Properties

Label 416.2.bd.a.83.19
Level $416$
Weight $2$
Character 416.83
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 83.19
Character \(\chi\) \(=\) 416.83
Dual form 416.2.bd.a.411.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.757760 - 1.19407i) q^{2} +(-2.82515 - 1.17022i) q^{3} +(-0.851600 + 1.80963i) q^{4} +(0.899503 - 2.17159i) q^{5} +(0.743468 + 4.26017i) q^{6} +2.64760i q^{7} +(2.80614 - 0.354399i) q^{8} +(4.49077 + 4.49077i) q^{9} +O(q^{10})\) \(q+(-0.757760 - 1.19407i) q^{2} +(-2.82515 - 1.17022i) q^{3} +(-0.851600 + 1.80963i) q^{4} +(0.899503 - 2.17159i) q^{5} +(0.743468 + 4.26017i) q^{6} +2.64760i q^{7} +(2.80614 - 0.354399i) q^{8} +(4.49077 + 4.49077i) q^{9} +(-3.27464 + 0.571477i) q^{10} +(5.77603 + 2.39251i) q^{11} +(4.52357 - 4.11594i) q^{12} +(-1.01875 - 3.45863i) q^{13} +(3.16142 - 2.00625i) q^{14} +(-5.08247 + 5.08247i) q^{15} +(-2.54955 - 3.08217i) q^{16} -1.08697 q^{17} +(1.95936 - 8.76521i) q^{18} +(2.28731 + 5.52206i) q^{19} +(3.16377 + 3.47710i) q^{20} +(3.09827 - 7.47989i) q^{21} +(-1.52002 - 8.70992i) q^{22} +(-0.961319 - 0.961319i) q^{23} +(-8.34249 - 2.28256i) q^{24} +(-0.371172 - 0.371172i) q^{25} +(-3.35788 + 3.83727i) q^{26} +(-3.92128 - 9.46682i) q^{27} +(-4.79120 - 2.25470i) q^{28} +(2.08624 - 5.03663i) q^{29} +(9.92011 + 2.21753i) q^{30} +(-2.29862 - 2.29862i) q^{31} +(-1.74837 + 5.37989i) q^{32} +(-13.5184 - 13.5184i) q^{33} +(0.823659 + 1.29791i) q^{34} +(5.74952 + 2.38153i) q^{35} +(-11.9510 + 4.30231i) q^{36} +(3.15093 + 1.30516i) q^{37} +(4.86049 - 6.91560i) q^{38} +(-1.16923 + 10.9633i) q^{39} +(1.75452 - 6.41257i) q^{40} +6.50731 q^{41} +(-11.2792 + 1.96841i) q^{42} +(-3.53570 - 8.53592i) q^{43} +(-9.24844 + 8.41504i) q^{44} +(13.7916 - 5.71266i) q^{45} +(-0.419432 + 1.87633i) q^{46} +(0.374148 + 0.374148i) q^{47} +(3.59607 + 11.6911i) q^{48} -0.00980685 q^{49} +(-0.161946 + 0.724465i) q^{50} +(3.07085 + 1.27199i) q^{51} +(7.12643 + 1.10181i) q^{52} +(4.36222 + 10.5313i) q^{53} +(-8.33264 + 11.8559i) q^{54} +(10.3911 - 10.3911i) q^{55} +(0.938308 + 7.42954i) q^{56} -18.2773i q^{57} +(-7.59495 + 1.32544i) q^{58} +(2.23176 - 5.38795i) q^{59} +(-4.86918 - 13.5256i) q^{60} +(3.69576 - 8.92236i) q^{61} +(-1.00291 + 4.48652i) q^{62} +(-11.8898 + 11.8898i) q^{63} +(7.74880 - 1.98898i) q^{64} +(-8.42711 - 0.898742i) q^{65} +(-5.89821 + 26.3856i) q^{66} +(1.11846 - 0.463281i) q^{67} +(0.925660 - 1.96701i) q^{68} +(1.59092 + 3.84083i) q^{69} +(-1.51304 - 8.66994i) q^{70} +5.48277 q^{71} +(14.1932 + 11.0102i) q^{72} +13.2430i q^{73} +(-0.829201 - 4.75143i) q^{74} +(0.614267 + 1.48297i) q^{75} +(-11.9408 - 0.563389i) q^{76} +(-6.33442 + 15.2926i) q^{77} +(13.9770 - 6.91143i) q^{78} -2.73529 q^{79} +(-8.98655 + 2.76417i) q^{80} +12.2813i q^{81} +(-4.93098 - 7.77018i) q^{82} +(0.835389 + 2.01681i) q^{83} +(10.8974 + 11.9766i) q^{84} +(-0.977729 + 2.36045i) q^{85} +(-7.51327 + 10.6900i) q^{86} +(-11.7879 + 11.7879i) q^{87} +(17.0562 + 4.66669i) q^{88} -11.1773 q^{89} +(-17.2720 - 12.1393i) q^{90} +(9.15709 - 2.69725i) q^{91} +(2.55830 - 0.920977i) q^{92} +(3.80408 + 9.18385i) q^{93} +(0.163244 - 0.730273i) q^{94} +14.0491 q^{95} +(11.2351 - 13.1530i) q^{96} +(11.6113 - 11.6113i) q^{97} +(0.00743124 + 0.0117101i) q^{98} +(15.1946 + 36.6830i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24} - 4 q^{26} - 8 q^{27} + 56 q^{28} - 8 q^{29} - 16 q^{30} - 44 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} - 28 q^{39} - 8 q^{40} - 8 q^{41} - 48 q^{42} - 32 q^{43} + 12 q^{44} - 36 q^{45} - 48 q^{46} - 8 q^{47} - 8 q^{48} - 168 q^{49} + 76 q^{50} - 4 q^{52} - 8 q^{53} - 28 q^{54} - 40 q^{55} + 56 q^{56} + 32 q^{58} + 52 q^{59} - 36 q^{60} - 8 q^{61} + 72 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} + 20 q^{70} + 56 q^{71} + 8 q^{72} - 8 q^{74} - 68 q^{76} + 56 q^{77} - 48 q^{78} - 16 q^{79} + 28 q^{80} - 88 q^{82} + 36 q^{83} + 100 q^{84} - 24 q^{85} + 96 q^{86} - 8 q^{87} + 64 q^{88} - 8 q^{89} - 64 q^{90} + 72 q^{91} - 8 q^{92} - 40 q^{93} - 56 q^{94} + 36 q^{96} - 8 q^{97} + 52 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.757760 1.19407i −0.535817 0.844334i
\(3\) −2.82515 1.17022i −1.63110 0.675625i −0.635748 0.771896i \(-0.719308\pi\)
−0.995355 + 0.0962713i \(0.969308\pi\)
\(4\) −0.851600 + 1.80963i −0.425800 + 0.904817i
\(5\) 0.899503 2.17159i 0.402270 0.971165i −0.584844 0.811146i \(-0.698844\pi\)
0.987114 0.160020i \(-0.0511557\pi\)
\(6\) 0.743468 + 4.26017i 0.303520 + 1.73921i
\(7\) 2.64760i 1.00070i 0.865823 + 0.500350i \(0.166795\pi\)
−0.865823 + 0.500350i \(0.833205\pi\)
\(8\) 2.80614 0.354399i 0.992119 0.125299i
\(9\) 4.49077 + 4.49077i 1.49692 + 1.49692i
\(10\) −3.27464 + 0.571477i −1.03553 + 0.180717i
\(11\) 5.77603 + 2.39251i 1.74154 + 0.721369i 0.998649 + 0.0519539i \(0.0165449\pi\)
0.742889 + 0.669415i \(0.233455\pi\)
\(12\) 4.52357 4.11594i 1.30584 1.18817i
\(13\) −1.01875 3.45863i −0.282550 0.959252i
\(14\) 3.16142 2.00625i 0.844925 0.536192i
\(15\) −5.08247 + 5.08247i −1.31229 + 1.31229i
\(16\) −2.54955 3.08217i −0.637389 0.770543i
\(17\) −1.08697 −0.263628 −0.131814 0.991274i \(-0.542080\pi\)
−0.131814 + 0.991274i \(0.542080\pi\)
\(18\) 1.95936 8.76521i 0.461826 2.06598i
\(19\) 2.28731 + 5.52206i 0.524745 + 1.26685i 0.934926 + 0.354843i \(0.115466\pi\)
−0.410180 + 0.912004i \(0.634534\pi\)
\(20\) 3.16377 + 3.47710i 0.707441 + 0.777503i
\(21\) 3.09827 7.47989i 0.676098 1.63225i
\(22\) −1.52002 8.70992i −0.324070 1.85696i
\(23\) −0.961319 0.961319i −0.200449 0.200449i 0.599743 0.800192i \(-0.295269\pi\)
−0.800192 + 0.599743i \(0.795269\pi\)
\(24\) −8.34249 2.28256i −1.70290 0.465925i
\(25\) −0.371172 0.371172i −0.0742345 0.0742345i
\(26\) −3.35788 + 3.83727i −0.658534 + 0.752551i
\(27\) −3.92128 9.46682i −0.754652 1.82189i
\(28\) −4.79120 2.25470i −0.905451 0.426098i
\(29\) 2.08624 5.03663i 0.387405 0.935278i −0.603083 0.797678i \(-0.706061\pi\)
0.990488 0.137600i \(-0.0439388\pi\)
\(30\) 9.92011 + 2.21753i 1.81116 + 0.404863i
\(31\) −2.29862 2.29862i −0.412845 0.412845i 0.469883 0.882728i \(-0.344296\pi\)
−0.882728 + 0.469883i \(0.844296\pi\)
\(32\) −1.74837 + 5.37989i −0.309072 + 0.951039i
\(33\) −13.5184 13.5184i −2.35325 2.35325i
\(34\) 0.823659 + 1.29791i 0.141256 + 0.222590i
\(35\) 5.74952 + 2.38153i 0.971845 + 0.402552i
\(36\) −11.9510 + 4.30231i −1.99183 + 0.717051i
\(37\) 3.15093 + 1.30516i 0.518010 + 0.214567i 0.626343 0.779548i \(-0.284551\pi\)
−0.108332 + 0.994115i \(0.534551\pi\)
\(38\) 4.86049 6.91560i 0.788475 1.12186i
\(39\) −1.16923 + 10.9633i −0.187226 + 1.75554i
\(40\) 1.75452 6.41257i 0.277414 1.01392i
\(41\) 6.50731 1.01627 0.508136 0.861277i \(-0.330335\pi\)
0.508136 + 0.861277i \(0.330335\pi\)
\(42\) −11.2792 + 1.96841i −1.74043 + 0.303732i
\(43\) −3.53570 8.53592i −0.539189 1.30172i −0.925290 0.379260i \(-0.876179\pi\)
0.386102 0.922456i \(-0.373821\pi\)
\(44\) −9.24844 + 8.41504i −1.39425 + 1.26861i
\(45\) 13.7916 5.71266i 2.05593 0.851592i
\(46\) −0.419432 + 1.87633i −0.0618419 + 0.276650i
\(47\) 0.374148 + 0.374148i 0.0545751 + 0.0545751i 0.733868 0.679293i \(-0.237713\pi\)
−0.679293 + 0.733868i \(0.737713\pi\)
\(48\) 3.59607 + 11.6911i 0.519049 + 1.68747i
\(49\) −0.00980685 −0.00140098
\(50\) −0.161946 + 0.724465i −0.0229026 + 0.102455i
\(51\) 3.07085 + 1.27199i 0.430004 + 0.178114i
\(52\) 7.12643 + 1.10181i 0.988258 + 0.152793i
\(53\) 4.36222 + 10.5313i 0.599198 + 1.44659i 0.874401 + 0.485205i \(0.161255\pi\)
−0.275203 + 0.961386i \(0.588745\pi\)
\(54\) −8.33264 + 11.8559i −1.13393 + 1.61338i
\(55\) 10.3911 10.3911i 1.40114 1.40114i
\(56\) 0.938308 + 7.42954i 0.125387 + 0.992814i
\(57\) 18.2773i 2.42089i
\(58\) −7.59495 + 1.32544i −0.997265 + 0.174039i
\(59\) 2.23176 5.38795i 0.290551 0.701451i −0.709444 0.704762i \(-0.751054\pi\)
0.999995 + 0.00331069i \(0.00105383\pi\)
\(60\) −4.86918 13.5256i −0.628608 1.74615i
\(61\) 3.69576 8.92236i 0.473194 1.14239i −0.489549 0.871976i \(-0.662839\pi\)
0.962744 0.270416i \(-0.0871613\pi\)
\(62\) −1.00291 + 4.48652i −0.127370 + 0.569788i
\(63\) −11.8898 + 11.8898i −1.49797 + 1.49797i
\(64\) 7.74880 1.98898i 0.968600 0.248623i
\(65\) −8.42711 0.898742i −1.04525 0.111475i
\(66\) −5.89821 + 26.3856i −0.726019 + 3.24785i
\(67\) 1.11846 0.463281i 0.136642 0.0565988i −0.313315 0.949649i \(-0.601440\pi\)
0.449956 + 0.893051i \(0.351440\pi\)
\(68\) 0.925660 1.96701i 0.112253 0.238535i
\(69\) 1.59092 + 3.84083i 0.191525 + 0.462381i
\(70\) −1.51304 8.66994i −0.180843 1.03626i
\(71\) 5.48277 0.650685 0.325343 0.945596i \(-0.394520\pi\)
0.325343 + 0.945596i \(0.394520\pi\)
\(72\) 14.1932 + 11.0102i 1.67269 + 1.29756i
\(73\) 13.2430i 1.54998i 0.631976 + 0.774988i \(0.282244\pi\)
−0.631976 + 0.774988i \(0.717756\pi\)
\(74\) −0.829201 4.75143i −0.0963926 0.552342i
\(75\) 0.614267 + 1.48297i 0.0709294 + 0.171239i
\(76\) −11.9408 0.563389i −1.36970 0.0646251i
\(77\) −6.33442 + 15.2926i −0.721874 + 1.74276i
\(78\) 13.9770 6.91143i 1.58258 0.782566i
\(79\) −2.73529 −0.307744 −0.153872 0.988091i \(-0.549174\pi\)
−0.153872 + 0.988091i \(0.549174\pi\)
\(80\) −8.98655 + 2.76417i −1.00473 + 0.309044i
\(81\) 12.2813i 1.36458i
\(82\) −4.93098 7.77018i −0.544536 0.858073i
\(83\) 0.835389 + 2.01681i 0.0916958 + 0.221373i 0.963073 0.269240i \(-0.0867726\pi\)
−0.871377 + 0.490614i \(0.836773\pi\)
\(84\) 10.8974 + 11.9766i 1.18900 + 1.30676i
\(85\) −0.977729 + 2.36045i −0.106050 + 0.256026i
\(86\) −7.51327 + 10.6900i −0.810177 + 1.15274i
\(87\) −11.7879 + 11.7879i −1.26380 + 1.26380i
\(88\) 17.0562 + 4.66669i 1.81820 + 0.497471i
\(89\) −11.1773 −1.18479 −0.592395 0.805648i \(-0.701817\pi\)
−0.592395 + 0.805648i \(0.701817\pi\)
\(90\) −17.2720 12.1393i −1.82063 1.27959i
\(91\) 9.15709 2.69725i 0.959924 0.282748i
\(92\) 2.55830 0.920977i 0.266721 0.0960185i
\(93\) 3.80408 + 9.18385i 0.394464 + 0.952321i
\(94\) 0.163244 0.730273i 0.0168374 0.0753219i
\(95\) 14.0491 1.44141
\(96\) 11.2351 13.1530i 1.14667 1.34243i
\(97\) 11.6113 11.6113i 1.17895 1.17895i 0.198936 0.980013i \(-0.436252\pi\)
0.980013 0.198936i \(-0.0637484\pi\)
\(98\) 0.00743124 + 0.0117101i 0.000750669 + 0.00118289i
\(99\) 15.1946 + 36.6830i 1.52711 + 3.68678i
\(100\) 0.987777 0.355596i 0.0987777 0.0355596i
\(101\) −2.63674 6.36565i −0.262365 0.633406i 0.736718 0.676200i \(-0.236374\pi\)
−0.999084 + 0.0427933i \(0.986374\pi\)
\(102\) −0.808125 4.63066i −0.0800163 0.458504i
\(103\) 7.73145 7.73145i 0.761802 0.761802i −0.214846 0.976648i \(-0.568925\pi\)
0.976648 + 0.214846i \(0.0689248\pi\)
\(104\) −4.08449 9.34435i −0.400517 0.916289i
\(105\) −13.4564 13.4564i −1.31321 1.31321i
\(106\) 9.26963 13.1890i 0.900346 1.28103i
\(107\) −2.11027 + 0.874102i −0.204007 + 0.0845026i −0.482348 0.875980i \(-0.660216\pi\)
0.278340 + 0.960483i \(0.410216\pi\)
\(108\) 20.4708 + 0.965853i 1.96981 + 0.0929392i
\(109\) −3.26015 + 1.35040i −0.312266 + 0.129345i −0.533312 0.845919i \(-0.679053\pi\)
0.221046 + 0.975263i \(0.429053\pi\)
\(110\) −20.2817 4.53373i −1.93378 0.432275i
\(111\) −7.37455 7.37455i −0.699962 0.699962i
\(112\) 8.16037 6.75021i 0.771082 0.637835i
\(113\) 2.67729i 0.251859i 0.992039 + 0.125929i \(0.0401912\pi\)
−0.992039 + 0.125929i \(0.959809\pi\)
\(114\) −21.8244 + 13.8498i −2.04404 + 1.29715i
\(115\) −2.95230 + 1.22288i −0.275304 + 0.114035i
\(116\) 7.33781 + 8.06452i 0.681299 + 0.748772i
\(117\) 10.9570 20.1069i 1.01297 1.85888i
\(118\) −8.12472 + 1.41789i −0.747941 + 0.130528i
\(119\) 2.87785i 0.263813i
\(120\) −12.4609 + 16.0633i −1.13752 + 1.46637i
\(121\) 19.8602 + 19.8602i 1.80548 + 1.80548i
\(122\) −13.4544 + 2.34801i −1.21811 + 0.212579i
\(123\) −18.3842 7.61497i −1.65764 0.686619i
\(124\) 6.11718 2.20216i 0.549339 0.197760i
\(125\) 9.71805 4.02535i 0.869209 0.360038i
\(126\) 23.2068 + 5.18761i 2.06743 + 0.462149i
\(127\) 0.627273 0.0556615 0.0278307 0.999613i \(-0.491140\pi\)
0.0278307 + 0.999613i \(0.491140\pi\)
\(128\) −8.24671 7.74543i −0.728913 0.684606i
\(129\) 28.2528i 2.48752i
\(130\) 5.31257 + 10.7436i 0.465943 + 0.942274i
\(131\) −2.06667 0.856043i −0.180566 0.0747929i 0.290569 0.956854i \(-0.406155\pi\)
−0.471135 + 0.882061i \(0.656155\pi\)
\(132\) 35.9757 12.9511i 3.13128 1.12725i
\(133\) −14.6202 + 6.05590i −1.26773 + 0.525113i
\(134\) −1.40071 0.984462i −0.121003 0.0850445i
\(135\) −24.0853 −2.07293
\(136\) −3.05017 + 0.385220i −0.261550 + 0.0330323i
\(137\) 7.09311i 0.606005i 0.952990 + 0.303003i \(0.0979891\pi\)
−0.952990 + 0.303003i \(0.902011\pi\)
\(138\) 3.38067 4.81010i 0.287782 0.409463i
\(139\) −7.14389 + 2.95910i −0.605937 + 0.250987i −0.664490 0.747297i \(-0.731351\pi\)
0.0585531 + 0.998284i \(0.481351\pi\)
\(140\) −9.20598 + 8.37641i −0.778048 + 0.707936i
\(141\) −0.619192 1.49486i −0.0521453 0.125890i
\(142\) −4.15462 6.54681i −0.348648 0.549396i
\(143\) 2.39049 22.4145i 0.199902 1.87440i
\(144\) 2.39186 25.2908i 0.199321 2.10756i
\(145\) −9.06092 9.06092i −0.752469 0.752469i
\(146\) 15.8130 10.0350i 1.30870 0.830503i
\(147\) 0.0277059 + 0.0114761i 0.00228514 + 0.000946537i
\(148\) −5.04520 + 4.59057i −0.414713 + 0.377342i
\(149\) 14.6080 + 6.05085i 1.19674 + 0.495705i 0.889943 0.456071i \(-0.150744\pi\)
0.306794 + 0.951776i \(0.400744\pi\)
\(150\) 1.30530 1.85721i 0.106578 0.151641i
\(151\) −8.48791 −0.690736 −0.345368 0.938467i \(-0.612246\pi\)
−0.345368 + 0.938467i \(0.612246\pi\)
\(152\) 8.37552 + 14.6850i 0.679345 + 1.19111i
\(153\) −4.88131 4.88131i −0.394630 0.394630i
\(154\) 23.0604 4.02442i 1.85826 0.324297i
\(155\) −7.05929 + 2.92405i −0.567016 + 0.234866i
\(156\) −18.8439 11.4523i −1.50872 0.916914i
\(157\) 5.50863 13.2990i 0.439637 1.06138i −0.536438 0.843940i \(-0.680230\pi\)
0.976074 0.217437i \(-0.0697696\pi\)
\(158\) 2.07269 + 3.26612i 0.164894 + 0.259839i
\(159\) 34.8574i 2.76437i
\(160\) 10.1103 + 8.63598i 0.799286 + 0.682734i
\(161\) 2.54519 2.54519i 0.200589 0.200589i
\(162\) 14.6647 9.30625i 1.15217 0.731168i
\(163\) −1.06661 2.57501i −0.0835430 0.201691i 0.876588 0.481242i \(-0.159814\pi\)
−0.960131 + 0.279551i \(0.909814\pi\)
\(164\) −5.54163 + 11.7759i −0.432728 + 0.919540i
\(165\) −41.5163 + 17.1966i −3.23204 + 1.33876i
\(166\) 1.77518 2.52577i 0.137781 0.196037i
\(167\) 8.56469i 0.662756i −0.943498 0.331378i \(-0.892487\pi\)
0.943498 0.331378i \(-0.107513\pi\)
\(168\) 6.04331 22.0876i 0.466251 1.70410i
\(169\) −10.9243 + 7.04697i −0.840331 + 0.542074i
\(170\) 3.55942 0.621176i 0.272995 0.0476420i
\(171\) −14.5265 + 35.0701i −1.11087 + 2.68188i
\(172\) 18.4579 + 0.870878i 1.40740 + 0.0664038i
\(173\) 2.78463 6.72269i 0.211712 0.511117i −0.781975 0.623310i \(-0.785788\pi\)
0.993686 + 0.112193i \(0.0357875\pi\)
\(174\) 23.0079 + 5.14316i 1.74423 + 0.389902i
\(175\) 0.982717 0.982717i 0.0742865 0.0742865i
\(176\) −7.35218 23.9025i −0.554191 1.80172i
\(177\) −12.6101 + 12.6101i −0.947836 + 0.947836i
\(178\) 8.46970 + 13.3464i 0.634831 + 1.00036i
\(179\) −6.51758 2.69967i −0.487147 0.201783i 0.125571 0.992085i \(-0.459924\pi\)
−0.612718 + 0.790302i \(0.709924\pi\)
\(180\) −1.40709 + 29.8226i −0.104878 + 2.22285i
\(181\) −7.57485 + 3.13761i −0.563034 + 0.233216i −0.646002 0.763336i \(-0.723560\pi\)
0.0829677 + 0.996552i \(0.473560\pi\)
\(182\) −10.1596 8.89033i −0.753078 0.658995i
\(183\) −20.8822 + 20.8822i −1.54366 + 1.54366i
\(184\) −3.03828 2.35690i −0.223985 0.173753i
\(185\) 5.66855 5.66855i 0.416760 0.416760i
\(186\) 8.08358 11.5015i 0.592717 0.843330i
\(187\) −6.27835 2.60058i −0.459118 0.190173i
\(188\) −0.995696 + 0.358447i −0.0726186 + 0.0261424i
\(189\) 25.0644 10.3820i 1.82317 0.755180i
\(190\) −10.6458 16.7756i −0.772331 1.21703i
\(191\) 2.45562i 0.177683i 0.996046 + 0.0888413i \(0.0283164\pi\)
−0.996046 + 0.0888413i \(0.971684\pi\)
\(192\) −24.2191 3.44859i −1.74786 0.248881i
\(193\) 5.41219 + 5.41219i 0.389578 + 0.389578i 0.874537 0.484959i \(-0.161165\pi\)
−0.484959 + 0.874537i \(0.661165\pi\)
\(194\) −22.6633 5.06611i −1.62713 0.363726i
\(195\) 22.7562 + 12.4006i 1.62960 + 0.888028i
\(196\) 0.00835152 0.0177468i 0.000596537 0.00126763i
\(197\) −0.329537 + 0.795572i −0.0234785 + 0.0566822i −0.935184 0.354162i \(-0.884766\pi\)
0.911705 + 0.410844i \(0.134766\pi\)
\(198\) 32.2882 45.9403i 2.29462 3.26483i
\(199\) −16.9240 + 16.9240i −1.19971 + 1.19971i −0.225454 + 0.974254i \(0.572386\pi\)
−0.974254 + 0.225454i \(0.927614\pi\)
\(200\) −1.17310 0.910017i −0.0829509 0.0643479i
\(201\) −3.70196 −0.261116
\(202\) −5.60301 + 7.97209i −0.394227 + 0.560914i
\(203\) 13.3350 + 5.52354i 0.935933 + 0.387676i
\(204\) −4.91696 + 4.47388i −0.344256 + 0.313235i
\(205\) 5.85335 14.1312i 0.408815 0.986968i
\(206\) −15.0905 3.37330i −1.05140 0.235029i
\(207\) 8.63412i 0.600113i
\(208\) −8.06274 + 11.9579i −0.559051 + 0.829134i
\(209\) 37.3680i 2.58480i
\(210\) −5.87113 + 26.2645i −0.405147 + 1.81242i
\(211\) −2.48562 + 6.00081i −0.171117 + 0.413113i −0.986052 0.166440i \(-0.946773\pi\)
0.814935 + 0.579553i \(0.196773\pi\)
\(212\) −22.7727 1.07446i −1.56404 0.0737943i
\(213\) −15.4897 6.41603i −1.06133 0.439619i
\(214\) 2.64281 + 1.85745i 0.180659 + 0.126972i
\(215\) −21.7169 −1.48108
\(216\) −14.3587 25.1755i −0.976985 1.71297i
\(217\) 6.08584 6.08584i 0.413134 0.413134i
\(218\) 4.08288 + 2.86957i 0.276528 + 0.194352i
\(219\) 15.4972 37.4135i 1.04720 2.52817i
\(220\) 9.95504 + 27.6532i 0.671169 + 1.86438i
\(221\) 1.10735 + 3.75942i 0.0744882 + 0.252886i
\(222\) −3.21758 + 14.3939i −0.215950 + 0.966053i
\(223\) 0.426879 + 0.426879i 0.0285859 + 0.0285859i 0.721255 0.692669i \(-0.243565\pi\)
−0.692669 + 0.721255i \(0.743565\pi\)
\(224\) −14.2438 4.62900i −0.951705 0.309288i
\(225\) 3.33370i 0.222246i
\(226\) 3.19687 2.02875i 0.212653 0.134950i
\(227\) 23.4772 9.72456i 1.55823 0.645442i 0.573452 0.819239i \(-0.305604\pi\)
0.984781 + 0.173797i \(0.0556038\pi\)
\(228\) 33.0753 + 15.5650i 2.19046 + 1.03082i
\(229\) −21.0868 8.73445i −1.39346 0.577189i −0.445413 0.895325i \(-0.646943\pi\)
−0.948045 + 0.318136i \(0.896943\pi\)
\(230\) 3.69734 + 2.59860i 0.243796 + 0.171347i
\(231\) 35.7914 35.7914i 2.35490 2.35490i
\(232\) 4.06930 14.8728i 0.267162 0.976449i
\(233\) −6.76040 + 6.76040i −0.442888 + 0.442888i −0.892982 0.450093i \(-0.851391\pi\)
0.450093 + 0.892982i \(0.351391\pi\)
\(234\) −32.3117 + 2.15284i −2.11228 + 0.140735i
\(235\) 1.14904 0.475950i 0.0749554 0.0310475i
\(236\) 7.84965 + 8.62705i 0.510969 + 0.561573i
\(237\) 7.72760 + 3.20088i 0.501962 + 0.207919i
\(238\) −3.43636 + 2.18072i −0.222746 + 0.141355i
\(239\) −4.67775 + 4.67775i −0.302578 + 0.302578i −0.842022 0.539443i \(-0.818635\pi\)
0.539443 + 0.842022i \(0.318635\pi\)
\(240\) 28.6231 + 2.70700i 1.84761 + 0.174736i
\(241\) 18.0291 18.0291i 1.16136 1.16136i 0.177179 0.984179i \(-0.443303\pi\)
0.984179 0.177179i \(-0.0566971\pi\)
\(242\) 8.66520 38.7638i 0.557020 2.49183i
\(243\) 2.60789 6.29600i 0.167296 0.403889i
\(244\) 12.9989 + 14.2863i 0.832170 + 0.914585i
\(245\) −0.00882129 + 0.0212965i −0.000563572 + 0.00136058i
\(246\) 4.83798 + 27.7223i 0.308458 + 1.76751i
\(247\) 16.7686 13.5366i 1.06696 0.861312i
\(248\) −7.26488 5.63562i −0.461320 0.357862i
\(249\) 6.67537i 0.423035i
\(250\) −12.1705 8.55378i −0.769730 0.540988i
\(251\) −11.0253 + 4.56684i −0.695913 + 0.288257i −0.702461 0.711722i \(-0.747916\pi\)
0.00654819 + 0.999979i \(0.497916\pi\)
\(252\) −11.3908 31.6415i −0.717554 1.99323i
\(253\) −3.25264 7.85257i −0.204492 0.493687i
\(254\) −0.475322 0.749007i −0.0298244 0.0469969i
\(255\) 5.52447 5.52447i 0.345956 0.345956i
\(256\) −2.99955 + 15.7163i −0.187472 + 0.982270i
\(257\) 10.7788i 0.672365i 0.941797 + 0.336182i \(0.109136\pi\)
−0.941797 + 0.336182i \(0.890864\pi\)
\(258\) 33.7358 21.4089i 2.10030 1.33286i
\(259\) −3.45555 + 8.34243i −0.214717 + 0.518373i
\(260\) 8.80292 14.4846i 0.545934 0.898298i
\(261\) 31.9871 13.2495i 1.97995 0.820124i
\(262\) 0.543866 + 3.11642i 0.0336002 + 0.192533i
\(263\) 12.8376 + 12.8376i 0.791602 + 0.791602i 0.981755 0.190153i \(-0.0608983\pi\)
−0.190153 + 0.981755i \(0.560898\pi\)
\(264\) −42.7254 33.1436i −2.62957 2.03985i
\(265\) 26.7936 1.64592
\(266\) 18.3098 + 12.8686i 1.12264 + 0.789027i
\(267\) 31.5775 + 13.0798i 1.93251 + 0.800474i
\(268\) −0.114111 + 2.41853i −0.00697043 + 0.147735i
\(269\) −2.62050 1.08545i −0.159775 0.0661809i 0.301363 0.953510i \(-0.402558\pi\)
−0.461137 + 0.887329i \(0.652558\pi\)
\(270\) 18.2509 + 28.7595i 1.11071 + 1.75025i
\(271\) 16.7350 + 16.7350i 1.01658 + 1.01658i 0.999860 + 0.0167180i \(0.00532175\pi\)
0.0167180 + 0.999860i \(0.494678\pi\)
\(272\) 2.77128 + 3.35021i 0.168033 + 0.203137i
\(273\) −29.0266 3.09565i −1.75677 0.187357i
\(274\) 8.46966 5.37487i 0.511671 0.324708i
\(275\) −1.25587 3.03194i −0.0757317 0.182833i
\(276\) −8.30532 0.391861i −0.499922 0.0235872i
\(277\) 0.772334 0.319911i 0.0464051 0.0192216i −0.359360 0.933199i \(-0.617005\pi\)
0.405765 + 0.913977i \(0.367005\pi\)
\(278\) 8.94672 + 6.28802i 0.536589 + 0.377130i
\(279\) 20.6452i 1.23599i
\(280\) 16.9779 + 4.64527i 1.01463 + 0.277608i
\(281\) 24.0078 1.43219 0.716094 0.698004i \(-0.245928\pi\)
0.716094 + 0.698004i \(0.245928\pi\)
\(282\) −1.31577 + 1.87210i −0.0783528 + 0.111482i
\(283\) −6.66435 + 2.76046i −0.396154 + 0.164093i −0.571862 0.820350i \(-0.693779\pi\)
0.175707 + 0.984442i \(0.443779\pi\)
\(284\) −4.66913 + 9.92181i −0.277062 + 0.588751i
\(285\) −39.6909 16.4405i −2.35109 0.973851i
\(286\) −28.5759 + 14.1304i −1.68973 + 0.835550i
\(287\) 17.2288i 1.01698i
\(288\) −32.0114 + 16.3083i −1.88629 + 0.960975i
\(289\) −15.8185 −0.930500
\(290\) −3.95336 + 17.6854i −0.232149 + 1.03852i
\(291\) −46.3914 + 19.2160i −2.71951 + 1.12646i
\(292\) −23.9650 11.2777i −1.40244 0.659980i
\(293\) −10.5707 4.37854i −0.617548 0.255797i 0.0519040 0.998652i \(-0.483471\pi\)
−0.669452 + 0.742855i \(0.733471\pi\)
\(294\) −0.00729109 0.0417789i −0.000425225 0.00243659i
\(295\) −9.69295 9.69295i −0.564345 0.564345i
\(296\) 9.30450 + 2.54577i 0.540813 + 0.147970i
\(297\) 64.0623i 3.71727i
\(298\) −3.84426 22.0281i −0.222692 1.27605i
\(299\) −2.34551 + 4.30420i −0.135644 + 0.248918i
\(300\) −3.20675 0.151300i −0.185142 0.00873532i
\(301\) 22.5997 9.36112i 1.30263 0.539566i
\(302\) 6.43180 + 10.1351i 0.370108 + 0.583212i
\(303\) 21.0695i 1.21041i
\(304\) 11.1883 21.1287i 0.641693 1.21181i
\(305\) −16.0514 16.0514i −0.919100 0.919100i
\(306\) −2.12976 + 9.52748i −0.121750 + 0.544650i
\(307\) −1.83964 + 0.762002i −0.104994 + 0.0434897i −0.434562 0.900642i \(-0.643097\pi\)
0.329568 + 0.944132i \(0.393097\pi\)
\(308\) −22.2797 24.4862i −1.26950 1.39523i
\(309\) −30.8900 + 12.7951i −1.75727 + 0.727886i
\(310\) 8.84077 + 6.21355i 0.502122 + 0.352906i
\(311\) 21.1350 + 21.1350i 1.19846 + 1.19846i 0.974628 + 0.223830i \(0.0718559\pi\)
0.223830 + 0.974628i \(0.428144\pi\)
\(312\) 0.604383 + 31.1790i 0.0342165 + 1.76516i
\(313\) −10.4099 + 10.4099i −0.588405 + 0.588405i −0.937199 0.348794i \(-0.886591\pi\)
0.348794 + 0.937199i \(0.386591\pi\)
\(314\) −20.0542 + 3.49977i −1.13172 + 0.197504i
\(315\) 15.1248 + 36.5146i 0.852189 + 2.05737i
\(316\) 2.32937 4.94987i 0.131037 0.278452i
\(317\) 8.43756 + 20.3701i 0.473901 + 1.14410i 0.962425 + 0.271547i \(0.0875352\pi\)
−0.488525 + 0.872550i \(0.662465\pi\)
\(318\) −41.6221 + 26.4135i −2.33405 + 1.48120i
\(319\) 24.1004 24.1004i 1.34936 1.34936i
\(320\) 2.65081 18.6163i 0.148185 1.04068i
\(321\) 6.98472 0.389849
\(322\) −4.96778 1.11049i −0.276844 0.0618852i
\(323\) −2.48623 6.00229i −0.138338 0.333976i
\(324\) −22.2246 10.4587i −1.23470 0.581040i
\(325\) −0.905618 + 1.66188i −0.0502346 + 0.0921846i
\(326\) −2.26651 + 3.22484i −0.125531 + 0.178608i
\(327\) 10.7907 0.596727
\(328\) 18.2604 2.30619i 1.00826 0.127338i
\(329\) −0.990596 + 0.990596i −0.0546133 + 0.0546133i
\(330\) 51.9934 + 36.5424i 2.86214 + 2.01160i
\(331\) 6.27576 15.1510i 0.344947 0.832776i −0.652253 0.758001i \(-0.726176\pi\)
0.997200 0.0747751i \(-0.0238239\pi\)
\(332\) −4.36110 0.205765i −0.239346 0.0112928i
\(333\) 8.28894 + 20.0113i 0.454231 + 1.09661i
\(334\) −10.2268 + 6.48998i −0.559587 + 0.355116i
\(335\) 2.84556i 0.155470i
\(336\) −30.9535 + 9.52098i −1.68865 + 0.519412i
\(337\) 10.6765 0.581584 0.290792 0.956786i \(-0.406081\pi\)
0.290792 + 0.956786i \(0.406081\pi\)
\(338\) 16.6926 + 7.70445i 0.907955 + 0.419067i
\(339\) 3.13301 7.56377i 0.170162 0.410807i
\(340\) −3.43891 3.77949i −0.186501 0.204972i
\(341\) −7.77744 18.7764i −0.421172 1.01680i
\(342\) 52.8837 9.22905i 2.85962 0.499050i
\(343\) 18.5073i 0.999298i
\(344\) −12.9468 22.6999i −0.698043 1.22390i
\(345\) 9.77175 0.526093
\(346\) −10.1374 + 1.76915i −0.544992 + 0.0951099i
\(347\) 13.5419 + 32.6930i 0.726966 + 1.75505i 0.652451 + 0.757831i \(0.273741\pi\)
0.0745143 + 0.997220i \(0.476259\pi\)
\(348\) −11.2932 31.3704i −0.605379 1.68163i
\(349\) −8.38088 + 3.47147i −0.448618 + 0.185824i −0.595542 0.803324i \(-0.703063\pi\)
0.146924 + 0.989148i \(0.453063\pi\)
\(350\) −1.91810 0.428768i −0.102527 0.0229186i
\(351\) −28.7474 + 23.2066i −1.53443 + 1.23868i
\(352\) −22.9701 + 26.8914i −1.22431 + 1.43332i
\(353\) −12.2601 + 12.2601i −0.652539 + 0.652539i −0.953604 0.301065i \(-0.902658\pi\)
0.301065 + 0.953604i \(0.402658\pi\)
\(354\) 24.6128 + 5.50192i 1.30816 + 0.292424i
\(355\) 4.93177 11.9063i 0.261751 0.631923i
\(356\) 9.51858 20.2268i 0.504484 1.07202i
\(357\) −3.36771 + 8.13038i −0.178238 + 0.430305i
\(358\) 1.71517 + 9.82813i 0.0906494 + 0.519433i
\(359\) 31.3319i 1.65363i −0.562471 0.826817i \(-0.690149\pi\)
0.562471 0.826817i \(-0.309851\pi\)
\(360\) 36.6765 20.9182i 1.93302 1.10249i
\(361\) −11.8263 + 11.8263i −0.622438 + 0.622438i
\(362\) 9.48643 + 6.66734i 0.498596 + 0.350428i
\(363\) −32.8674 79.3490i −1.72509 4.16474i
\(364\) −2.91715 + 18.8680i −0.152900 + 0.988950i
\(365\) 28.7584 + 11.9121i 1.50528 + 0.623509i
\(366\) 40.7585 + 9.11109i 2.13048 + 0.476244i
\(367\) −14.4963 −0.756700 −0.378350 0.925663i \(-0.623508\pi\)
−0.378350 + 0.925663i \(0.623508\pi\)
\(368\) −0.512014 + 5.41389i −0.0266906 + 0.282218i
\(369\) 29.2228 + 29.2228i 1.52128 + 1.52128i
\(370\) −11.0640 2.47324i −0.575192 0.128578i
\(371\) −27.8828 + 11.5494i −1.44760 + 0.599617i
\(372\) −19.8590 0.936983i −1.02964 0.0485803i
\(373\) −11.3171 27.3219i −0.585978 1.41468i −0.887317 0.461159i \(-0.847434\pi\)
0.301339 0.953517i \(-0.402566\pi\)
\(374\) 1.65221 + 9.46739i 0.0854338 + 0.489547i
\(375\) −32.1655 −1.66102
\(376\) 1.18251 + 0.917313i 0.0609832 + 0.0473068i
\(377\) −19.5452 2.08447i −1.00663 0.107356i
\(378\) −31.3896 22.0615i −1.61451 1.13472i
\(379\) −18.2142 7.54458i −0.935602 0.387539i −0.137801 0.990460i \(-0.544004\pi\)
−0.797801 + 0.602921i \(0.794004\pi\)
\(380\) −11.9642 + 25.4237i −0.613752 + 1.30421i
\(381\) −1.77214 0.734045i −0.0907896 0.0376063i
\(382\) 2.93218 1.86077i 0.150023 0.0952053i
\(383\) 10.6892 + 10.6892i 0.546194 + 0.546194i 0.925338 0.379144i \(-0.123781\pi\)
−0.379144 + 0.925338i \(0.623781\pi\)
\(384\) 14.2344 + 31.5325i 0.726396 + 1.60914i
\(385\) 27.5115 + 27.5115i 1.40212 + 1.40212i
\(386\) 2.36139 10.5637i 0.120191 0.537677i
\(387\) 22.4549 54.2108i 1.14144 2.75569i
\(388\) 11.1240 + 30.9004i 0.564736 + 1.56873i
\(389\) 7.85086 + 18.9536i 0.398054 + 0.960988i 0.988127 + 0.153638i \(0.0490990\pi\)
−0.590073 + 0.807350i \(0.700901\pi\)
\(390\) −2.43649 36.5691i −0.123377 1.85175i
\(391\) 1.04492 + 1.04492i 0.0528439 + 0.0528439i
\(392\) −0.0275194 + 0.00347554i −0.00138994 + 0.000175541i
\(393\) 4.83691 + 4.83691i 0.243990 + 0.243990i
\(394\) 1.19968 0.209363i 0.0604389 0.0105476i
\(395\) −2.46040 + 5.93993i −0.123796 + 0.298870i
\(396\) −79.3225 3.74259i −3.98611 0.188072i
\(397\) −8.45983 20.4238i −0.424587 1.02504i −0.980977 0.194122i \(-0.937814\pi\)
0.556391 0.830921i \(-0.312186\pi\)
\(398\) 33.0327 + 7.38407i 1.65578 + 0.370130i
\(399\) 48.3911 2.42259
\(400\) −0.197692 + 2.09034i −0.00988462 + 0.104517i
\(401\) −10.4272 + 10.4272i −0.520709 + 0.520709i −0.917786 0.397076i \(-0.870025\pi\)
0.397076 + 0.917786i \(0.370025\pi\)
\(402\) 2.80520 + 4.42039i 0.139910 + 0.220469i
\(403\) −5.60837 + 10.2918i −0.279373 + 0.512672i
\(404\) 13.7650 + 0.649456i 0.684832 + 0.0323117i
\(405\) 26.6699 + 11.0470i 1.32524 + 0.548931i
\(406\) −3.50924 20.1084i −0.174161 0.997964i
\(407\) 15.0773 + 15.0773i 0.747353 + 0.747353i
\(408\) 9.06800 + 2.48106i 0.448933 + 0.122831i
\(409\) 36.2137i 1.79065i 0.445411 + 0.895326i \(0.353058\pi\)
−0.445411 + 0.895326i \(0.646942\pi\)
\(410\) −21.3091 + 3.71878i −1.05238 + 0.183657i
\(411\) 8.30048 20.0391i 0.409432 0.988457i
\(412\) 7.40699 + 20.5752i 0.364916 + 1.01367i
\(413\) 14.2652 + 5.90882i 0.701942 + 0.290754i
\(414\) −10.3097 + 6.54259i −0.506696 + 0.321551i
\(415\) 5.13112 0.251877
\(416\) 20.3882 + 0.566225i 0.999615 + 0.0277614i
\(417\) 23.6454 1.15792
\(418\) 44.6200 28.3160i 2.18243 1.38498i
\(419\) 1.44481 + 0.598459i 0.0705835 + 0.0292366i 0.417696 0.908587i \(-0.362838\pi\)
−0.347112 + 0.937824i \(0.612838\pi\)
\(420\) 35.8105 12.8917i 1.74738 0.629048i
\(421\) −1.17500 + 2.83671i −0.0572662 + 0.138253i −0.949923 0.312484i \(-0.898839\pi\)
0.892657 + 0.450737i \(0.148839\pi\)
\(422\) 9.04888 1.57918i 0.440493 0.0768731i
\(423\) 3.36042i 0.163389i
\(424\) 15.9733 + 28.0064i 0.775732 + 1.36011i
\(425\) 0.403452 + 0.403452i 0.0195703 + 0.0195703i
\(426\) 4.07627 + 23.3575i 0.197496 + 1.13168i
\(427\) 23.6229 + 9.78492i 1.14319 + 0.473525i
\(428\) 0.215300 4.56320i 0.0104069 0.220571i
\(429\) −32.9834 + 60.5271i −1.59245 + 2.92228i
\(430\) 16.4562 + 25.9315i 0.793589 + 1.25053i
\(431\) 9.64730 9.64730i 0.464694 0.464694i −0.435496 0.900191i \(-0.643427\pi\)
0.900191 + 0.435496i \(0.143427\pi\)
\(432\) −19.1808 + 36.2222i −0.922838 + 1.74274i
\(433\) −3.86613 −0.185794 −0.0928971 0.995676i \(-0.529613\pi\)
−0.0928971 + 0.995676i \(0.529613\pi\)
\(434\) −11.8785 2.65531i −0.570187 0.127459i
\(435\) 14.9953 + 36.2017i 0.718967 + 1.73574i
\(436\) 0.332617 7.04969i 0.0159295 0.337619i
\(437\) 3.10963 7.50730i 0.148754 0.359123i
\(438\) −56.4174 + 9.84575i −2.69573 + 0.470448i
\(439\) −16.4792 16.4792i −0.786509 0.786509i 0.194411 0.980920i \(-0.437720\pi\)
−0.980920 + 0.194411i \(0.937720\pi\)
\(440\) 25.4763 32.8415i 1.21453 1.56566i
\(441\) −0.0440403 0.0440403i −0.00209716 0.00209716i
\(442\) 3.64990 4.17098i 0.173608 0.198393i
\(443\) −4.31269 10.4117i −0.204902 0.494677i 0.787705 0.616053i \(-0.211269\pi\)
−0.992607 + 0.121376i \(0.961269\pi\)
\(444\) 19.6254 7.06508i 0.931381 0.335294i
\(445\) −10.0540 + 24.2725i −0.476605 + 1.15063i
\(446\) 0.186251 0.833194i 0.00881924 0.0394529i
\(447\) −34.1892 34.1892i −1.61709 1.61709i
\(448\) 5.26604 + 20.5158i 0.248797 + 0.969279i
\(449\) −0.830268 0.830268i −0.0391828 0.0391828i 0.687244 0.726427i \(-0.258820\pi\)
−0.726427 + 0.687244i \(0.758820\pi\)
\(450\) −3.98066 + 2.52614i −0.187650 + 0.119083i
\(451\) 37.5864 + 15.5688i 1.76988 + 0.733106i
\(452\) −4.84492 2.27998i −0.227886 0.107241i
\(453\) 23.9797 + 9.93270i 1.12666 + 0.466679i
\(454\) −29.4018 20.6645i −1.37990 0.969831i
\(455\) 2.37951 22.3117i 0.111553 1.04599i
\(456\) −6.47747 51.2887i −0.303335 2.40181i
\(457\) −31.4019 −1.46892 −0.734460 0.678651i \(-0.762565\pi\)
−0.734460 + 0.678651i \(0.762565\pi\)
\(458\) 5.54922 + 31.7978i 0.259298 + 1.48581i
\(459\) 4.26230 + 10.2901i 0.198947 + 0.480301i
\(460\) 0.301209 6.38400i 0.0140439 0.297655i
\(461\) −26.7134 + 11.0650i −1.24417 + 0.515351i −0.905014 0.425381i \(-0.860140\pi\)
−0.339152 + 0.940732i \(0.610140\pi\)
\(462\) −69.8587 15.6161i −3.25012 0.726527i
\(463\) −17.9440 17.9440i −0.833927 0.833927i 0.154125 0.988051i \(-0.450744\pi\)
−0.988051 + 0.154125i \(0.950744\pi\)
\(464\) −20.8427 + 6.41101i −0.967599 + 0.297624i
\(465\) 23.3654 1.08354
\(466\) 13.1951 + 2.94962i 0.611253 + 0.136639i
\(467\) 7.29041 + 3.01979i 0.337360 + 0.139739i 0.544931 0.838481i \(-0.316556\pi\)
−0.207571 + 0.978220i \(0.566556\pi\)
\(468\) 27.0552 + 36.9511i 1.25063 + 1.70807i
\(469\) 1.22658 + 2.96124i 0.0566384 + 0.136737i
\(470\) −1.43902 1.01138i −0.0663769 0.0466516i
\(471\) −31.1255 + 31.1255i −1.43419 + 1.43419i
\(472\) 4.35314 15.9103i 0.200370 0.732329i
\(473\) 57.7629i 2.65594i
\(474\) −2.03360 11.6528i −0.0934063 0.535230i
\(475\) 1.20065 2.89862i 0.0550896 0.132998i
\(476\) 5.20787 + 2.45078i 0.238702 + 0.112331i
\(477\) −27.7041 + 66.8835i −1.26848 + 3.06239i
\(478\) 9.13016 + 2.04094i 0.417604 + 0.0933506i
\(479\) 11.4813 11.4813i 0.524594 0.524594i −0.394362 0.918955i \(-0.629034\pi\)
0.918955 + 0.394362i \(0.129034\pi\)
\(480\) −18.4571 36.2292i −0.842445 1.65363i
\(481\) 1.30406 12.2276i 0.0594598 0.557529i
\(482\) −35.1897 7.86626i −1.60285 0.358299i
\(483\) −10.1690 + 4.21213i −0.462705 + 0.191659i
\(484\) −52.8527 + 19.0268i −2.40240 + 0.864854i
\(485\) −14.7706 35.6594i −0.670698 1.61921i
\(486\) −9.49402 + 1.65686i −0.430657 + 0.0751566i
\(487\) −31.5564 −1.42996 −0.714979 0.699146i \(-0.753564\pi\)
−0.714979 + 0.699146i \(0.753564\pi\)
\(488\) 7.20874 26.3471i 0.326324 1.19268i
\(489\) 8.52297i 0.385422i
\(490\) 0.0321139 0.00560439i 0.00145076 0.000253181i
\(491\) −7.80660 18.8468i −0.352307 0.850545i −0.996335 0.0855422i \(-0.972738\pi\)
0.644027 0.765002i \(-0.277262\pi\)
\(492\) 29.4363 26.7837i 1.32709 1.20750i
\(493\) −2.26767 + 5.47464i −0.102131 + 0.246565i
\(494\) −28.8702 9.76537i −1.29893 0.439365i
\(495\) 93.3281 4.19479
\(496\) −1.22428 + 12.9452i −0.0549720 + 0.581257i
\(497\) 14.5162i 0.651141i
\(498\) −7.97086 + 5.05833i −0.357183 + 0.226669i
\(499\) −11.1888 27.0123i −0.500881 1.20923i −0.949004 0.315263i \(-0.897907\pi\)
0.448123 0.893972i \(-0.352093\pi\)
\(500\) −0.991485 + 21.0141i −0.0443406 + 0.939780i
\(501\) −10.0225 + 24.1966i −0.447774 + 1.08102i
\(502\) 13.8077 + 9.70444i 0.616267 + 0.433130i
\(503\) 12.2315 12.2315i 0.545377 0.545377i −0.379723 0.925100i \(-0.623981\pi\)
0.925100 + 0.379723i \(0.123981\pi\)
\(504\) −29.1506 + 37.5780i −1.29847 + 1.67386i
\(505\) −16.1954 −0.720684
\(506\) −6.91179 + 9.83424i −0.307267 + 0.437185i
\(507\) 39.1093 7.12496i 1.73691 0.316431i
\(508\) −0.534186 + 1.13513i −0.0237007 + 0.0503634i
\(509\) −8.72720 21.0693i −0.386826 0.933881i −0.990608 0.136732i \(-0.956340\pi\)
0.603782 0.797150i \(-0.293660\pi\)
\(510\) −10.7828 2.41037i −0.477471 0.106733i
\(511\) −35.0622 −1.55106
\(512\) 21.0393 8.32753i 0.929815 0.368028i
\(513\) 43.3071 43.3071i 1.91206 1.91206i
\(514\) 12.8707 8.16776i 0.567700 0.360265i
\(515\) −9.83509 23.7440i −0.433386 1.04629i
\(516\) −51.1273 24.0601i −2.25075 1.05919i
\(517\) 1.26594 + 3.05624i 0.0556759 + 0.134413i
\(518\) 12.5799 2.19540i 0.552729 0.0964601i
\(519\) −15.7340 + 15.7340i −0.690647 + 0.690647i
\(520\) −23.9661 + 0.464567i −1.05098 + 0.0203726i
\(521\) −8.68779 8.68779i −0.380619 0.380619i 0.490706 0.871325i \(-0.336739\pi\)
−0.871325 + 0.490706i \(0.836739\pi\)
\(522\) −40.0594 28.1549i −1.75335 1.23231i
\(523\) −14.1034 + 5.84180i −0.616697 + 0.255444i −0.669089 0.743182i \(-0.733315\pi\)
0.0523921 + 0.998627i \(0.483315\pi\)
\(524\) 3.30910 3.01091i 0.144559 0.131532i
\(525\) −3.92632 + 1.62634i −0.171359 + 0.0709791i
\(526\) 5.60117 25.0568i 0.244223 1.09253i
\(527\) 2.49852 + 2.49852i 0.108837 + 0.108837i
\(528\) −7.20013 + 76.1320i −0.313345 + 3.31322i
\(529\) 21.1517i 0.919640i
\(530\) −20.3031 31.9934i −0.881911 1.38970i
\(531\) 34.2183 14.1737i 1.48495 0.615086i
\(532\) 1.49163 31.6145i 0.0646704 1.37066i
\(533\) −6.62932 22.5064i −0.287148 0.974861i
\(534\) −8.30996 47.6171i −0.359607 2.06060i
\(535\) 5.36890i 0.232118i
\(536\) 2.97436 1.69641i 0.128473 0.0732738i
\(537\) 15.2540 + 15.2540i 0.658257 + 0.658257i
\(538\) 0.689612 + 3.95157i 0.0297313 + 0.170364i
\(539\) −0.0566447 0.0234630i −0.00243986 0.00101062i
\(540\) 20.5110 43.5855i 0.882654 1.87562i
\(541\) −4.10564 + 1.70061i −0.176515 + 0.0731150i −0.469191 0.883097i \(-0.655454\pi\)
0.292676 + 0.956212i \(0.405454\pi\)
\(542\) 7.30163 32.6638i 0.313632 1.40303i
\(543\) 25.0718 1.07593
\(544\) 1.90042 5.84775i 0.0814799 0.250720i
\(545\) 8.29441i 0.355294i
\(546\) 18.2987 + 37.0055i 0.783114 + 1.58369i
\(547\) −19.2177 7.96023i −0.821689 0.340355i −0.0680819 0.997680i \(-0.521688\pi\)
−0.753607 + 0.657325i \(0.771688\pi\)
\(548\) −12.8359 6.04049i −0.548324 0.258037i
\(549\) 56.6651 23.4714i 2.41841 1.00174i
\(550\) −2.66869 + 3.79707i −0.113793 + 0.161908i
\(551\) 32.5844 1.38814
\(552\) 5.82553 + 10.2141i 0.247951 + 0.434739i
\(553\) 7.24195i 0.307959i
\(554\) −0.967240 0.679804i −0.0410941 0.0288821i
\(555\) −22.6480 + 9.38109i −0.961352 + 0.398205i
\(556\) 0.728856 15.4478i 0.0309104 0.655133i
\(557\) −2.54460 6.14321i −0.107818 0.260296i 0.860757 0.509015i \(-0.169990\pi\)
−0.968576 + 0.248719i \(0.919990\pi\)
\(558\) −24.6517 + 15.6441i −1.04359 + 0.662266i
\(559\) −25.9207 + 20.9246i −1.09633 + 0.885018i
\(560\) −7.31843 23.7928i −0.309260 1.00543i
\(561\) 14.6941 + 14.6941i 0.620383 + 0.620383i
\(562\) −18.1922 28.6670i −0.767391 1.20924i
\(563\) 17.3599 + 7.19070i 0.731632 + 0.303052i 0.717223 0.696844i \(-0.245413\pi\)
0.0144097 + 0.999896i \(0.495413\pi\)
\(564\) 3.23246 + 0.152513i 0.136111 + 0.00642197i
\(565\) 5.81399 + 2.40823i 0.244596 + 0.101315i
\(566\) 8.34616 + 5.86592i 0.350815 + 0.246563i
\(567\) −32.5159 −1.36554
\(568\) 15.3854 1.94309i 0.645557 0.0815302i
\(569\) −7.30940 7.30940i −0.306426 0.306426i 0.537095 0.843521i \(-0.319521\pi\)
−0.843521 + 0.537095i \(0.819521\pi\)
\(570\) 10.4451 + 59.8516i 0.437496 + 2.50691i
\(571\) −9.38796 + 3.88862i −0.392874 + 0.162734i −0.570370 0.821388i \(-0.693200\pi\)
0.177496 + 0.984121i \(0.443200\pi\)
\(572\) 38.5264 + 23.4141i 1.61087 + 0.978994i
\(573\) 2.87361 6.93751i 0.120047 0.289819i
\(574\) 20.5724 13.0553i 0.858673 0.544917i
\(575\) 0.713630i 0.0297604i
\(576\) 43.7301 + 25.8660i 1.82209 + 1.07775i
\(577\) −12.6144 + 12.6144i −0.525145 + 0.525145i −0.919121 0.393976i \(-0.871099\pi\)
0.393976 + 0.919121i \(0.371099\pi\)
\(578\) 11.9866 + 18.8884i 0.498578 + 0.785653i
\(579\) −8.95684 21.6237i −0.372233 0.898651i
\(580\) 24.1132 8.68067i 1.00125 0.360445i
\(581\) −5.33970 + 2.21178i −0.221528 + 0.0917600i
\(582\) 58.0987 + 40.8335i 2.40827 + 1.69260i
\(583\) 71.2660i 2.95154i
\(584\) 4.69331 + 37.1617i 0.194210 + 1.53776i
\(585\) −33.8081 41.8802i −1.39779 1.73153i
\(586\) 2.78179 + 15.9400i 0.114915 + 0.658477i
\(587\) 6.62324 15.9899i 0.273370 0.659974i −0.726253 0.687428i \(-0.758740\pi\)
0.999623 + 0.0274534i \(0.00873978\pi\)
\(588\) −0.0443620 + 0.0403644i −0.00182946 + 0.00166460i
\(589\) 7.43547 17.9508i 0.306373 0.739650i
\(590\) −4.22912 + 18.9190i −0.174110 + 0.778882i
\(591\) 1.86198 1.86198i 0.0765918 0.0765918i
\(592\) −4.01075 13.0393i −0.164841 0.535912i
\(593\) −26.2711 + 26.2711i −1.07882 + 1.07882i −0.0822082 + 0.996615i \(0.526197\pi\)
−0.996615 + 0.0822082i \(0.973803\pi\)
\(594\) −76.4948 + 48.5439i −3.13862 + 1.99178i
\(595\) −6.24953 2.58864i −0.256206 0.106124i
\(596\) −23.3900 + 21.2823i −0.958093 + 0.871758i
\(597\) 67.6175 28.0081i 2.76740 1.14629i
\(598\) 6.91684 0.460849i 0.282850 0.0188455i
\(599\) 15.4881 15.4881i 0.632827 0.632827i −0.315949 0.948776i \(-0.602323\pi\)
0.948776 + 0.315949i \(0.102323\pi\)
\(600\) 2.24928 + 3.94372i 0.0918265 + 0.161002i
\(601\) 1.53528 1.53528i 0.0626256 0.0626256i −0.675100 0.737726i \(-0.735900\pi\)
0.737726 + 0.675100i \(0.235900\pi\)
\(602\) −28.3030 19.8922i −1.15354 0.810744i
\(603\) 7.10323 + 2.94225i 0.289266 + 0.119818i
\(604\) 7.22831 15.3600i 0.294116 0.624990i
\(605\) 60.9927 25.2640i 2.47970 1.02713i
\(606\) 25.1584 15.9656i 1.02199 0.648559i
\(607\) 25.2987i 1.02684i −0.858136 0.513422i \(-0.828378\pi\)
0.858136 0.513422i \(-0.171622\pi\)
\(608\) −33.7071 + 2.65086i −1.36700 + 0.107506i
\(609\) −31.2097 31.2097i −1.26468 1.26468i
\(610\) −7.00336 + 31.3295i −0.283558 + 1.26850i
\(611\) 0.912878 1.67520i 0.0369311 0.0677715i
\(612\) 12.9903 4.67646i 0.525102 0.189035i
\(613\) 2.77210 6.69244i 0.111964 0.270305i −0.857958 0.513719i \(-0.828267\pi\)
0.969923 + 0.243414i \(0.0782673\pi\)
\(614\) 2.30388 + 1.61924i 0.0929772 + 0.0653471i
\(615\) −33.0732 + 33.0732i −1.33364 + 1.33364i
\(616\) −12.3555 + 45.1581i −0.497819 + 1.81947i
\(617\) −8.47710 −0.341275 −0.170638 0.985334i \(-0.554583\pi\)
−0.170638 + 0.985334i \(0.554583\pi\)
\(618\) 38.6854 + 27.1892i 1.55615 + 1.09371i
\(619\) 4.15215 + 1.71988i 0.166889 + 0.0691277i 0.464564 0.885540i \(-0.346211\pi\)
−0.297675 + 0.954667i \(0.596211\pi\)
\(620\) 0.720225 15.2649i 0.0289249 0.613052i
\(621\) −5.33103 + 12.8702i −0.213927 + 0.516465i
\(622\) 9.22140 41.2520i 0.369745 1.65405i
\(623\) 29.5930i 1.18562i
\(624\) 36.7719 24.3479i 1.47205 0.974694i
\(625\) 27.3490i 1.09396i
\(626\) 20.3184 + 4.54195i 0.812088 + 0.181533i
\(627\) 43.7287 105.570i 1.74635 4.21607i
\(628\) 19.3752 + 21.2941i 0.773155 + 0.849725i
\(629\) −3.42496 1.41866i −0.136562 0.0565658i
\(630\) 32.1400 45.7294i 1.28049 1.82190i
\(631\) −21.2981 −0.847864 −0.423932 0.905694i \(-0.639350\pi\)
−0.423932 + 0.905694i \(0.639350\pi\)
\(632\) −7.67559 + 0.969383i −0.305318 + 0.0385600i
\(633\) 14.0445 14.0445i 0.558219 0.558219i
\(634\) 17.9296 25.5106i 0.712076 1.01316i
\(635\) 0.564234 1.36218i 0.0223909 0.0540565i
\(636\) 63.0792 + 29.6846i 2.50125 + 1.17707i
\(637\) 0.00999073 + 0.0339183i 0.000395847 + 0.00134389i
\(638\) −47.0398 10.5152i −1.86232 0.416301i
\(639\) 24.6218 + 24.6218i 0.974025 + 0.974025i
\(640\) −24.2379 + 10.9415i −0.958085 + 0.432499i
\(641\) 8.78867i 0.347132i −0.984822 0.173566i \(-0.944471\pi\)
0.984822 0.173566i \(-0.0555289\pi\)
\(642\) −5.29274 8.34024i −0.208888 0.329163i
\(643\) −37.9154 + 15.7051i −1.49524 + 0.619347i −0.972449 0.233117i \(-0.925108\pi\)
−0.522787 + 0.852463i \(0.675108\pi\)
\(644\) 2.43838 + 6.77336i 0.0960857 + 0.266908i
\(645\) 61.3536 + 25.4135i 2.41580 + 1.00066i
\(646\) −5.28318 + 7.51702i −0.207864 + 0.295753i
\(647\) 18.3403 18.3403i 0.721030 0.721030i −0.247785 0.968815i \(-0.579703\pi\)
0.968815 + 0.247785i \(0.0797025\pi\)
\(648\) 4.35247 + 34.4629i 0.170981 + 1.35383i
\(649\) 25.7814 25.7814i 1.01201 1.01201i
\(650\) 2.67064 0.177937i 0.104751 0.00697927i
\(651\) −24.3152 + 10.0717i −0.952988 + 0.394741i
\(652\) 5.56816 + 0.262716i 0.218066 + 0.0102888i
\(653\) 30.7101 + 12.7205i 1.20178 + 0.497793i 0.891573 0.452876i \(-0.149602\pi\)
0.310206 + 0.950670i \(0.399602\pi\)
\(654\) −8.17675 12.8848i −0.319736 0.503837i
\(655\) −3.71795 + 3.71795i −0.145272 + 0.145272i
\(656\) −16.5907 20.0566i −0.647760 0.783080i
\(657\) −59.4712 + 59.4712i −2.32019 + 2.32019i
\(658\) 1.93347 + 0.432206i 0.0753747 + 0.0168491i
\(659\) −12.4839 + 30.1387i −0.486303 + 1.17404i 0.470264 + 0.882526i \(0.344159\pi\)
−0.956567 + 0.291513i \(0.905841\pi\)
\(660\) 4.23571 89.7740i 0.164875 3.49445i
\(661\) 6.42611 15.5140i 0.249947 0.603425i −0.748252 0.663414i \(-0.769107\pi\)
0.998199 + 0.0599894i \(0.0191067\pi\)
\(662\) −22.8469 + 3.98715i −0.887970 + 0.154965i
\(663\) 1.27091 11.9168i 0.0493581 0.462809i
\(664\) 3.05897 + 5.36337i 0.118711 + 0.208139i
\(665\) 37.1965i 1.44242i
\(666\) 17.6138 25.0613i 0.682521 0.971106i
\(667\) −6.84735 + 2.83627i −0.265130 + 0.109821i
\(668\) 15.4990 + 7.29369i 0.599673 + 0.282201i
\(669\) −0.706457 1.70554i −0.0273132 0.0659399i
\(670\) −3.39779 + 2.15625i −0.131268 + 0.0833033i
\(671\) 42.6937 42.6937i 1.64817 1.64817i
\(672\) 34.8240 + 29.7460i 1.34337 + 1.14748i
\(673\) 23.8980i 0.921199i 0.887608 + 0.460600i \(0.152366\pi\)
−0.887608 + 0.460600i \(0.847634\pi\)
\(674\) −8.09020 12.7484i −0.311623 0.491051i
\(675\) −2.05835 + 4.96929i −0.0792259 + 0.191268i
\(676\) −3.44930 25.7702i −0.132665 0.991161i
\(677\) −29.3087 + 12.1400i −1.12642 + 0.466580i −0.866564 0.499067i \(-0.833676\pi\)
−0.259860 + 0.965646i \(0.583676\pi\)
\(678\) −11.4057 + 1.99048i −0.438034 + 0.0764440i
\(679\) 30.7421 + 30.7421i 1.17977 + 1.17977i
\(680\) −1.90710 + 6.97024i −0.0731340 + 0.267296i
\(681\) −77.7064 −2.97772
\(682\) −16.5269 + 23.5148i −0.632847 + 0.900428i
\(683\) 0.433500 + 0.179562i 0.0165874 + 0.00687073i 0.390962 0.920407i \(-0.372142\pi\)
−0.374374 + 0.927278i \(0.622142\pi\)
\(684\) −51.0932 56.1533i −1.95360 2.14708i
\(685\) 15.4033 + 6.38027i 0.588531 + 0.243778i
\(686\) 22.0989 14.0241i 0.843742 0.535441i
\(687\) 49.3524 + 49.3524i 1.88291 + 1.88291i
\(688\) −17.2947 + 32.6604i −0.659355 + 1.24517i
\(689\) 31.9800 25.8161i 1.21834 0.983517i
\(690\) −7.40464 11.6681i −0.281890 0.444199i
\(691\) −15.0338 36.2947i −0.571912 1.38072i −0.899925 0.436044i \(-0.856379\pi\)
0.328013 0.944673i \(-0.393621\pi\)
\(692\) 9.79422 + 10.7642i 0.372321 + 0.409194i
\(693\) −97.1221 + 40.2293i −3.68936 + 1.52818i
\(694\) 28.7762 40.9433i 1.09233 1.55419i
\(695\) 18.1753i 0.689430i
\(696\) −28.9008 + 37.2561i −1.09548 + 1.41219i
\(697\) −7.07322 −0.267917
\(698\) 10.4959 + 7.37680i 0.397274 + 0.279216i
\(699\) 27.0103 11.1880i 1.02162 0.423170i
\(700\) 0.941477 + 2.61524i 0.0355845 + 0.0988468i
\(701\) −25.3437 10.4977i −0.957220 0.396493i −0.151280 0.988491i \(-0.548339\pi\)
−0.805940 + 0.591998i \(0.798339\pi\)
\(702\) 49.4939 + 16.7414i 1.86803 + 0.631863i
\(703\) 20.3850i 0.768833i
\(704\) 49.5160 + 7.05065i 1.86620 + 0.265732i
\(705\) −3.80319 −0.143236
\(706\) 23.9296 + 5.34919i 0.900602 + 0.201319i
\(707\) 16.8537 6.98104i 0.633850 0.262549i
\(708\) −12.0809 33.5585i −0.454030 1.26121i
\(709\) 13.2912 + 5.50540i 0.499162 + 0.206760i 0.618036 0.786150i \(-0.287929\pi\)
−0.118874 + 0.992909i \(0.537929\pi\)
\(710\) −17.9541 + 3.13328i −0.673805 + 0.117590i
\(711\) −12.2835 12.2835i −0.460668 0.460668i
\(712\) −31.3650 + 3.96122i −1.17545 + 0.148453i
\(713\) 4.41942i 0.165509i
\(714\) 12.2602 2.13959i 0.458825 0.0800723i
\(715\) −46.5250 25.3531i −1.73994 0.948152i
\(716\) 10.4358 9.49539i 0.390004 0.354860i
\(717\) 18.6893 7.74138i 0.697966 0.289107i
\(718\) −37.4124 + 23.7421i −1.39622 + 0.886045i
\(719\) 2.99679i 0.111761i 0.998437 + 0.0558807i \(0.0177967\pi\)
−0.998437 + 0.0558807i \(0.982203\pi\)
\(720\) −52.7697 27.9432i −1.96661 1.04138i
\(721\) 20.4698 + 20.4698i 0.762336 + 0.762336i
\(722\) 23.0829 + 5.15993i 0.859058 + 0.192033i
\(723\) −72.0330 + 29.8370i −2.67894 + 1.10965i
\(724\) 0.772825 16.3797i 0.0287218 0.608747i
\(725\) −2.64381 + 1.09510i −0.0981887 + 0.0406711i
\(726\) −69.8425 + 99.3735i −2.59210 + 3.68810i
\(727\) 1.11583 + 1.11583i 0.0413839 + 0.0413839i 0.727496 0.686112i \(-0.240684\pi\)
−0.686112 + 0.727496i \(0.740684\pi\)
\(728\) 24.7402 10.8141i 0.916931 0.400797i
\(729\) 11.3171 11.3171i 0.419152 0.419152i
\(730\) −7.56807 43.3660i −0.280107 1.60505i
\(731\) 3.84318 + 9.27826i 0.142145 + 0.343169i
\(732\) −20.0059 55.5725i −0.739438 2.05402i
\(733\) 9.82994 + 23.7316i 0.363077 + 0.876546i 0.994847 + 0.101390i \(0.0323289\pi\)
−0.631770 + 0.775156i \(0.717671\pi\)
\(734\) 10.9847 + 17.3096i 0.405453 + 0.638908i
\(735\) 0.0498430 0.0498430i 0.00183849 0.00183849i
\(736\) 6.85254 3.49104i 0.252588 0.128682i
\(737\) 7.56866 0.278795
\(738\) 12.7502 57.0379i 0.469341 2.09960i
\(739\) −2.00313 4.83599i −0.0736864 0.177895i 0.882745 0.469853i \(-0.155693\pi\)
−0.956431 + 0.291958i \(0.905693\pi\)
\(740\) 5.43066 + 15.0853i 0.199635 + 0.554548i
\(741\) −63.2146 + 18.6200i −2.32225 + 0.684023i
\(742\) 34.9193 + 24.5423i 1.28193 + 0.900976i
\(743\) −11.1494 −0.409032 −0.204516 0.978863i \(-0.565562\pi\)
−0.204516 + 0.978863i \(0.565562\pi\)
\(744\) 13.9295 + 24.4230i 0.510680 + 0.895390i
\(745\) 26.2800 26.2800i 0.962823 0.962823i
\(746\) −24.0486 + 34.2169i −0.880482 + 1.25277i
\(747\) −5.30547 + 12.8085i −0.194117 + 0.468640i
\(748\) 10.0527 9.14686i 0.367564 0.334442i
\(749\) −2.31428 5.58716i −0.0845618 0.204150i
\(750\) 24.3737 + 38.4079i 0.890003 + 1.40246i
\(751\) 22.1687i 0.808947i 0.914550 + 0.404474i \(0.132545\pi\)
−0.914550 + 0.404474i \(0.867455\pi\)
\(752\) 0.199277 2.10710i 0.00726690 0.0768380i
\(753\) 36.4925 1.32986
\(754\) 12.3216 + 24.9179i 0.448725 + 0.907455i
\(755\) −7.63490 + 18.4323i −0.277862 + 0.670819i
\(756\) −2.55720 + 54.1987i −0.0930043 + 1.97119i
\(757\) 14.7347 + 35.5726i 0.535540 + 1.29291i 0.927808 + 0.373058i \(0.121691\pi\)
−0.392268 + 0.919851i \(0.628309\pi\)
\(758\) 4.79326 + 27.4660i 0.174099 + 0.997611i
\(759\) 25.9910i 0.943415i
\(760\) 39.4237 4.97899i 1.43005 0.180607i
\(761\) 17.4224 0.631563 0.315781 0.948832i \(-0.397733\pi\)
0.315781 + 0.948832i \(0.397733\pi\)
\(762\) 0.466357 + 2.67229i 0.0168943 + 0.0968068i
\(763\) −3.57532 8.63159i −0.129435 0.312485i
\(764\) −4.44378 2.09121i −0.160770 0.0756572i
\(765\) −14.9910 + 6.20946i −0.541999 + 0.224504i
\(766\) 4.66380 20.8635i 0.168510 0.753830i
\(767\) −20.9086 2.22987i −0.754964 0.0805161i
\(768\) 26.8657 40.8909i 0.969432 1.47552i
\(769\) 5.75237 5.75237i 0.207436 0.207436i −0.595741 0.803177i \(-0.703141\pi\)