Properties

Label 416.2.bd.a.83.12
Level $416$
Weight $2$
Character 416.83
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 83.12
Character \(\chi\) \(=\) 416.83
Dual form 416.2.bd.a.411.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13073 - 0.849387i) q^{2} +(0.761899 + 0.315589i) q^{3} +(0.557082 + 1.92085i) q^{4} +(-0.560536 + 1.35325i) q^{5} +(-0.593442 - 1.00399i) q^{6} +4.42814i q^{7} +(1.00164 - 2.64513i) q^{8} +(-1.64043 - 1.64043i) q^{9} +O(q^{10})\) \(q+(-1.13073 - 0.849387i) q^{2} +(0.761899 + 0.315589i) q^{3} +(0.557082 + 1.92085i) q^{4} +(-0.560536 + 1.35325i) q^{5} +(-0.593442 - 1.00399i) q^{6} +4.42814i q^{7} +(1.00164 - 2.64513i) q^{8} +(-1.64043 - 1.64043i) q^{9} +(1.78325 - 1.05405i) q^{10} +(-0.0820155 - 0.0339719i) q^{11} +(-0.181758 + 1.63930i) q^{12} +(-3.35512 + 1.32030i) q^{13} +(3.76120 - 5.00701i) q^{14} +(-0.854144 + 0.854144i) q^{15} +(-3.37932 + 2.14014i) q^{16} -5.20503 q^{17} +(0.461515 + 3.24823i) q^{18} +(-0.202500 - 0.488879i) q^{19} +(-2.91166 - 0.322831i) q^{20} +(-1.39747 + 3.37379i) q^{21} +(0.0638817 + 0.108076i) q^{22} +(-3.85867 - 3.85867i) q^{23} +(1.59792 - 1.69922i) q^{24} +(2.01844 + 2.01844i) q^{25} +(4.91516 + 1.35690i) q^{26} +(-1.67891 - 4.05324i) q^{27} +(-8.50578 + 2.46684i) q^{28} +(-1.70159 + 4.10801i) q^{29} +(1.69130 - 0.240303i) q^{30} +(1.48538 + 1.48538i) q^{31} +(5.63889 + 0.450439i) q^{32} +(-0.0517664 - 0.0517664i) q^{33} +(5.88546 + 4.42109i) q^{34} +(-5.99239 - 2.48213i) q^{35} +(2.23716 - 4.06486i) q^{36} +(1.78268 + 0.738412i) q^{37} +(-0.186275 + 0.724790i) q^{38} +(-2.97293 - 0.0529068i) q^{39} +(3.01808 + 2.83816i) q^{40} +10.8195 q^{41} +(4.44581 - 2.62784i) q^{42} +(1.42531 + 3.44101i) q^{43} +(0.0195656 - 0.176464i) q^{44} +(3.13943 - 1.30039i) q^{45} +(1.08559 + 7.64061i) q^{46} +(1.77151 + 1.77151i) q^{47} +(-3.25011 + 0.564096i) q^{48} -12.6084 q^{49} +(-0.567865 - 3.99674i) q^{50} +(-3.96571 - 1.64265i) q^{51} +(-4.40516 - 5.70916i) q^{52} +(4.69207 + 11.3277i) q^{53} +(-1.54439 + 6.00914i) q^{54} +(0.0919452 - 0.0919452i) q^{55} +(11.7130 + 4.43539i) q^{56} -0.436384i q^{57} +(5.41332 - 3.19972i) q^{58} +(-0.387119 + 0.934589i) q^{59} +(-2.11651 - 1.16485i) q^{60} +(-3.01561 + 7.28034i) q^{61} +(-0.417896 - 2.94123i) q^{62} +(7.26403 - 7.26403i) q^{63} +(-5.99344 - 5.29893i) q^{64} +(0.0939708 - 5.28040i) q^{65} +(0.0145639 + 0.102503i) q^{66} +(-4.47221 + 1.85245i) q^{67} +(-2.89963 - 9.99808i) q^{68} +(-1.72217 - 4.15768i) q^{69} +(4.66746 + 7.89647i) q^{70} +11.6070 q^{71} +(-5.98226 + 2.69603i) q^{72} +7.03652i q^{73} +(-1.38853 - 2.34913i) q^{74} +(0.900850 + 2.17484i) q^{75} +(0.826254 - 0.661319i) q^{76} +(0.150432 - 0.363176i) q^{77} +(3.31663 + 2.58499i) q^{78} +2.67686 q^{79} +(-1.00192 - 5.77270i) q^{80} +3.34174i q^{81} +(-12.2338 - 9.18991i) q^{82} +(-3.46051 - 8.35441i) q^{83} +(-7.25905 - 0.804850i) q^{84} +(2.91761 - 7.04373i) q^{85} +(1.31111 - 5.10148i) q^{86} +(-2.59288 + 2.59288i) q^{87} +(-0.172010 + 0.182914i) q^{88} +7.23795 q^{89} +(-4.65437 - 1.19620i) q^{90} +(-5.84645 - 14.8569i) q^{91} +(5.26233 - 9.56153i) q^{92} +(0.662942 + 1.60048i) q^{93} +(-0.498394 - 3.50779i) q^{94} +0.775086 q^{95} +(4.15411 + 2.12276i) q^{96} +(-10.7614 + 10.7614i) q^{97} +(14.2566 + 10.7094i) q^{98} +(0.0788119 + 0.190269i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24} - 4 q^{26} - 8 q^{27} + 56 q^{28} - 8 q^{29} - 16 q^{30} - 44 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} - 28 q^{39} - 8 q^{40} - 8 q^{41} - 48 q^{42} - 32 q^{43} + 12 q^{44} - 36 q^{45} - 48 q^{46} - 8 q^{47} - 8 q^{48} - 168 q^{49} + 76 q^{50} - 4 q^{52} - 8 q^{53} - 28 q^{54} - 40 q^{55} + 56 q^{56} + 32 q^{58} + 52 q^{59} - 36 q^{60} - 8 q^{61} + 72 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} + 20 q^{70} + 56 q^{71} + 8 q^{72} - 8 q^{74} - 68 q^{76} + 56 q^{77} - 48 q^{78} - 16 q^{79} + 28 q^{80} - 88 q^{82} + 36 q^{83} + 100 q^{84} - 24 q^{85} + 96 q^{86} - 8 q^{87} + 64 q^{88} - 8 q^{89} - 64 q^{90} + 72 q^{91} - 8 q^{92} - 40 q^{93} - 56 q^{94} + 36 q^{96} - 8 q^{97} + 52 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.13073 0.849387i −0.799544 0.600608i
\(3\) 0.761899 + 0.315589i 0.439883 + 0.182205i 0.591623 0.806215i \(-0.298488\pi\)
−0.151740 + 0.988420i \(0.548488\pi\)
\(4\) 0.557082 + 1.92085i 0.278541 + 0.960424i
\(5\) −0.560536 + 1.35325i −0.250679 + 0.605193i −0.998259 0.0589785i \(-0.981216\pi\)
0.747580 + 0.664172i \(0.231216\pi\)
\(6\) −0.593442 1.00399i −0.242272 0.409878i
\(7\) 4.42814i 1.67368i 0.547449 + 0.836839i \(0.315599\pi\)
−0.547449 + 0.836839i \(0.684401\pi\)
\(8\) 1.00164 2.64513i 0.354132 0.935195i
\(9\) −1.64043 1.64043i −0.546809 0.546809i
\(10\) 1.78325 1.05405i 0.563913 0.333319i
\(11\) −0.0820155 0.0339719i −0.0247286 0.0102429i 0.370285 0.928918i \(-0.379260\pi\)
−0.395013 + 0.918675i \(0.629260\pi\)
\(12\) −0.181758 + 1.63930i −0.0524691 + 0.473226i
\(13\) −3.35512 + 1.32030i −0.930542 + 0.366184i
\(14\) 3.76120 5.00701i 1.00522 1.33818i
\(15\) −0.854144 + 0.854144i −0.220539 + 0.220539i
\(16\) −3.37932 + 2.14014i −0.844830 + 0.535035i
\(17\) −5.20503 −1.26241 −0.631203 0.775618i \(-0.717438\pi\)
−0.631203 + 0.775618i \(0.717438\pi\)
\(18\) 0.461515 + 3.24823i 0.108780 + 0.765615i
\(19\) −0.202500 0.488879i −0.0464568 0.112157i 0.898948 0.438056i \(-0.144333\pi\)
−0.945404 + 0.325900i \(0.894333\pi\)
\(20\) −2.91166 0.322831i −0.651067 0.0721873i
\(21\) −1.39747 + 3.37379i −0.304953 + 0.736222i
\(22\) 0.0638817 + 0.108076i 0.0136196 + 0.0230418i
\(23\) −3.85867 3.85867i −0.804589 0.804589i 0.179220 0.983809i \(-0.442643\pi\)
−0.983809 + 0.179220i \(0.942643\pi\)
\(24\) 1.59792 1.69922i 0.326174 0.346851i
\(25\) 2.01844 + 2.01844i 0.403688 + 0.403688i
\(26\) 4.91516 + 1.35690i 0.963942 + 0.266111i
\(27\) −1.67891 4.05324i −0.323106 0.780046i
\(28\) −8.50578 + 2.46684i −1.60744 + 0.466188i
\(29\) −1.70159 + 4.10801i −0.315978 + 0.762838i 0.683482 + 0.729968i \(0.260465\pi\)
−0.999460 + 0.0328703i \(0.989535\pi\)
\(30\) 1.69130 0.240303i 0.308788 0.0438732i
\(31\) 1.48538 + 1.48538i 0.266783 + 0.266783i 0.827803 0.561020i \(-0.189591\pi\)
−0.561020 + 0.827803i \(0.689591\pi\)
\(32\) 5.63889 + 0.450439i 0.996825 + 0.0796271i
\(33\) −0.0517664 0.0517664i −0.00901137 0.00901137i
\(34\) 5.88546 + 4.42109i 1.00935 + 0.758210i
\(35\) −5.99239 2.48213i −1.01290 0.419556i
\(36\) 2.23716 4.06486i 0.372860 0.677477i
\(37\) 1.78268 + 0.738412i 0.293071 + 0.121394i 0.524375 0.851488i \(-0.324299\pi\)
−0.231304 + 0.972882i \(0.574299\pi\)
\(38\) −0.186275 + 0.724790i −0.0302179 + 0.117576i
\(39\) −2.97293 0.0529068i −0.476050 0.00847186i
\(40\) 3.01808 + 2.83816i 0.477200 + 0.448753i
\(41\) 10.8195 1.68971 0.844857 0.534992i \(-0.179685\pi\)
0.844857 + 0.534992i \(0.179685\pi\)
\(42\) 4.44581 2.62784i 0.686004 0.405485i
\(43\) 1.42531 + 3.44101i 0.217358 + 0.524749i 0.994519 0.104553i \(-0.0333411\pi\)
−0.777161 + 0.629301i \(0.783341\pi\)
\(44\) 0.0195656 0.176464i 0.00294962 0.0266030i
\(45\) 3.13943 1.30039i 0.467999 0.193851i
\(46\) 1.08559 + 7.64061i 0.160062 + 1.12655i
\(47\) 1.77151 + 1.77151i 0.258401 + 0.258401i 0.824404 0.566002i \(-0.191511\pi\)
−0.566002 + 0.824404i \(0.691511\pi\)
\(48\) −3.25011 + 0.564096i −0.469112 + 0.0814202i
\(49\) −12.6084 −1.80120
\(50\) −0.567865 3.99674i −0.0803082 0.565224i
\(51\) −3.96571 1.64265i −0.555310 0.230017i
\(52\) −4.40516 5.70916i −0.610886 0.791718i
\(53\) 4.69207 + 11.3277i 0.644506 + 1.55597i 0.820539 + 0.571591i \(0.193673\pi\)
−0.176033 + 0.984384i \(0.556327\pi\)
\(54\) −1.54439 + 6.00914i −0.210164 + 0.817741i
\(55\) 0.0919452 0.0919452i 0.0123979 0.0123979i
\(56\) 11.7130 + 4.43539i 1.56522 + 0.592704i
\(57\) 0.436384i 0.0578004i
\(58\) 5.41332 3.19972i 0.710804 0.420144i
\(59\) −0.387119 + 0.934589i −0.0503986 + 0.121673i −0.947074 0.321016i \(-0.895976\pi\)
0.896675 + 0.442689i \(0.145976\pi\)
\(60\) −2.11651 1.16485i −0.273240 0.150382i
\(61\) −3.01561 + 7.28034i −0.386110 + 0.932151i 0.604646 + 0.796494i \(0.293315\pi\)
−0.990756 + 0.135657i \(0.956685\pi\)
\(62\) −0.417896 2.94123i −0.0530728 0.373537i
\(63\) 7.26403 7.26403i 0.915182 0.915182i
\(64\) −5.99344 5.29893i −0.749181 0.662366i
\(65\) 0.0939708 5.28040i 0.0116556 0.654953i
\(66\) 0.0145639 + 0.102503i 0.00179269 + 0.0126173i
\(67\) −4.47221 + 1.85245i −0.546367 + 0.226313i −0.638755 0.769411i \(-0.720550\pi\)
0.0923877 + 0.995723i \(0.470550\pi\)
\(68\) −2.89963 9.99808i −0.351632 1.21245i
\(69\) −1.72217 4.15768i −0.207324 0.500525i
\(70\) 4.66746 + 7.89647i 0.557868 + 0.943809i
\(71\) 11.6070 1.37749 0.688746 0.725002i \(-0.258161\pi\)
0.688746 + 0.725002i \(0.258161\pi\)
\(72\) −5.98226 + 2.69603i −0.705016 + 0.317730i
\(73\) 7.03652i 0.823562i 0.911283 + 0.411781i \(0.135093\pi\)
−0.911283 + 0.411781i \(0.864907\pi\)
\(74\) −1.38853 2.34913i −0.161413 0.273081i
\(75\) 0.900850 + 2.17484i 0.104021 + 0.251129i
\(76\) 0.826254 0.661319i 0.0947778 0.0758584i
\(77\) 0.150432 0.363176i 0.0171433 0.0413877i
\(78\) 3.31663 + 2.58499i 0.375535 + 0.292693i
\(79\) 2.67686 0.301170 0.150585 0.988597i \(-0.451884\pi\)
0.150585 + 0.988597i \(0.451884\pi\)
\(80\) −1.00192 5.77270i −0.112018 0.645408i
\(81\) 3.34174i 0.371304i
\(82\) −12.2338 9.18991i −1.35100 1.01486i
\(83\) −3.46051 8.35441i −0.379840 0.917016i −0.991995 0.126278i \(-0.959697\pi\)
0.612155 0.790738i \(-0.290303\pi\)
\(84\) −7.25905 0.804850i −0.792027 0.0878164i
\(85\) 2.91761 7.04373i 0.316459 0.764000i
\(86\) 1.31111 5.10148i 0.141381 0.550106i
\(87\) −2.59288 + 2.59288i −0.277986 + 0.277986i
\(88\) −0.172010 + 0.182914i −0.0183363 + 0.0194987i
\(89\) 7.23795 0.767221 0.383610 0.923495i \(-0.374681\pi\)
0.383610 + 0.923495i \(0.374681\pi\)
\(90\) −4.65437 1.19620i −0.490614 0.126091i
\(91\) −5.84645 14.8569i −0.612874 1.55743i
\(92\) 5.26233 9.56153i 0.548636 0.996858i
\(93\) 0.662942 + 1.60048i 0.0687439 + 0.165962i
\(94\) −0.498394 3.50779i −0.0514054 0.361801i
\(95\) 0.775086 0.0795222
\(96\) 4.15411 + 2.12276i 0.423977 + 0.216653i
\(97\) −10.7614 + 10.7614i −1.09266 + 1.09266i −0.0974159 + 0.995244i \(0.531058\pi\)
−0.995244 + 0.0974159i \(0.968942\pi\)
\(98\) 14.2566 + 10.7094i 1.44014 + 1.08181i
\(99\) 0.0788119 + 0.190269i 0.00792090 + 0.0191227i
\(100\) −2.75268 + 5.00155i −0.275268 + 0.500155i
\(101\) −1.56778 3.78497i −0.156000 0.376618i 0.826485 0.562959i \(-0.190337\pi\)
−0.982485 + 0.186341i \(0.940337\pi\)
\(102\) 3.08888 + 5.22581i 0.305845 + 0.517432i
\(103\) 11.9175 11.9175i 1.17426 1.17426i 0.193078 0.981183i \(-0.438153\pi\)
0.981183 0.193078i \(-0.0618470\pi\)
\(104\) 0.131741 + 10.1972i 0.0129183 + 0.999917i
\(105\) −3.78226 3.78226i −0.369111 0.369111i
\(106\) 4.31613 16.7939i 0.419220 1.63117i
\(107\) −0.954069 + 0.395188i −0.0922333 + 0.0382043i −0.428323 0.903626i \(-0.640895\pi\)
0.336090 + 0.941830i \(0.390895\pi\)
\(108\) 6.85037 5.48291i 0.659177 0.527593i
\(109\) 1.49146 0.617783i 0.142856 0.0591729i −0.310110 0.950701i \(-0.600366\pi\)
0.452966 + 0.891528i \(0.350366\pi\)
\(110\) −0.182062 + 0.0258677i −0.0173589 + 0.00246639i
\(111\) 1.12519 + 1.12519i 0.106798 + 0.106798i
\(112\) −9.47683 14.9641i −0.895477 1.41397i
\(113\) 11.3922i 1.07168i −0.844318 0.535842i \(-0.819994\pi\)
0.844318 0.535842i \(-0.180006\pi\)
\(114\) −0.370659 + 0.493430i −0.0347154 + 0.0462140i
\(115\) 7.38469 3.05884i 0.688626 0.285238i
\(116\) −8.83879 0.980004i −0.820661 0.0909911i
\(117\) 7.66967 + 3.33798i 0.709061 + 0.308596i
\(118\) 1.23155 0.727949i 0.113374 0.0670132i
\(119\) 23.0486i 2.11286i
\(120\) 1.40378 + 3.11487i 0.128147 + 0.284347i
\(121\) −7.77260 7.77260i −0.706600 0.706600i
\(122\) 9.59366 5.67064i 0.868569 0.513396i
\(123\) 8.24333 + 3.41450i 0.743276 + 0.307875i
\(124\) −2.02572 + 3.68068i −0.181915 + 0.330535i
\(125\) −10.6291 + 4.40273i −0.950699 + 0.393792i
\(126\) −14.3836 + 2.04365i −1.28139 + 0.182063i
\(127\) 3.91821 0.347685 0.173842 0.984773i \(-0.444382\pi\)
0.173842 + 0.984773i \(0.444382\pi\)
\(128\) 2.27610 + 11.0824i 0.201181 + 0.979554i
\(129\) 3.07151i 0.270432i
\(130\) −4.59136 + 5.89087i −0.402689 + 0.516663i
\(131\) −15.7801 6.53635i −1.37872 0.571083i −0.434579 0.900634i \(-0.643103\pi\)
−0.944138 + 0.329551i \(0.893103\pi\)
\(132\) 0.0705972 0.128273i 0.00614470 0.0111648i
\(133\) 2.16482 0.896699i 0.187714 0.0777537i
\(134\) 6.63029 + 1.70402i 0.572769 + 0.147205i
\(135\) 6.42614 0.553074
\(136\) −5.21356 + 13.7680i −0.447059 + 1.18060i
\(137\) 2.19294i 0.187355i 0.995603 + 0.0936776i \(0.0298623\pi\)
−0.995603 + 0.0936776i \(0.970138\pi\)
\(138\) −1.58418 + 6.16398i −0.134854 + 0.524713i
\(139\) −5.62670 + 2.33065i −0.477250 + 0.197684i −0.608324 0.793689i \(-0.708158\pi\)
0.131073 + 0.991373i \(0.458158\pi\)
\(140\) 1.42954 12.8932i 0.120818 1.08968i
\(141\) 0.790643 + 1.90878i 0.0665841 + 0.160748i
\(142\) −13.1243 9.85881i −1.10137 0.827333i
\(143\) 0.320025 + 0.00569521i 0.0267618 + 0.000476257i
\(144\) 9.05427 + 2.03278i 0.754522 + 0.169398i
\(145\) −4.60537 4.60537i −0.382455 0.382455i
\(146\) 5.97673 7.95638i 0.494638 0.658474i
\(147\) −9.60632 3.97907i −0.792316 0.328188i
\(148\) −0.425276 + 3.83562i −0.0349575 + 0.315286i
\(149\) −2.43175 1.00726i −0.199217 0.0825183i 0.280844 0.959753i \(-0.409386\pi\)
−0.480061 + 0.877235i \(0.659386\pi\)
\(150\) 0.828671 3.22432i 0.0676607 0.263265i
\(151\) 13.8929 1.13059 0.565296 0.824888i \(-0.308762\pi\)
0.565296 + 0.824888i \(0.308762\pi\)
\(152\) −1.49598 + 0.0459605i −0.121340 + 0.00372789i
\(153\) 8.53847 + 8.53847i 0.690295 + 0.690295i
\(154\) −0.478574 + 0.282877i −0.0385646 + 0.0227949i
\(155\) −2.84271 + 1.17749i −0.228332 + 0.0945783i
\(156\) −1.55454 5.74003i −0.124463 0.459570i
\(157\) −2.58769 + 6.24724i −0.206520 + 0.498584i −0.992871 0.119197i \(-0.961968\pi\)
0.786350 + 0.617781i \(0.211968\pi\)
\(158\) −3.02680 2.27369i −0.240799 0.180885i
\(159\) 10.1113i 0.801879i
\(160\) −3.77036 + 7.37836i −0.298073 + 0.583311i
\(161\) 17.0867 17.0867i 1.34662 1.34662i
\(162\) 2.83843 3.77859i 0.223008 0.296874i
\(163\) 9.35483 + 22.5846i 0.732727 + 1.76896i 0.633289 + 0.773916i \(0.281705\pi\)
0.0994381 + 0.995044i \(0.468295\pi\)
\(164\) 6.02732 + 20.7825i 0.470655 + 1.62284i
\(165\) 0.0990699 0.0410361i 0.00771258 0.00319466i
\(166\) −3.18324 + 12.3859i −0.247068 + 0.961329i
\(167\) 5.82368i 0.450650i −0.974284 0.225325i \(-0.927656\pi\)
0.974284 0.225325i \(-0.0723444\pi\)
\(168\) 7.52437 + 7.07581i 0.580518 + 0.545911i
\(169\) 9.51364 8.85949i 0.731819 0.681499i
\(170\) −9.28187 + 5.48635i −0.711887 + 0.420784i
\(171\) −0.469783 + 1.13416i −0.0359252 + 0.0867312i
\(172\) −5.81564 + 4.65473i −0.443438 + 0.354920i
\(173\) −9.05584 + 21.8627i −0.688503 + 1.66219i 0.0592728 + 0.998242i \(0.481122\pi\)
−0.747776 + 0.663951i \(0.768878\pi\)
\(174\) 5.13420 0.729478i 0.389223 0.0553016i
\(175\) −8.93792 + 8.93792i −0.675644 + 0.675644i
\(176\) 0.349861 0.0607227i 0.0263718 0.00457714i
\(177\) −0.589892 + 0.589892i −0.0443390 + 0.0443390i
\(178\) −8.18413 6.14782i −0.613427 0.460799i
\(179\) 17.7076 + 7.33471i 1.32352 + 0.548222i 0.928801 0.370578i \(-0.120840\pi\)
0.394723 + 0.918800i \(0.370840\pi\)
\(180\) 4.24678 + 5.30594i 0.316536 + 0.395482i
\(181\) 20.0512 8.30547i 1.49039 0.617341i 0.518990 0.854780i \(-0.326308\pi\)
0.971402 + 0.237439i \(0.0763081\pi\)
\(182\) −6.00855 + 21.7650i −0.445384 + 1.61333i
\(183\) −4.59519 + 4.59519i −0.339686 + 0.339686i
\(184\) −14.0717 + 6.34171i −1.03738 + 0.467517i
\(185\) −1.99852 + 1.99852i −0.146934 + 0.146934i
\(186\) 0.609825 2.37280i 0.0447145 0.173982i
\(187\) 0.426893 + 0.176825i 0.0312175 + 0.0129307i
\(188\) −2.41593 + 4.38968i −0.176200 + 0.320150i
\(189\) 17.9483 7.43442i 1.30555 0.540775i
\(190\) −0.876410 0.658349i −0.0635815 0.0477616i
\(191\) 1.38990i 0.100570i −0.998735 0.0502848i \(-0.983987\pi\)
0.998735 0.0502848i \(-0.0160129\pi\)
\(192\) −2.89412 5.92871i −0.208865 0.427868i
\(193\) 11.9901 + 11.9901i 0.863064 + 0.863064i 0.991693 0.128629i \(-0.0410576\pi\)
−0.128629 + 0.991693i \(0.541058\pi\)
\(194\) 21.3089 3.02761i 1.52989 0.217370i
\(195\) 1.73803 3.99348i 0.124463 0.285979i
\(196\) −7.02391 24.2188i −0.501708 1.72991i
\(197\) −9.43446 + 22.7768i −0.672178 + 1.62278i 0.105725 + 0.994395i \(0.466284\pi\)
−0.777902 + 0.628385i \(0.783716\pi\)
\(198\) 0.0724972 0.282084i 0.00515215 0.0200468i
\(199\) −1.71805 + 1.71805i −0.121790 + 0.121790i −0.765375 0.643585i \(-0.777446\pi\)
0.643585 + 0.765375i \(0.277446\pi\)
\(200\) 7.36078 3.31729i 0.520486 0.234568i
\(201\) −3.99198 −0.281573
\(202\) −1.44217 + 5.61142i −0.101471 + 0.394818i
\(203\) −18.1908 7.53488i −1.27674 0.528845i
\(204\) 0.946058 8.53262i 0.0662373 0.597403i
\(205\) −6.06469 + 14.6415i −0.423576 + 1.02260i
\(206\) −23.5979 + 3.35284i −1.64414 + 0.233603i
\(207\) 12.6597i 0.879913i
\(208\) 8.51240 11.6421i 0.590229 0.807236i
\(209\) 0.0469750i 0.00324933i
\(210\) 1.06410 + 7.48931i 0.0734296 + 0.516812i
\(211\) 2.74986 6.63875i 0.189308 0.457030i −0.800519 0.599308i \(-0.795443\pi\)
0.989827 + 0.142278i \(0.0454426\pi\)
\(212\) −19.1449 + 15.3232i −1.31487 + 1.05240i
\(213\) 8.84333 + 3.66303i 0.605935 + 0.250987i
\(214\) 1.41446 + 0.363524i 0.0966904 + 0.0248500i
\(215\) −5.45549 −0.372062
\(216\) −12.4030 + 0.381053i −0.843917 + 0.0259273i
\(217\) −6.57748 + 6.57748i −0.446509 + 0.446509i
\(218\) −2.21117 0.568284i −0.149759 0.0384891i
\(219\) −2.22065 + 5.36112i −0.150057 + 0.362271i
\(220\) 0.227834 + 0.125392i 0.0153606 + 0.00845392i
\(221\) 17.4635 6.87218i 1.17472 0.462273i
\(222\) −0.316559 2.22800i −0.0212461 0.149534i
\(223\) −12.3724 12.3724i −0.828516 0.828516i 0.158795 0.987312i \(-0.449239\pi\)
−0.987312 + 0.158795i \(0.949239\pi\)
\(224\) −1.99460 + 24.9698i −0.133270 + 1.66836i
\(225\) 6.62220i 0.441480i
\(226\) −9.67636 + 12.8814i −0.643662 + 0.856859i
\(227\) −12.0964 + 5.01049i −0.802866 + 0.332558i −0.746104 0.665830i \(-0.768078\pi\)
−0.0567624 + 0.998388i \(0.518078\pi\)
\(228\) 0.838227 0.243101i 0.0555129 0.0160998i
\(229\) −21.1131 8.74532i −1.39519 0.577907i −0.446692 0.894688i \(-0.647398\pi\)
−0.948499 + 0.316781i \(0.897398\pi\)
\(230\) −10.9482 2.81375i −0.721903 0.185533i
\(231\) 0.229228 0.229228i 0.0150821 0.0150821i
\(232\) 9.16184 + 8.61567i 0.601504 + 0.565647i
\(233\) 6.56126 6.56126i 0.429843 0.429843i −0.458732 0.888575i \(-0.651696\pi\)
0.888575 + 0.458732i \(0.151696\pi\)
\(234\) −5.83706 10.2889i −0.381581 0.672604i
\(235\) −3.39030 + 1.40431i −0.221159 + 0.0916069i
\(236\) −2.01086 0.222955i −0.130896 0.0145131i
\(237\) 2.03950 + 0.844788i 0.132480 + 0.0548749i
\(238\) −19.5772 + 26.0616i −1.26900 + 1.68932i
\(239\) 3.16368 3.16368i 0.204641 0.204641i −0.597344 0.801985i \(-0.703777\pi\)
0.801985 + 0.597344i \(0.203777\pi\)
\(240\) 1.05844 4.71441i 0.0683218 0.304314i
\(241\) 7.48202 7.48202i 0.481959 0.481959i −0.423798 0.905757i \(-0.639303\pi\)
0.905757 + 0.423798i \(0.139303\pi\)
\(242\) 2.18673 + 15.3906i 0.140568 + 0.989347i
\(243\) −6.09133 + 14.7058i −0.390759 + 0.943376i
\(244\) −15.6644 1.73679i −1.00281 0.111187i
\(245\) 7.06745 17.0623i 0.451523 1.09007i
\(246\) −6.42072 10.8626i −0.409370 0.692577i
\(247\) 1.32488 + 1.37289i 0.0843000 + 0.0873548i
\(248\) 5.41685 2.44122i 0.343971 0.155018i
\(249\) 7.45732i 0.472588i
\(250\) 15.7583 + 4.04997i 0.996640 + 0.256143i
\(251\) 20.0195 8.29236i 1.26362 0.523409i 0.352602 0.935773i \(-0.385297\pi\)
0.911019 + 0.412364i \(0.135297\pi\)
\(252\) 17.9998 + 9.90644i 1.13388 + 0.624047i
\(253\) 0.185384 + 0.447558i 0.0116550 + 0.0281377i
\(254\) −4.43042 3.32808i −0.277989 0.208822i
\(255\) 4.44585 4.44585i 0.278410 0.278410i
\(256\) 6.83960 14.4644i 0.427475 0.904027i
\(257\) 27.1552i 1.69389i −0.531679 0.846946i \(-0.678439\pi\)
0.531679 0.846946i \(-0.321561\pi\)
\(258\) 2.60890 3.47304i 0.162423 0.216222i
\(259\) −3.26979 + 7.89396i −0.203175 + 0.490507i
\(260\) 10.1952 2.76111i 0.632279 0.171237i
\(261\) 9.53022 3.94755i 0.589906 0.244347i
\(262\) 12.2911 + 20.7943i 0.759348 + 1.28467i
\(263\) −8.18870 8.18870i −0.504937 0.504937i 0.408031 0.912968i \(-0.366216\pi\)
−0.912968 + 0.408031i \(0.866216\pi\)
\(264\) −0.188780 + 0.0850777i −0.0116186 + 0.00523617i
\(265\) −17.9593 −1.10323
\(266\) −3.20947 0.824853i −0.196785 0.0505750i
\(267\) 5.51458 + 2.28422i 0.337487 + 0.139792i
\(268\) −6.04966 7.55847i −0.369542 0.461707i
\(269\) −14.6686 6.07593i −0.894360 0.370456i −0.112311 0.993673i \(-0.535825\pi\)
−0.782049 + 0.623217i \(0.785825\pi\)
\(270\) −7.26621 5.45829i −0.442207 0.332181i
\(271\) 16.9549 + 16.9549i 1.02994 + 1.02994i 0.999538 + 0.0304013i \(0.00967852\pi\)
0.0304013 + 0.999538i \(0.490321\pi\)
\(272\) 17.5895 11.1395i 1.06652 0.675431i
\(273\) 0.234278 13.1645i 0.0141792 0.796755i
\(274\) 1.86265 2.47961i 0.112527 0.149799i
\(275\) −0.0969730 0.234114i −0.00584769 0.0141176i
\(276\) 7.02688 5.62419i 0.422968 0.338536i
\(277\) −16.6022 + 6.87684i −0.997527 + 0.413189i −0.820890 0.571087i \(-0.806522\pi\)
−0.176637 + 0.984276i \(0.556522\pi\)
\(278\) 8.34188 + 2.14391i 0.500313 + 0.128583i
\(279\) 4.87333i 0.291759i
\(280\) −12.5678 + 13.3645i −0.751067 + 0.798680i
\(281\) 12.9856 0.774655 0.387327 0.921942i \(-0.373398\pi\)
0.387327 + 0.921942i \(0.373398\pi\)
\(282\) 0.727294 2.82987i 0.0433097 0.168516i
\(283\) 26.6736 11.0486i 1.58558 0.656770i 0.596298 0.802763i \(-0.296638\pi\)
0.989286 + 0.145993i \(0.0466378\pi\)
\(284\) 6.46603 + 22.2952i 0.383688 + 1.32298i
\(285\) 0.590538 + 0.244609i 0.0349804 + 0.0144894i
\(286\) −0.357023 0.278265i −0.0211112 0.0164541i
\(287\) 47.9100i 2.82804i
\(288\) −8.51128 9.98910i −0.501532 0.588613i
\(289\) 10.0924 0.593668
\(290\) 1.29567 + 9.11916i 0.0760843 + 0.535495i
\(291\) −11.5953 + 4.80294i −0.679731 + 0.281554i
\(292\) −13.5161 + 3.91992i −0.790969 + 0.229396i
\(293\) −2.54757 1.05524i −0.148831 0.0616478i 0.307025 0.951702i \(-0.400667\pi\)
−0.455855 + 0.890054i \(0.650667\pi\)
\(294\) 7.48234 + 12.6587i 0.436379 + 0.738272i
\(295\) −1.04774 1.04774i −0.0610019 0.0610019i
\(296\) 3.73880 3.97581i 0.217313 0.231089i
\(297\) 0.389464i 0.0225990i
\(298\) 1.89409 + 3.20444i 0.109721 + 0.185628i
\(299\) 18.0409 + 7.85172i 1.04333 + 0.454077i
\(300\) −3.67570 + 2.94196i −0.212217 + 0.169854i
\(301\) −15.2372 + 6.31147i −0.878260 + 0.363787i
\(302\) −15.7091 11.8005i −0.903958 0.679042i
\(303\) 3.37854i 0.194092i
\(304\) 1.73058 + 1.21870i 0.0992558 + 0.0698972i
\(305\) −8.16178 8.16178i −0.467342 0.467342i
\(306\) −2.40220 16.9071i −0.137325 0.966517i
\(307\) 1.02924 0.426324i 0.0587417 0.0243316i −0.353119 0.935578i \(-0.614879\pi\)
0.411861 + 0.911247i \(0.364879\pi\)
\(308\) 0.781409 + 0.0866390i 0.0445249 + 0.00493672i
\(309\) 12.8409 5.31888i 0.730494 0.302581i
\(310\) 4.21447 + 1.08315i 0.239366 + 0.0615186i
\(311\) −23.7860 23.7860i −1.34878 1.34878i −0.886988 0.461792i \(-0.847207\pi\)
−0.461792 0.886988i \(-0.652793\pi\)
\(312\) −3.11775 + 7.81080i −0.176508 + 0.442200i
\(313\) 4.80912 4.80912i 0.271828 0.271828i −0.558008 0.829836i \(-0.688434\pi\)
0.829836 + 0.558008i \(0.188434\pi\)
\(314\) 8.23230 4.86596i 0.464575 0.274602i
\(315\) 5.75832 + 13.9018i 0.324445 + 0.783279i
\(316\) 1.49123 + 5.14185i 0.0838883 + 0.289251i
\(317\) −1.87317 4.52222i −0.105207 0.253993i 0.862506 0.506047i \(-0.168894\pi\)
−0.967713 + 0.252054i \(0.918894\pi\)
\(318\) 8.58842 11.4331i 0.481615 0.641137i
\(319\) 0.279114 0.279114i 0.0156274 0.0156274i
\(320\) 10.5303 5.14041i 0.588663 0.287358i
\(321\) −0.851621 −0.0475329
\(322\) −33.8337 + 4.80716i −1.88548 + 0.267892i
\(323\) 1.05402 + 2.54463i 0.0586473 + 0.141587i
\(324\) −6.41897 + 1.86162i −0.356610 + 0.103423i
\(325\) −9.43704 4.10717i −0.523473 0.227825i
\(326\) 8.60529 33.4828i 0.476603 1.85444i
\(327\) 1.33131 0.0736215
\(328\) 10.8372 28.6189i 0.598383 1.58021i
\(329\) −7.84449 + 7.84449i −0.432481 + 0.432481i
\(330\) −0.146876 0.0377481i −0.00808528 0.00207797i
\(331\) 8.06324 19.4664i 0.443196 1.06997i −0.531625 0.846980i \(-0.678418\pi\)
0.974821 0.222990i \(-0.0715816\pi\)
\(332\) 14.1198 11.3012i 0.774923 0.620234i
\(333\) −1.71305 4.13567i −0.0938746 0.226633i
\(334\) −4.94656 + 6.58499i −0.270664 + 0.360315i
\(335\) 7.09039i 0.387390i
\(336\) −2.49789 14.3919i −0.136271 0.785143i
\(337\) −11.0327 −0.600990 −0.300495 0.953783i \(-0.597152\pi\)
−0.300495 + 0.953783i \(0.597152\pi\)
\(338\) −18.2825 + 1.93689i −0.994435 + 0.105353i
\(339\) 3.59524 8.67968i 0.195267 0.471415i
\(340\) 15.1553 + 1.68035i 0.821911 + 0.0911297i
\(341\) −0.0713631 0.172286i −0.00386453 0.00932980i
\(342\) 1.49454 0.883393i 0.0808152 0.0477684i
\(343\) 24.8347i 1.34095i
\(344\) 10.5296 0.323496i 0.567716 0.0174417i
\(345\) 6.59172 0.354886
\(346\) 28.8096 17.0288i 1.54881 0.915476i
\(347\) 7.51047 + 18.1319i 0.403183 + 0.973370i 0.986888 + 0.161405i \(0.0516024\pi\)
−0.583705 + 0.811966i \(0.698398\pi\)
\(348\) −6.42499 3.53609i −0.344415 0.189554i
\(349\) −17.7988 + 7.37251i −0.952749 + 0.394641i −0.804263 0.594273i \(-0.797440\pi\)
−0.148485 + 0.988915i \(0.547440\pi\)
\(350\) 17.6981 2.51458i 0.946003 0.134410i
\(351\) 10.9844 + 11.3824i 0.586304 + 0.607550i
\(352\) −0.447174 0.228507i −0.0238345 0.0121795i
\(353\) −10.5020 + 10.5020i −0.558966 + 0.558966i −0.929013 0.370047i \(-0.879342\pi\)
0.370047 + 0.929013i \(0.379342\pi\)
\(354\) 1.16805 0.165959i 0.0620813 0.00882064i
\(355\) −6.50612 + 15.7072i −0.345309 + 0.833649i
\(356\) 4.03213 + 13.9030i 0.213702 + 0.736857i
\(357\) 7.27388 17.5607i 0.384975 0.929411i
\(358\) −13.7924 23.3341i −0.728950 1.23325i
\(359\) 24.8080i 1.30932i 0.755925 + 0.654658i \(0.227187\pi\)
−0.755925 + 0.654658i \(0.772813\pi\)
\(360\) −0.295144 9.60673i −0.0155554 0.506319i
\(361\) 13.2370 13.2370i 0.696686 0.696686i
\(362\) −29.7270 7.64001i −1.56241 0.401550i
\(363\) −3.46899 8.37489i −0.182075 0.439568i
\(364\) 25.2809 19.5067i 1.32508 1.02243i
\(365\) −9.52220 3.94422i −0.498415 0.206450i
\(366\) 9.09899 1.29280i 0.475612 0.0675759i
\(367\) 18.2030 0.950190 0.475095 0.879935i \(-0.342414\pi\)
0.475095 + 0.879935i \(0.342414\pi\)
\(368\) 21.2978 + 4.78159i 1.11022 + 0.249257i
\(369\) −17.7485 17.7485i −0.923951 0.923951i
\(370\) 3.95729 0.562260i 0.205730 0.0292305i
\(371\) −50.1605 + 20.7771i −2.60420 + 1.07870i
\(372\) −2.70497 + 2.16501i −0.140246 + 0.112251i
\(373\) 5.36006 + 12.9403i 0.277533 + 0.670025i 0.999766 0.0216251i \(-0.00688403\pi\)
−0.722233 + 0.691650i \(0.756884\pi\)
\(374\) −0.332506 0.562538i −0.0171935 0.0290882i
\(375\) −9.48778 −0.489947
\(376\) 6.46029 2.91147i 0.333164 0.150147i
\(377\) 0.285263 16.0295i 0.0146918 0.825559i
\(378\) −26.6093 6.83875i −1.36863 0.351747i
\(379\) −12.9510 5.36446i −0.665246 0.275554i 0.0243981 0.999702i \(-0.492233\pi\)
−0.689644 + 0.724148i \(0.742233\pi\)
\(380\) 0.431787 + 1.48882i 0.0221502 + 0.0763750i
\(381\) 2.98528 + 1.23654i 0.152940 + 0.0633500i
\(382\) −1.18056 + 1.57160i −0.0604029 + 0.0804098i
\(383\) 4.68870 + 4.68870i 0.239582 + 0.239582i 0.816677 0.577095i \(-0.195814\pi\)
−0.577095 + 0.816677i \(0.695814\pi\)
\(384\) −1.76332 + 9.16198i −0.0899841 + 0.467545i
\(385\) 0.407146 + 0.407146i 0.0207501 + 0.0207501i
\(386\) −3.37327 23.7417i −0.171695 1.20842i
\(387\) 3.30660 7.98284i 0.168084 0.405790i
\(388\) −26.6661 14.6761i −1.35377 0.745066i
\(389\) −0.464024 1.12025i −0.0235270 0.0567991i 0.911679 0.410902i \(-0.134786\pi\)
−0.935206 + 0.354103i \(0.884786\pi\)
\(390\) −5.35725 + 3.03926i −0.271275 + 0.153899i
\(391\) 20.0845 + 20.0845i 1.01572 + 1.01572i
\(392\) −12.6290 + 33.3508i −0.637863 + 1.68447i
\(393\) −9.96007 9.96007i −0.502419 0.502419i
\(394\) 30.0141 17.7408i 1.51209 0.893769i
\(395\) −1.50048 + 3.62247i −0.0754972 + 0.182266i
\(396\) −0.321573 + 0.257381i −0.0161596 + 0.0129339i
\(397\) 6.34168 + 15.3102i 0.318280 + 0.768395i 0.999346 + 0.0361730i \(0.0115167\pi\)
−0.681066 + 0.732222i \(0.738483\pi\)
\(398\) 3.40194 0.483355i 0.170524 0.0242284i
\(399\) 1.93237 0.0967393
\(400\) −11.1407 2.50121i −0.557035 0.125060i
\(401\) −9.37303 + 9.37303i −0.468067 + 0.468067i −0.901288 0.433221i \(-0.857377\pi\)
0.433221 + 0.901288i \(0.357377\pi\)
\(402\) 4.51384 + 3.39074i 0.225130 + 0.169115i
\(403\) −6.94479 3.02250i −0.345944 0.150561i
\(404\) 6.39696 5.12001i 0.318261 0.254730i
\(405\) −4.52222 1.87316i −0.224711 0.0930783i
\(406\) 14.1688 + 23.9709i 0.703185 + 1.18966i
\(407\) −0.121122 0.121122i −0.00600381 0.00600381i
\(408\) −8.31723 + 8.84448i −0.411764 + 0.437867i
\(409\) 35.6106i 1.76083i 0.474205 + 0.880414i \(0.342736\pi\)
−0.474205 + 0.880414i \(0.657264\pi\)
\(410\) 19.2938 11.4042i 0.952852 0.563214i
\(411\) −0.692066 + 1.67080i −0.0341371 + 0.0824143i
\(412\) 29.5306 + 16.2526i 1.45487 + 0.800709i
\(413\) −4.13849 1.71422i −0.203642 0.0843511i
\(414\) 10.7530 14.3147i 0.528482 0.703529i
\(415\) 13.2454 0.650190
\(416\) −19.5139 + 5.93373i −0.956746 + 0.290925i
\(417\) −5.02250 −0.245953
\(418\) 0.0399000 0.0531158i 0.00195157 0.00259798i
\(419\) −14.1804 5.87373i −0.692760 0.286951i 0.00838968 0.999965i \(-0.497329\pi\)
−0.701149 + 0.713014i \(0.747329\pi\)
\(420\) 5.15813 9.37219i 0.251691 0.457316i
\(421\) 10.1987 24.6219i 0.497056 1.20000i −0.454007 0.890998i \(-0.650006\pi\)
0.951062 0.309000i \(-0.0999943\pi\)
\(422\) −8.74820 + 5.17091i −0.425856 + 0.251716i
\(423\) 5.81206i 0.282592i
\(424\) 34.6629 1.06494i 1.68338 0.0517178i
\(425\) −10.5060 10.5060i −0.509618 0.509618i
\(426\) −6.88806 11.6533i −0.333727 0.564604i
\(427\) −32.2383 13.3535i −1.56012 0.646223i
\(428\) −1.29059 1.61247i −0.0623831 0.0779417i
\(429\) 0.242029 + 0.105335i 0.0116853 + 0.00508564i
\(430\) 6.16867 + 4.63383i 0.297480 + 0.223463i
\(431\) −27.3112 + 27.3112i −1.31553 + 1.31553i −0.398263 + 0.917271i \(0.630387\pi\)
−0.917271 + 0.398263i \(0.869613\pi\)
\(432\) 14.3481 + 10.1041i 0.690321 + 0.486133i
\(433\) 1.48060 0.0711530 0.0355765 0.999367i \(-0.488673\pi\)
0.0355765 + 0.999367i \(0.488673\pi\)
\(434\) 13.0242 1.85050i 0.625180 0.0888268i
\(435\) −2.05542 4.96223i −0.0985501 0.237921i
\(436\) 2.01753 + 2.52071i 0.0966224 + 0.120720i
\(437\) −1.10504 + 2.66781i −0.0528614 + 0.127619i
\(438\) 7.06461 4.17577i 0.337560 0.199526i
\(439\) 16.7362 + 16.7362i 0.798773 + 0.798773i 0.982902 0.184129i \(-0.0589464\pi\)
−0.184129 + 0.982902i \(0.558946\pi\)
\(440\) −0.151111 0.335303i −0.00720396 0.0159849i
\(441\) 20.6831 + 20.6831i 0.984911 + 0.984911i
\(442\) −25.5836 7.06273i −1.21689 0.335940i
\(443\) 6.39532 + 15.4397i 0.303851 + 0.733560i 0.999879 + 0.0155461i \(0.00494869\pi\)
−0.696029 + 0.718014i \(0.745051\pi\)
\(444\) −1.53450 + 2.78814i −0.0728240 + 0.132319i
\(445\) −4.05713 + 9.79478i −0.192326 + 0.464317i
\(446\) 3.48083 + 24.4987i 0.164822 + 1.16005i
\(447\) −1.53487 1.53487i −0.0725967 0.0725967i
\(448\) 23.4644 26.5398i 1.10859 1.25389i
\(449\) −3.57167 3.57167i −0.168557 0.168557i 0.617788 0.786345i \(-0.288029\pi\)
−0.786345 + 0.617788i \(0.788029\pi\)
\(450\) −5.62482 + 7.48790i −0.265156 + 0.352983i
\(451\) −0.887363 0.367558i −0.0417843 0.0173076i
\(452\) 21.8826 6.34637i 1.02927 0.298508i
\(453\) 10.5850 + 4.38446i 0.497328 + 0.206000i
\(454\) 17.9336 + 4.60904i 0.841664 + 0.216313i
\(455\) 23.3823 + 0.416115i 1.09618 + 0.0195078i
\(456\) −1.15429 0.437098i −0.0540547 0.0204690i
\(457\) 39.1564 1.83166 0.915829 0.401569i \(-0.131535\pi\)
0.915829 + 0.401569i \(0.131535\pi\)
\(458\) 16.4449 + 27.8217i 0.768421 + 1.30002i
\(459\) 8.73876 + 21.0972i 0.407890 + 0.984734i
\(460\) 9.98944 + 12.4808i 0.465760 + 0.581922i
\(461\) 12.3866 5.13069i 0.576901 0.238960i −0.0751030 0.997176i \(-0.523929\pi\)
0.652004 + 0.758216i \(0.273929\pi\)
\(462\) −0.453898 + 0.0644908i −0.0211173 + 0.00300038i
\(463\) −23.8205 23.8205i −1.10703 1.10703i −0.993539 0.113493i \(-0.963796\pi\)
−0.113493 0.993539i \(-0.536204\pi\)
\(464\) −3.04149 17.5239i −0.141198 0.813527i
\(465\) −2.53746 −0.117672
\(466\) −12.9920 + 1.84594i −0.601845 + 0.0855113i
\(467\) −22.4031 9.27965i −1.03669 0.429411i −0.201567 0.979475i \(-0.564603\pi\)
−0.835123 + 0.550064i \(0.814603\pi\)
\(468\) −2.13911 + 16.5918i −0.0988806 + 0.766957i
\(469\) −8.20289 19.8035i −0.378774 0.914442i
\(470\) 5.02630 + 1.29179i 0.231846 + 0.0595858i
\(471\) −3.94312 + 3.94312i −0.181689 + 0.181689i
\(472\) 2.08436 + 1.96010i 0.0959403 + 0.0902210i
\(473\) 0.330636i 0.0152027i
\(474\) −1.58856 2.68755i −0.0729650 0.123443i
\(475\) 0.578038 1.39551i 0.0265222 0.0640303i
\(476\) 44.2728 12.8400i 2.02924 0.588518i
\(477\) 10.8852 26.2792i 0.498399 1.20324i
\(478\) −6.26444 + 0.890064i −0.286529 + 0.0407106i
\(479\) 17.6355 17.6355i 0.805785 0.805785i −0.178208 0.983993i \(-0.557030\pi\)
0.983993 + 0.178208i \(0.0570299\pi\)
\(480\) −5.20116 + 4.43168i −0.237400 + 0.202278i
\(481\) −6.95604 0.123791i −0.317168 0.00564437i
\(482\) −14.8152 + 2.10498i −0.674816 + 0.0958792i
\(483\) 18.4108 7.62598i 0.837718 0.346994i
\(484\) 10.6000 19.2600i 0.481819 0.875453i
\(485\) −8.53079 20.5951i −0.387363 0.935178i
\(486\) 19.3785 11.4543i 0.879028 0.519578i
\(487\) −35.2443 −1.59707 −0.798537 0.601946i \(-0.794392\pi\)
−0.798537 + 0.601946i \(0.794392\pi\)
\(488\) 16.2369 + 15.2690i 0.735010 + 0.691193i
\(489\) 20.1594i 0.911641i
\(490\) −22.4839 + 13.2898i −1.01572 + 0.600373i
\(491\) 9.25922 + 22.3537i 0.417863 + 1.00881i 0.982966 + 0.183789i \(0.0588365\pi\)
−0.565103 + 0.825020i \(0.691164\pi\)
\(492\) −1.96653 + 17.7363i −0.0886578 + 0.799616i
\(493\) 8.85684 21.3823i 0.398892 0.963011i
\(494\) −0.331960 2.67769i −0.0149356 0.120475i
\(495\) −0.301659 −0.0135586
\(496\) −8.19852 1.84066i −0.368124 0.0826479i
\(497\) 51.3972i 2.30548i
\(498\) −6.33415 + 8.43218i −0.283840 + 0.377855i
\(499\) −11.0548 26.6886i −0.494880 1.19475i −0.952209 0.305448i \(-0.901194\pi\)
0.457329 0.889297i \(-0.348806\pi\)
\(500\) −14.3783 17.9643i −0.643016 0.803387i
\(501\) 1.83789 4.43706i 0.0821109 0.198233i
\(502\) −29.6800 7.62795i −1.32468 0.340452i
\(503\) −19.4771 + 19.4771i −0.868439 + 0.868439i −0.992300 0.123861i \(-0.960472\pi\)
0.123861 + 0.992300i \(0.460472\pi\)
\(504\) −11.9384 26.4902i −0.531778 1.17997i
\(505\) 6.00082 0.267033
\(506\) 0.170531 0.663528i 0.00758102 0.0294974i
\(507\) 10.0444 3.74764i 0.446087 0.166439i
\(508\) 2.18276 + 7.52628i 0.0968445 + 0.333925i
\(509\) 1.98303 + 4.78746i 0.0878963 + 0.212200i 0.961715 0.274051i \(-0.0883638\pi\)
−0.873819 + 0.486252i \(0.838364\pi\)
\(510\) −8.80328 + 1.25079i −0.389816 + 0.0553858i
\(511\) −31.1587 −1.37838
\(512\) −20.0196 + 10.5458i −0.884750 + 0.466065i
\(513\) −1.64156 + 1.64156i −0.0724769 + 0.0724769i
\(514\) −23.0652 + 30.7050i −1.01736 + 1.35434i
\(515\) 9.44717 + 22.8075i 0.416292 + 1.00502i
\(516\) −5.89991 + 1.71108i −0.259729 + 0.0753263i
\(517\) −0.0851096 0.205473i −0.00374312 0.00903668i
\(518\) 10.4023 6.14859i 0.457049 0.270154i
\(519\) −13.7993 + 13.7993i −0.605721 + 0.605721i
\(520\) −13.8732 5.53761i −0.608381 0.242840i
\(521\) −9.54267 9.54267i −0.418072 0.418072i 0.466467 0.884539i \(-0.345527\pi\)
−0.884539 + 0.466467i \(0.845527\pi\)
\(522\) −14.1291 3.63126i −0.618412 0.158936i
\(523\) 30.4823 12.6262i 1.33290 0.552104i 0.401417 0.915896i \(-0.368518\pi\)
0.931480 + 0.363792i \(0.118518\pi\)
\(524\) 3.76450 33.9525i 0.164453 1.48322i
\(525\) −9.63051 + 3.98909i −0.420310 + 0.174098i
\(526\) 2.30380 + 16.2146i 0.100450 + 0.706988i
\(527\) −7.73147 7.73147i −0.336788 0.336788i
\(528\) 0.285722 + 0.0641478i 0.0124345 + 0.00279167i
\(529\) 6.77873i 0.294727i
\(530\) 20.3070 + 15.2544i 0.882081 + 0.662608i
\(531\) 2.16817 0.898083i 0.0940903 0.0389735i
\(532\) 2.92841 + 3.65876i 0.126963 + 0.158628i
\(533\) −36.3005 + 14.2849i −1.57235 + 0.618746i
\(534\) −4.29530 7.26684i −0.185876 0.314467i
\(535\) 1.51261i 0.0653960i
\(536\) 0.420441 + 13.6851i 0.0181603 + 0.591104i
\(537\) 11.1766 + 11.1766i 0.482307 + 0.482307i
\(538\) 11.4253 + 19.3295i 0.492581 + 0.833355i
\(539\) 1.03408 + 0.428331i 0.0445411 + 0.0184495i
\(540\) 3.57989 + 12.3437i 0.154054 + 0.531186i
\(541\) −9.10140 + 3.76992i −0.391300 + 0.162082i −0.569654 0.821885i \(-0.692923\pi\)
0.178354 + 0.983966i \(0.442923\pi\)
\(542\) −4.77008 33.5727i −0.204892 1.44207i
\(543\) 17.8981 0.768081
\(544\) −29.3506 2.34455i −1.25840 0.100522i
\(545\) 2.36461i 0.101289i
\(546\) −11.4467 + 14.6865i −0.489874 + 0.628524i
\(547\) −2.79092 1.15604i −0.119331 0.0494286i 0.322219 0.946665i \(-0.395571\pi\)
−0.441550 + 0.897237i \(0.645571\pi\)
\(548\) −4.21230 + 1.22165i −0.179940 + 0.0521861i
\(549\) 16.8897 6.99596i 0.720837 0.298580i
\(550\) −0.0892032 + 0.347086i −0.00380364 + 0.0147998i
\(551\) 2.35289 0.100237
\(552\) −12.7226 + 0.390871i −0.541509 + 0.0166366i
\(553\) 11.8535i 0.504062i
\(554\) 24.6136 + 6.32584i 1.04573 + 0.268759i
\(555\) −2.15338 + 0.891958i −0.0914058 + 0.0378615i
\(556\) −7.61137 9.50967i −0.322794 0.403300i
\(557\) −2.55398 6.16585i −0.108216 0.261255i 0.860490 0.509467i \(-0.170157\pi\)
−0.968706 + 0.248211i \(0.920157\pi\)
\(558\) −4.13934 + 5.51040i −0.175232 + 0.233274i
\(559\) −9.32523 9.66315i −0.394415 0.408708i
\(560\) 25.5623 4.43665i 1.08020 0.187483i
\(561\) 0.269446 + 0.269446i 0.0113760 + 0.0113760i
\(562\) −14.6831 11.0298i −0.619370 0.465263i
\(563\) −21.1106 8.74428i −0.889704 0.368528i −0.109452 0.993992i \(-0.534910\pi\)
−0.780253 + 0.625464i \(0.784910\pi\)
\(564\) −3.22603 + 2.58205i −0.135840 + 0.108724i
\(565\) 15.4165 + 6.38572i 0.648576 + 0.268649i
\(566\) −39.5451 10.1633i −1.66220 0.427197i
\(567\) −14.7977 −0.621444
\(568\) 11.6260 30.7019i 0.487815 1.28822i
\(569\) 9.41072 + 9.41072i 0.394518 + 0.394518i 0.876294 0.481776i \(-0.160008\pi\)
−0.481776 + 0.876294i \(0.660008\pi\)
\(570\) −0.459969 0.778181i −0.0192660 0.0325944i
\(571\) −2.24706 + 0.930764i −0.0940367 + 0.0389513i −0.429206 0.903207i \(-0.641207\pi\)
0.335169 + 0.942158i \(0.391207\pi\)
\(572\) 0.167340 + 0.617892i 0.00699685 + 0.0258353i
\(573\) 0.438637 1.05896i 0.0183243 0.0442388i
\(574\) 40.6942 54.1731i 1.69854 2.26114i
\(575\) 15.5770i 0.649606i
\(576\) 1.13931 + 18.5243i 0.0474711 + 0.771846i
\(577\) −4.32632 + 4.32632i −0.180107 + 0.180107i −0.791402 0.611295i \(-0.790649\pi\)
0.611295 + 0.791402i \(0.290649\pi\)
\(578\) −11.4117 8.57232i −0.474664 0.356562i
\(579\) 5.35129 + 12.9192i 0.222392 + 0.536902i
\(580\) 6.28065 11.4118i 0.260790 0.473849i
\(581\) 36.9945 15.3236i 1.53479 0.635730i
\(582\) 17.1907 + 4.41812i 0.712578 + 0.183137i
\(583\) 1.08844i 0.0450787i
\(584\) 18.6125 + 7.04804i 0.770192 + 0.291650i
\(585\) −8.81626 + 8.50795i −0.364507 + 0.351761i
\(586\) 1.98430 + 3.35707i 0.0819707 + 0.138679i
\(587\) 2.63033 6.35017i 0.108565 0.262100i −0.860255 0.509864i \(-0.829696\pi\)
0.968820 + 0.247764i \(0.0796958\pi\)
\(588\) 2.29168 20.6690i 0.0945072 0.852373i
\(589\) 0.425383 1.02696i 0.0175276 0.0423153i
\(590\) 0.294770 + 2.07465i 0.0121355 + 0.0854118i
\(591\) −14.3762 + 14.3762i −0.591359 + 0.591359i
\(592\) −7.60456 + 1.31986i −0.312546 + 0.0542461i
\(593\) −5.38876 + 5.38876i −0.221290 + 0.221290i −0.809041 0.587752i \(-0.800013\pi\)
0.587752 + 0.809041i \(0.300013\pi\)
\(594\) 0.330806 0.440377i 0.0135731 0.0180689i
\(595\) 31.1906 + 12.9196i 1.27869 + 0.529650i
\(596\) 0.580117 5.23215i 0.0237625 0.214317i
\(597\) −1.85118 + 0.766785i −0.0757639 + 0.0313824i
\(598\) −13.7302 24.2019i −0.561468 0.989687i
\(599\) −20.7593 + 20.7593i −0.848201 + 0.848201i −0.989909 0.141707i \(-0.954741\pi\)
0.141707 + 0.989909i \(0.454741\pi\)
\(600\) 6.65508 0.204461i 0.271692 0.00834710i
\(601\) −24.2621 + 24.2621i −0.989673 + 0.989673i −0.999947 0.0102740i \(-0.996730\pi\)
0.0102740 + 0.999947i \(0.496730\pi\)
\(602\) 22.5900 + 5.80578i 0.920701 + 0.236626i
\(603\) 10.3751 + 4.29752i 0.422508 + 0.175009i
\(604\) 7.73951 + 26.6862i 0.314916 + 1.08585i
\(605\) 14.8751 6.16148i 0.604760 0.250500i
\(606\) −2.86969 + 3.82020i −0.116573 + 0.155185i
\(607\) 16.2739i 0.660539i −0.943887 0.330270i \(-0.892860\pi\)
0.943887 0.330270i \(-0.107140\pi\)
\(608\) −0.921668 2.84795i −0.0373786 0.115500i
\(609\) −11.4816 11.4816i −0.465260 0.465260i
\(610\) 2.29622 + 16.1612i 0.0929713 + 0.654350i
\(611\) −8.28254 3.60471i −0.335076 0.145831i
\(612\) −11.6445 + 21.1577i −0.470700 + 0.855251i
\(613\) −1.47246 + 3.55482i −0.0594720 + 0.143578i −0.950822 0.309737i \(-0.899759\pi\)
0.891350 + 0.453315i \(0.149759\pi\)
\(614\) −1.52590 0.392166i −0.0615803 0.0158265i
\(615\) −9.24137 + 9.24137i −0.372648 + 0.372648i
\(616\) −0.809969 0.761684i −0.0326346 0.0306891i
\(617\) 11.3506 0.456960 0.228480 0.973549i \(-0.426624\pi\)
0.228480 + 0.973549i \(0.426624\pi\)
\(618\) −19.0373 4.89271i −0.765794 0.196814i
\(619\) 16.6465 + 6.89520i 0.669079 + 0.277141i 0.691253 0.722613i \(-0.257059\pi\)
−0.0221745 + 0.999754i \(0.507059\pi\)
\(620\) −3.84541 4.80446i −0.154435 0.192952i
\(621\) −9.16177 + 22.1185i −0.367649 + 0.887584i
\(622\) 6.69192 + 47.0990i 0.268321 + 1.88850i
\(623\) 32.0506i 1.28408i
\(624\) 10.1597 6.18370i 0.406714 0.247546i
\(625\) 2.57928i 0.103171i
\(626\) −9.52260 + 1.35299i −0.380600 + 0.0540764i
\(627\) −0.0148248 + 0.0357902i −0.000592045 + 0.00142932i
\(628\) −13.4416 1.49034i −0.536377 0.0594710i
\(629\) −9.27892 3.84346i −0.369975 0.153249i
\(630\) 5.29695 20.6102i 0.211035 0.821130i
\(631\) 23.9623 0.953925 0.476962 0.878924i \(-0.341738\pi\)
0.476962 + 0.878924i \(0.341738\pi\)
\(632\) 2.68124 7.08065i 0.106654 0.281653i
\(633\) 4.19023 4.19023i 0.166547 0.166547i
\(634\) −1.72308 + 6.70444i −0.0684323 + 0.266267i
\(635\) −2.19630 + 5.30233i −0.0871574 + 0.210416i
\(636\) −19.4223 + 5.63283i −0.770144 + 0.223356i
\(637\) 42.3026 16.6468i 1.67609 0.659570i
\(638\) −0.552677 + 0.0785255i −0.0218807 + 0.00310885i
\(639\) −19.0404 19.0404i −0.753225 0.753225i
\(640\) −16.2731 3.13194i −0.643252 0.123801i
\(641\) 22.0173i 0.869631i −0.900519 0.434816i \(-0.856814\pi\)
0.900519 0.434816i \(-0.143186\pi\)
\(642\) 0.962950 + 0.723356i 0.0380046 + 0.0285486i
\(643\) 41.1722 17.0541i 1.62367 0.672547i 0.629171 0.777267i \(-0.283394\pi\)
0.994502 + 0.104719i \(0.0333945\pi\)
\(644\) 42.3397 + 23.3023i 1.66842 + 0.918240i
\(645\) −4.15654 1.72169i −0.163663 0.0677916i
\(646\) 0.969570 3.77255i 0.0381472 0.148429i
\(647\) 0.290186 0.290186i 0.0114084 0.0114084i −0.701380 0.712788i \(-0.747432\pi\)
0.712788 + 0.701380i \(0.247432\pi\)
\(648\) 8.83934 + 3.34721i 0.347242 + 0.131491i
\(649\) 0.0634996 0.0634996i 0.00249258 0.00249258i
\(650\) 7.18213 + 12.6598i 0.281706 + 0.496558i
\(651\) −7.08716 + 2.93560i −0.277768 + 0.115055i
\(652\) −38.1701 + 30.5507i −1.49486 + 1.19646i
\(653\) 4.74963 + 1.96736i 0.185867 + 0.0769888i 0.473676 0.880699i \(-0.342927\pi\)
−0.287809 + 0.957688i \(0.592927\pi\)
\(654\) −1.50534 1.13080i −0.0588636 0.0442176i
\(655\) 17.6907 17.6907i 0.691231 0.691231i
\(656\) −36.5624 + 23.1552i −1.42752 + 0.904057i
\(657\) 11.5429 11.5429i 0.450331 0.450331i
\(658\) 15.5330 2.20696i 0.605538 0.0860361i
\(659\) 19.1384 46.2042i 0.745526 1.79986i 0.163766 0.986499i \(-0.447636\pi\)
0.581761 0.813360i \(-0.302364\pi\)
\(660\) 0.134014 + 0.167438i 0.00521650 + 0.00651751i
\(661\) 4.38987 10.5981i 0.170746 0.412217i −0.815223 0.579148i \(-0.803385\pi\)
0.985969 + 0.166930i \(0.0533855\pi\)
\(662\) −25.6518 + 15.1623i −0.996986 + 0.589301i
\(663\) 15.4742 + 0.275381i 0.600968 + 0.0106949i
\(664\) −25.5647 + 0.785414i −0.992103 + 0.0304800i
\(665\) 3.43219i 0.133095i
\(666\) −1.57580 + 6.13135i −0.0610608 + 0.237585i
\(667\) 22.4174 9.28557i 0.868003 0.359539i
\(668\) 11.1864 3.24427i 0.432815 0.125525i
\(669\) −5.52192 13.3311i −0.213490 0.515410i
\(670\) −6.02249 + 8.01729i −0.232669 + 0.309735i
\(671\) 0.494654 0.494654i 0.0190959 0.0190959i
\(672\) −9.39987 + 18.3950i −0.362608 + 0.709602i
\(673\) 26.0684i 1.00486i 0.864617 + 0.502432i \(0.167561\pi\)
−0.864617 + 0.502432i \(0.832439\pi\)
\(674\) 12.4750 + 9.37104i 0.480518 + 0.360959i
\(675\) 4.79244 11.5700i 0.184461 0.445329i
\(676\) 22.3176 + 13.3388i 0.858370 + 0.513031i
\(677\) −45.7110 + 18.9341i −1.75682 + 0.727697i −0.759830 + 0.650122i \(0.774718\pi\)
−0.996986 + 0.0775757i \(0.975282\pi\)
\(678\) −11.4376 + 6.76059i −0.439260 + 0.259639i
\(679\) −47.6532 47.6532i −1.82876 1.82876i
\(680\) −15.7092 14.7727i −0.602420 0.566508i
\(681\) −10.7975 −0.413761
\(682\) −0.0656453 + 0.255423i −0.00251369 + 0.00978065i
\(683\) −9.00430 3.72970i −0.344540 0.142713i 0.203702 0.979033i \(-0.434703\pi\)
−0.548242 + 0.836320i \(0.684703\pi\)
\(684\) −2.44025 0.270564i −0.0933054 0.0103453i
\(685\) −2.96760 1.22922i −0.113386 0.0469661i
\(686\) −21.0943 + 28.0812i −0.805383 + 1.07215i
\(687\) −13.3261 13.3261i −0.508423 0.508423i
\(688\) −12.1808 8.57789i −0.464389 0.327029i
\(689\) −30.6983 31.8107i −1.16951 1.21189i
\(690\) −7.45343 5.59893i −0.283747 0.213148i
\(691\) 15.8264 + 38.2082i 0.602064 + 1.45351i 0.871453 + 0.490479i \(0.163178\pi\)
−0.269390 + 0.963031i \(0.586822\pi\)
\(692\) −47.0399 5.21556i −1.78819 0.198266i
\(693\) −0.842536 + 0.348990i −0.0320053 + 0.0132570i
\(694\) 6.90871 26.8815i 0.262251 1.02041i
\(695\) 8.92076i 0.338384i
\(696\) 4.26139 + 9.45565i 0.161528 + 0.358415i
\(697\) −56.3156 −2.13311
\(698\) 26.3877 + 6.78180i 0.998789 + 0.256695i
\(699\) 7.06968 2.92836i 0.267400 0.110761i
\(700\) −22.1476 12.1892i −0.837099 0.460710i
\(701\) −29.7671 12.3299i −1.12429 0.465695i −0.258452 0.966024i \(-0.583212\pi\)
−0.865835 + 0.500329i \(0.833212\pi\)
\(702\) −2.75224 22.2004i −0.103877 0.837901i
\(703\) 1.02105i 0.0385095i
\(704\) 0.311540 + 0.638203i 0.0117416 + 0.0240532i
\(705\) −3.02625 −0.113975
\(706\) 20.7952 2.95462i 0.782638 0.111199i
\(707\) 16.7603 6.94236i 0.630338 0.261094i
\(708\) −1.46171 0.804475i −0.0549345 0.0302340i
\(709\) 39.2898 + 16.2744i 1.47556 + 0.611196i 0.968119 0.250492i \(-0.0805922\pi\)
0.507439 + 0.861688i \(0.330592\pi\)
\(710\) 20.6981 12.2343i 0.776786 0.459144i
\(711\) −4.39119 4.39119i −0.164683 0.164683i
\(712\) 7.24980 19.1453i 0.271698 0.717501i
\(713\) 11.4632i 0.429301i
\(714\) −23.1406 + 13.6780i −0.866015 + 0.511886i
\(715\) −0.187092 + 0.429882i −0.00699686 + 0.0160767i
\(716\) −4.22430 + 38.0996i −0.157870 + 1.42385i
\(717\) 3.40882 1.41198i 0.127305 0.0527314i
\(718\) 21.0716 28.0510i 0.786385 1.04686i
\(719\) 3.70520i 0.138181i 0.997610 + 0.0690903i \(0.0220097\pi\)
−0.997610 + 0.0690903i \(0.977990\pi\)
\(720\) −7.82611 + 11.1133i −0.291662 + 0.414167i
\(721\) 52.7721 + 52.7721i 1.96534 + 1.96534i
\(722\) −26.2108 + 3.72409i −0.975466 + 0.138596i
\(723\) 8.06178 3.33930i 0.299821 0.124190i
\(724\) 27.1237 + 33.8885i 1.00804 + 1.25945i
\(725\) −11.7263 + 4.85720i −0.435505 + 0.180392i
\(726\) −3.19104 + 12.4162i −0.118431 + 0.460809i
\(727\) −8.45304 8.45304i −0.313506 0.313506i 0.532760 0.846266i \(-0.321155\pi\)
−0.846266 + 0.532760i \(0.821155\pi\)
\(728\) −45.1545 + 0.583369i −1.67354 + 0.0216211i
\(729\) −2.19307 + 2.19307i −0.0812247 + 0.0812247i
\(730\) 7.41682 + 12.5479i 0.274509 + 0.464417i
\(731\) −7.41879 17.9105i −0.274394 0.662446i
\(732\) −11.3866 6.26676i −0.420859 0.231626i
\(733\) 4.15509 + 10.0313i 0.153472 + 0.370513i 0.981851 0.189654i \(-0.0607367\pi\)
−0.828379 + 0.560168i \(0.810737\pi\)
\(734\) −20.5826 15.4614i −0.759718 0.570691i
\(735\) 10.7694 10.7694i 0.397234 0.397234i
\(736\) −20.0206 23.4967i −0.737967 0.866101i
\(737\) 0.429721 0.0158290
\(738\) 4.99334 + 35.1441i 0.183807 + 1.29367i
\(739\) −2.58772 6.24731i −0.0951909 0.229811i 0.869111 0.494618i \(-0.164692\pi\)
−0.964302 + 0.264807i \(0.914692\pi\)
\(740\) −4.95218 2.72551i −0.182046 0.100192i
\(741\) 0.576155 + 1.46412i 0.0211656 + 0.0537857i
\(742\) 74.3656 + 19.1124i 2.73005 + 0.701639i
\(743\) 34.5815 1.26867 0.634336 0.773057i \(-0.281273\pi\)
0.634336 + 0.773057i \(0.281273\pi\)
\(744\) 4.89752 0.150465i 0.179552 0.00551630i
\(745\) 2.72617 2.72617i 0.0998791 0.0998791i
\(746\) 4.93060 19.1847i 0.180522 0.702403i
\(747\) −8.02808 + 19.3815i −0.293732 + 0.709132i
\(748\) −0.101839 + 0.918503i −0.00372362 + 0.0335838i
\(749\) −1.74995 4.22475i −0.0639417 0.154369i
\(750\) 10.7281 + 8.05880i 0.391734 + 0.294266i
\(751\) 51.8570i 1.89229i 0.323746 + 0.946144i \(0.395058\pi\)
−0.323746 + 0.946144i \(0.604942\pi\)
\(752\) −9.77778 2.19522i −0.356559 0.0800513i
\(753\) 17.8698 0.651213
\(754\) −13.9378 + 17.8826i −0.507584 + 0.651247i
\(755\) −7.78749 + 18.8007i −0.283416 + 0.684227i
\(756\) 24.2791 + 30.3344i 0.883021 + 1.10325i
\(757\) −1.37725 3.32498i −0.0500570 0.120848i 0.896873 0.442288i \(-0.145833\pi\)
−0.946930 + 0.321440i \(0.895833\pi\)
\(758\) 10.0875 + 17.0661i 0.366394 + 0.619869i
\(759\) 0.399499i 0.0145009i
\(760\) 0.776356 2.05021i 0.0281614 0.0743688i
\(761\) −12.5408 −0.454605 −0.227303 0.973824i \(-0.572991\pi\)
−0.227303 + 0.973824i \(0.572991\pi\)
\(762\) −2.32523 3.93385i −0.0842341 0.142508i
\(763\) 2.73563 + 6.60439i 0.0990364 + 0.239095i
\(764\) 2.66979 0.774288i 0.0965895 0.0280128i
\(765\) −16.3408 + 6.76860i −0.590804 + 0.244719i
\(766\) −1.31911 9.28417i −0.0476615 0.335451i
\(767\) 0.0648984 3.64677i 0.00234335 0.131677i
\(768\) 9.77590 8.86194i 0.352757 0.319778i
\(769\) −23.2047 +