 0.849725i
\(485\) −9.19154 22.1903i −0.417366 1.00761i
\(486\) −10.4797 + 9.97742i −0.475368 + 0.452585i
\(487\) 7.52221 0.340864 0.170432 0.985369i \(-0.445484\pi\)
0.170432 + 0.985369i \(0.445484\pi\)
\(488\) −37.7194 2.78278i −1.70748 0.125970i
\(489\) 1.68310i 0.0761124i
\(490\) 10.9221 10.3986i 0.493410 0.469762i
\(491\) 14.9873 + 36.1827i 0.676369 + 1.63290i 0.770576 + 0.637348i \(0.219968\pi\)
−0.0942069 + 0.995553i \(0.530032\pi\)
\(492\) 1.02720 + 2.87090i 0.0463098 + 0.129430i
\(493\) 4.41267 10.6531i 0.198737 0.479792i
\(494\) −11.7133 30.6213i −0.527007 1.37772i
\(495\) 5.74687 0.258303
\(496\) −3.21221 + 2.63611i −0.144232 + 0.118365i
\(497\) 7.15446i 0.320921i
\(498\) −1.43658 + 3.24084i −0.0643748 + 0.145226i
\(499\) −10.5392 25.4438i −0.471798 1.13902i −0.963368 0.268183i \(-0.913577\pi\)
0.491570 0.870838i \(-0.336423\pi\)
\(500\) −21.4497 10.1451i −0.959258 0.453704i
\(501\) 2.73051 6.59204i 0.121990 0.294511i
\(502\) 22.6298 + 0.555615i 1.01002 + 0.0247983i
\(503\) 9.31783 9.31783i 0.415461 0.415461i −0.468175 0.883636i \(-0.655088\pi\)
0.883636 + 0.468175i \(0.155088\pi\)
\(504\) 3.68410 + 1.85447i 0.164103 + 0.0826048i
\(505\) 8.26376 0.367732
\(506\) 0.156349 6.36798i 0.00695057 0.283091i
\(507\) −4.92258 + 2.00674i −0.218619 + 0.0891224i
\(508\) 5.44433 + 6.00698i 0.241553 + 0.266517i
\(509\) 15.5852 + 37.6261i 0.690804 + 1.66775i 0.743155 + 0.669119i \(0.233328\pi\)
−0.0523518 + 0.998629i \(0.516672\pi\)
\(510\) −1.83034 + 0.706034i −0.0810490 + 0.0312637i
\(511\) 0.679866 0.0300755
\(512\) 18.4994 + 13.0297i 0.817565 + 0.575836i
\(513\) −10.8439 + 10.8439i −0.478770 + 0.478770i
\(514\) 6.73582 15.1956i 0.297104 0.670250i
\(515\) 2.13023 + 5.14282i 0.0938691 + 0.226620i
\(516\) −1.70692 + 1.54704i −0.0751429 + 0.0681045i
\(517\) −0.133840 0.323119i −0.00588628 0.0142107i
\(518\) −6.17588 + 5.87988i −0.271352 + 0.258347i
\(519\) −3.92338 + 3.92338i −0.172217 + 0.172217i
\(520\) 15.3458 5.02172i 0.672960 0.220217i
\(521\) −6.15748 6.15748i −0.269764 0.269764i 0.559241 0.829005i \(-0.311093\pi\)
−0.829005 + 0.559241i \(0.811093\pi\)
\(522\) 21.5535 + 0.529190i 0.943372 + 0.0231620i
\(523\) 27.5028 11.3920i 1.20261 0.498139i 0.310771 0.950485i \(-0.399413\pi\)
0.891843 + 0.452346i \(0.149413\pi\)
\(524\) −1.94436 5.43425i −0.0849397 0.237396i
\(525\) −0.484854 + 0.200833i −0.0211608 + 0.00876508i
\(526\) 14.8800 + 38.5754i 0.648800 + 1.68197i
\(527\) 1.57391 + 1.57391i 0.0685605 + 0.0685605i
\(528\) 1.62008 1.32953i 0.0705050 0.0578602i
\(529\) 10.6425i 0.462719i
\(530\) −8.09195 3.58695i −0.351492 0.155807i
\(531\) 27.2715 11.2962i 1.18348 0.490214i
\(532\) 5.98407 + 2.83031i 0.259443 + 0.122710i
\(533\) −12.4338 + 5.10945i −0.538566 + 0.221315i
\(534\) 1.88763 + 1.98265i 0.0816856 + 0.0857978i
\(535\) 11.1986i 0.484156i
\(536\) −20.2460 23.4713i −0.874495 1.01381i
\(537\) −7.41207 7.41207i −0.319854 0.319854i
\(538\) −9.28134 9.74857i −0.400147 0.420291i
\(539\) 7.97272 + 3.30241i 0.343409 + 0.142245i
\(540\) −5.07206 5.59624i −0.218267 0.240824i
\(541\) −1.21138 + 0.501771i −0.0520814 + 0.0215728i −0.408572 0.912726i \(-0.633973\pi\)
0.356491 + 0.934299i \(0.383973\pi\)
\(542\) 8.62808 + 22.3677i 0.370608 + 0.960775i
\(543\) −1.64986 −0.0708024
\(544\) 5.97431 10.5457i 0.256147 0.452142i
\(545\) 12.4090i 0.531541i
\(546\) 0.437711 0.980026i 0.0187323 0.0419412i
\(547\) −36.8987 15.2839i −1.57767 0.653493i −0.589630 0.807674i \(-0.700726\pi\)
−0.988043 + 0.154180i \(0.950726\pi\)
\(548\) −6.81722 + 6.17868i −0.291217 + 0.263940i
\(549\) −34.9968 + 14.4961i −1.49363 + 0.618680i
\(550\) 0.110887 4.51633i 0.00472822 0.192577i
\(551\) 34.6028 1.47413
\(552\) −3.07867 + 2.65562i −0.131037 + 0.113031i
\(553\) 5.08013i 0.216029i
\(554\) 22.7795 + 0.559290i 0.967807 + 0.0237620i
\(555\) 7.00638 2.90214i 0.297404 0.123189i
\(556\) −32.8822 15.5524i −1.39452 0.659570i
\(557\) −0.517552 1.24948i −0.0219294 0.0529423i 0.912536 0.408997i \(-0.134122\pi\)
−0.934465 + 0.356055i \(0.884122\pi\)
\(558\) −1.68655 + 3.80476i −0.0713974 + 0.161068i
\(559\) −7.16132 7.20158i −0.302891 0.304594i
\(560\) −1.53687 + 2.87518i −0.0649446 + 0.121498i
\(561\) −0.793803 0.793803i −0.0335144 0.0335144i
\(562\) 32.6181 + 14.4588i 1.37591 + 0.609906i
\(563\) −1.01743 0.421433i −0.0428795 0.0177613i 0.361141 0.932511i \(-0.382387\pi\)
−0.404020 + 0.914750i \(0.632387\pi\)
\(564\) −0.0954456 + 0.201799i −0.00401899 + 0.00849727i
\(565\) 11.8627 + 4.91368i 0.499066 + 0.206720i
\(566\) 8.45059 + 0.207482i 0.355205 + 0.00872112i
\(567\) 3.87265 0.162636
\(568\) 12.3305 + 37.3265i 0.517378 + 1.56618i
\(569\) 2.35423 + 2.35423i 0.0986944 + 0.0986944i 0.754730 0.656036i \(-0.227768\pi\)
−0.656036 + 0.754730i \(0.727768\pi\)
\(570\) −4.05940 4.26375i −0.170029 0.178589i
\(571\) 24.4805 10.1402i 1.02448 0.424352i 0.193761 0.981049i \(-0.437931\pi\)
0.830716 + 0.556696i \(0.187931\pi\)
\(572\) 6.18569 + 6.86353i 0.258637 + 0.286979i
\(573\) −1.38027 + 3.33227i −0.0576616 + 0.139207i
\(574\) 1.09992 2.48135i 0.0459097 0.103570i
\(575\) 8.76422i 0.365493i
\(576\) 22.4169 + 3.32576i 0.934039 + 0.138573i
\(577\) 28.8832 28.8832i 1.20242 1.20242i 0.228994 0.973428i \(-0.426457\pi\)
0.973428 0.228994i \(-0.0735435\pi\)
\(578\) 16.0438 + 7.11178i 0.667332 + 0.295811i
\(579\) −0.0434292 0.104847i −0.00180486 0.00435731i
\(580\) −0.836327 + 17.0212i −0.0347266 + 0.706768i
\(581\) 2.91537 1.20759i 0.120950 0.0500992i
\(582\) −8.77005 0.215325i −0.363530 0.00892553i
\(583\) 5.06503i 0.209772i
\(584\) 3.54702 1.17173i 0.146777 0.0484867i
\(585\) 11.4670 11.4029i 0.474101 0.471451i
\(586\) −25.9721 27.2796i −1.07290 1.12691i
\(587\) −2.35119 + 5.67627i −0.0970439 + 0.234285i −0.964945 0.262452i \(-0.915469\pi\)
0.867901 + 0.496737i \(0.165469\pi\)
\(588\) −1.85558 5.18613i −0.0765230 0.213872i
\(589\) −2.55613 + 6.17106i −0.105324 + 0.254274i
\(590\) 8.39712 + 21.7690i 0.345704 + 0.896214i
\(591\) −1.89754 + 1.89754i −0.0780544 + 0.0780544i
\(592\) −22.0872 + 41.3207i −0.907776 + 1.69827i
\(593\) 2.47978 2.47978i 0.101832 0.101832i −0.654355 0.756187i \(-0.727060\pi\)
0.756187 + 0.654355i \(0.227060\pi\)
\(594\) 1.75144 3.95114i 0.0718624 0.162117i
\(595\) 1.61337 + 0.668282i 0.0661419 + 0.0273969i
\(596\) −8.44313 23.5975i −0.345844 0.966592i
\(597\) −1.43087 + 0.592687i −0.0585617 + 0.0242571i
\(598\) −12.3233 13.0165i −0.503937 0.532286i
\(599\) −14.2962 + 14.2962i −0.584126 + 0.584126i −0.936034 0.351909i \(-0.885533\pi\)
0.351909 + 0.936034i \(0.385533\pi\)
\(600\) −2.18347 + 1.88343i −0.0891396 + 0.0768906i
\(601\) 15.3855 15.3855i 0.627586 0.627586i −0.319874 0.947460i \(-0.603641\pi\)
0.947460 + 0.319874i \(0.103641\pi\)
\(602\) 2.05001 + 0.0503325i 0.0835521 + 0.00205140i
\(603\) −28.6815 11.8803i −1.16800 0.483802i
\(604\) −6.40923 7.07161i −0.260788 0.287740i
\(605\) 13.6891 5.67020i 0.556540 0.230527i
\(606\) 1.22315 2.75935i 0.0496870 0.112091i
\(607\) 12.3215i 0.500114i 0.968231 + 0.250057i \(0.0804494\pi\)
−0.968231 + 0.250057i \(0.919551\pi\)
\(608\) 36.0983 + 4.45298i 1.46398 + 0.180592i
\(609\) 0.801037 + 0.801037i 0.0324597 + 0.0324597i
\(610\) −10.7758 27.9355i −0.436299 1.13108i
\(611\) −0.908185 0.379169i −0.0367412 0.0153395i
\(612\) 0.595727 12.1244i 0.0240808 0.490102i
\(613\) −8.74372 + 21.1092i −0.353156 + 0.852593i 0.643071 + 0.765806i \(0.277660\pi\)
−0.996227 + 0.0867869i \(0.972340\pi\)
\(614\) −31.6926 0.778130i −1.27901 0.0314028i
\(615\) −1.70685 + 1.70685i −0.0688269 + 0.0688269i
\(616\) −1.86052 0.137261i −0.0749624 0.00553040i
\(617\) −4.15291 −0.167190 −0.0835950 0.996500i \(-0.526640\pi\)
−0.0835950 + 0.996500i \(0.526640\pi\)
\(618\) 2.03254 + 0.0499037i 0.0817608 + 0.00200742i
\(619\) −38.5180 15.9547i −1.54817 0.641272i −0.565184 0.824965i \(-0.691195\pi\)
−0.982984 + 0.183693i \(0.941195\pi\)
\(620\) −2.97378 1.40652i −0.119430 0.0564873i
\(621\) −3.20859 + 7.74622i −0.128756 + 0.310845i
\(622\) −5.10888 13.2444i −0.204848 0.531053i
\(623\) 2.43682i 0.0976293i
\(624\) 0.594590 5.86741i 0.0238027 0.234884i
\(625\) 6.31846i 0.252738i
\(626\) −15.1453 + 5.84211i −0.605326 + 0.233497i
\(627\) 1.28919 3.11238i 0.0514853 0.124296i
\(628\) −5.42577 + 1.94133i −0.216512 + 0.0774674i
\(629\) 23.1866 + 9.60422i 0.924512 + 0.382945i
\(630\) −0.0801439 + 3.26420i −0.00319301 + 0.130049i
\(631\) −32.7770 −1.30483 −0.652417 0.757861i \(-0.726245\pi\)
−0.652417 + 0.757861i \(0.726245\pi\)
\(632\) 8.75548 + 26.5042i 0.348274 + 1.05428i
\(633\) 5.74360 5.74360i 0.228288 0.228288i
\(634\) −0.245048 + 9.98062i −0.00973210 + 0.396381i
\(635\) −2.45605 + 5.92944i −0.0974655 + 0.235303i
\(636\) −2.39544 + 2.17106i −0.0949852 + 0.0860883i
\(637\) 22.4609 9.22994i 0.889934 0.365703i
\(638\) −9.09844 + 3.50962i −0.360211 + 0.138947i
\(639\) 27.8395 + 27.8395i 1.10131 + 1.10131i
\(640\) −3.06291 + 17.6492i −0.121072 + 0.697647i
\(641\) 29.9816i 1.18420i 0.805864 + 0.592101i \(0.201701\pi\)
−0.805864 + 0.592101i \(0.798299\pi\)
\(642\) 3.73931 + 1.65754i 0.147579 + 0.0654179i
\(643\) −33.5781 + 13.9085i −1.32419 + 0.548499i −0.928993 0.370097i \(-0.879325\pi\)
−0.395199 + 0.918595i \(0.629325\pi\)
\(644\) 3.61481 + 0.177611i 0.142443 + 0.00699887i
\(645\) −1.68488 0.697902i −0.0663422 0.0274798i
\(646\) 0.478200 19.4768i 0.0188145 0.766302i
\(647\) −15.3603 + 15.3603i −0.603876 + 0.603876i −0.941339 0.337463i \(-0.890431\pi\)
0.337463 + 0.941339i \(0.390431\pi\)
\(648\) 20.2045 6.67442i 0.793709 0.262196i
\(649\) −9.44099 + 9.44099i −0.370591 + 0.370591i
\(650\) −8.73999 9.23165i −0.342810 0.362095i
\(651\) −0.202030 + 0.0836836i −0.00791818 + 0.00327982i
\(652\) −3.51970 + 7.44164i −0.137842 + 0.291437i
\(653\) −11.6021 4.80575i −0.454025 0.188063i 0.143938 0.989587i \(-0.454023\pi\)
−0.597964 + 0.801523i \(0.704023\pi\)
\(654\) 4.14347 + 1.83669i 0.162023 + 0.0718204i
\(655\) 3.23085 3.23085i 0.126240 0.126240i
\(656\) 1.46198 14.8415i 0.0570807 0.579462i
\(657\) 2.64550 2.64550i 0.103211 0.103211i
\(658\) 0.185397 0.0715146i 0.00722752 0.00278793i
\(659\) −17.2318 + 41.6013i −0.671257 + 1.62056i 0.108221 + 0.994127i \(0.465485\pi\)
−0.779478 + 0.626430i \(0.784515\pi\)
\(660\) 1.49983 + 0.709381i 0.0583808 + 0.0276126i
\(661\) 6.22167 15.0204i 0.241995 0.584227i −0.755486 0.655165i \(-0.772599\pi\)
0.997481 + 0.0709376i \(0.0225991\pi\)
\(662\) 12.9984 12.3754i 0.505197 0.480984i
\(663\) −3.15896 0.00885536i −0.122684 0.000343914i
\(664\) 13.1289 11.3248i 0.509502 0.439489i
\(665\) 5.24046i 0.203216i
\(666\) −1.15179 + 46.9115i −0.0446309 + 1.81778i
\(667\) 17.4783 7.23977i 0.676764 0.280325i
\(668\) −25.8579 + 23.4359i −1.00047 + 0.906763i
\(669\) 3.35237 + 8.09333i 0.129610 + 0.312906i
\(670\) 9.94418 22.4335i 0.384177 0.866681i
\(671\) 12.1154 12.1154i 0.467708 0.467708i
\(672\) 0.732573 + 0.938741i 0.0282596 + 0.0362127i
\(673\) 33.3926i 1.28719i −0.765367 0.643594i \(-0.777442\pi\)
0.765367 0.643594i \(-0.222558\pi\)
\(674\) −17.1555 7.60460i −0.660806 0.292918i
\(675\) −2.27561 + 5.49380i −0.0875882 + 0.211457i
\(676\) 25.9611 + 1.42153i 0.998504 + 0.0546741i
\(677\) −24.8361 + 10.2874i −0.954528 + 0.395378i −0.804931 0.593369i \(-0.797798\pi\)
−0.149597 + 0.988747i \(0.547798\pi\)
\(678\) 3.39656 3.23377i 0.130444 0.124192i
\(679\) 5.52184 + 5.52184i 0.211909 + 0.211909i
\(680\) 9.56912 + 0.705969i 0.366959 + 0.0270727i
\(681\) −9.00634 −0.345124
\(682\) 0.0462044 1.88187i 0.00176926 0.0720606i
\(683\) −26.6641 11.0446i −1.02027 0.422612i −0.191082 0.981574i \(-0.561200\pi\)
−0.829193 + 0.558963i \(0.811200\pi\)
\(684\) 34.2986 12.2720i 1.31144 0.469230i
\(685\) −6.72922 2.78733i −0.257110 0.106498i
\(686\) −4.05206 + 9.14120i −0.154708 + 0.349013i
\(687\) 3.66332 + 3.66332i 0.139764 + 0.139764i
\(688\) 10.7821 3.27054i 0.411064 0.124688i
\(689\) −10.0500 10.1065i −0.382873 0.385026i
\(690\) −2.94254 1.30435i −0.112021 0.0496558i
\(691\) −14.2066 34.2977i −0.540444 1.30475i −0.924410 0.381400i \(-0.875442\pi\)
0.383966 0.923347i \(-0.374558\pi\)
\(692\) 25.5514 9.14222i 0.971318 0.347535i
\(693\) −1.72622 + 0.715025i −0.0655738 + 0.0271615i
\(694\) 0.118628 4.83164i 0.00450307 0.183407i
\(695\) 28.7961i 1.09230i
\(696\) 5.55977 + 2.79863i 0.210742 + 0.106082i
\(697\) −7.98831 −0.302579
\(698\) 21.3524 + 0.524253i 0.808201 + 0.0198433i
\(699\) 1.40080 0.580231i 0.0529831 0.0219463i
\(700\) 2.56371 + 0.125966i 0.0968992 + 0.00476108i
\(701\) −13.7143 5.68063i −0.517980 0.214554i 0.108349 0.994113i \(-0.465444\pi\)
−0.626330 + 0.779558i \(0.715444\pi\)
\(702\) −4.34509 11.3591i −0.163995 0.428720i
\(703\) 75.3134i 2.84050i
\(704\) −9.94332 + 2.49043i −0.374753 + 0.0938617i
\(705\) −0.176722 −0.00665575
\(706\) 38.4865 14.8457i 1.44846 0.558726i
\(707\) −2.48223 + 1.02818i −0.0933540 + 0.0386685i
\(708\) 8.51176 + 0.418220i 0.319891 + 0.0157177i
\(709\) 23.7139 + 9.82263i 0.890596 + 0.368897i 0.780597 0.625035i \(-0.214915\pi\)
0.109999 + 0.993932i \(0.464915\pi\)
\(710\) −22.5388 + 21.4585i −0.845865 + 0.805324i
\(711\) 19.7679 + 19.7679i 0.741353 + 0.741353i
\(712\) −4.19981 12.7135i −0.157394 0.476458i
\(713\) 3.65189i 0.136764i
\(714\) 0.461947 0.439807i 0.0172879 0.0164594i
\(715\) −2.81810 + 6.74991i −0.105391 + 0.252432i
\(716\) 17.2715 + 48.2717i 0.645466 + 1.80400i
\(717\) −8.28954 + 3.43364i −0.309579 + 0.128232i
\(718\) 14.8697 33.5452i 0.554933 1.25190i
\(719\) 9.13313i 0.340608i −0.985392 0.170304i \(-0.945525\pi\)
0.985392 0.170304i \(-0.0544750\pi\)
\(720\) 5.20764 + 17.1682i 0.194077 + 0.639822i
\(721\) −1.27974 1.27974i −0.0476600 0.0476600i
\(722\) 29.4780 11.3708i 1.09706 0.423177i
\(723\) 1.03387 0.428245i 0.0384502 0.0159266i
\(724\) 7.29468 + 3.45020i 0.271105 + 0.128226i
\(725\) 12.3961 5.13462i 0.460378 0.190695i
\(726\) 0.132833 5.41019i 0.00492989 0.200791i
\(727\) −20.8794 20.8794i −0.774372 0.774372i 0.204495 0.978868i \(-0.434445\pi\)
−0.978868 + 0.204495i \(0.934445\pi\)
\(728\) −3.98472 + 3.41773i −0.147684 + 0.126670i
\(729\) 13.0004 13.0004i 0.481495 0.481495i
\(730\) 2.03914 + 2.14179i 0.0754719 + 0.0792712i
\(731\) −2.30961 5.57588i −0.0854239 0.206232i
\(732\) −10.9229 0.536690i −0.403722 0.0198366i
\(733\) −6.55085 15.8151i −0.241961 0.584146i 0.755516 0.655130i \(-0.227386\pi\)
−0.997477 + 0.0709840i \(0.977386\pi\)
\(734\) −19.0860 8.46032i −0.704476 0.312276i
\(735\) 3.08334 3.08334i 0.113731 0.113731i
\(736\) 19.1654 5.30340i 0.706446 0.195486i
\(737\) 14.0419 0.517240
\(738\) −5.37544 13.9355i −0.197873 0.512972i
\(739\) −3.20079 7.72740i −0.117743 0.284257i 0.854010 0.520256i \(-0.174164\pi\)
−0.971753 + 0.235999i \(0.924164\pi\)
\(740\) −37.0469 1.82027i −1.36187 0.0669146i
\(741\) −3.60317 8.76826i −0.132366 0.322110i
\(742\) 2.87692 + 0.0706351i 0.105615 + 0.00259310i
\(743\) −18.3487 −0.673149 −0.336574 0.941657i \(-0.609268\pi\)
−0.336574 + 0.941657i \(0.609268\pi\)
\(744\) −0.909811 + 0.784791i −0.0333553 + 0.0287718i
\(745\) 14.0296 14.0296i 0.514003 0.514003i
\(746\) −0.296163 + 12.0625i −0.0108433 + 0.441639i
\(747\) 6.64536 16.0433i 0.243141 0.586994i
\(748\) 1.84971 + 5.16971i 0.0676320 + 0.189023i
\(749\) −1.39332 3.36378i −0.0509110 0.122910i
\(750\) −6.27223 2.78032i −0.229029 0.101523i
\(751\) 16.5406i 0.603574i 0.953375 + 0.301787i \(0.0975832\pi\)
−0.953375 + 0.301787i \(0.902417\pi\)
\(752\) 0.844004 0.692635i 0.0307777 0.0252578i
\(753\) 6.54531 0.238524
\(754\) −11.1908 + 25.0559i −0.407544 + 0.912482i
\(755\) 2.89134 6.98032i 0.105227 0.254040i
\(756\) 2.21981 + 1.04991i 0.0807337 + 0.0381849i
\(757\) 3.11853 + 7.52881i 0.113345 + 0.273639i 0.970365 0.241644i \(-0.0776867\pi\)
−0.857020 + 0.515283i \(0.827687\pi\)
\(758\) 31.5108 + 33.0971i 1.14452 + 1.20214i
\(759\) 1.84184i 0.0668544i
\(760\) 9.03181 + 27.3407i 0.327618 + 0.991751i
\(761\) 13.8306 0.501359 0.250679 0.968070i \(-0.419346\pi\)
0.250679 + 0.968070i \(0.419346\pi\)
\(762\) 1.61637 + 1.69774i 0.0585549 + 0.0615025i
\(763\) −1.54392 3.72735i −0.0558937 0.134939i
\(764\) 13.0711 11.8468i 0.472897 0.428603i
\(765\) 8.87841 3.67756i 0.320999 0.132962i
\(766\) 11.2604 + 29.1919i 0.406856 + 1.05475i
\(767\) −0.105320 + 37.5707i −0.00380289 + 1.35660i
\(768\) 5.43990 + 3.63506i 0.196295 + 0.131169i
\(769\) 16.2413