Properties

Label 416.2.bd.a.83.18
Level $416$
Weight $2$
Character 416.83
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 83.18
Character \(\chi\) \(=\) 416.83
Dual form 416.2.bd.a.411.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.798622 + 1.16713i) q^{2} +(-1.28933 - 0.534060i) q^{3} +(-0.724407 - 1.86420i) q^{4} +(-0.341082 + 0.823446i) q^{5} +(1.65301 - 1.07832i) q^{6} +0.829877i q^{7} +(2.75430 + 0.643308i) q^{8} +(-0.744158 - 0.744158i) q^{9} +O(q^{10})\) \(q+(-0.798622 + 1.16713i) q^{2} +(-1.28933 - 0.534060i) q^{3} +(-0.724407 - 1.86420i) q^{4} +(-0.341082 + 0.823446i) q^{5} +(1.65301 - 1.07832i) q^{6} +0.829877i q^{7} +(2.75430 + 0.643308i) q^{8} +(-0.744158 - 0.744158i) q^{9} +(-0.688676 - 1.05571i) q^{10} +(2.33339 + 0.966524i) q^{11} +(-0.0615900 + 2.79045i) q^{12} +(0.852274 - 3.50337i) q^{13} +(-0.968579 - 0.662758i) q^{14} +(0.879538 - 0.879538i) q^{15} +(-2.95047 + 2.70088i) q^{16} -2.23714 q^{17} +(1.46283 - 0.274232i) q^{18} +(1.60629 + 3.87793i) q^{19} +(1.78215 + 0.0393350i) q^{20} +(0.443204 - 1.06999i) q^{21} +(-2.99156 + 1.95150i) q^{22} +(6.05432 + 6.05432i) q^{23} +(-3.20764 - 2.30040i) q^{24} +(2.97381 + 2.97381i) q^{25} +(3.40826 + 3.79259i) q^{26} +(2.16422 + 5.22489i) q^{27} +(1.54706 - 0.601169i) q^{28} +(-4.05013 + 9.77788i) q^{29} +(0.324121 + 1.72896i) q^{30} +(0.778167 + 0.778167i) q^{31} +(-0.795980 - 5.60057i) q^{32} +(-2.49234 - 2.49234i) q^{33} +(1.78663 - 2.61104i) q^{34} +(-0.683359 - 0.283056i) q^{35} +(-0.848184 + 1.92633i) q^{36} +(-8.68611 - 3.59791i) q^{37} +(-5.80888 - 1.22224i) q^{38} +(-2.96988 + 4.06185i) q^{39} +(-1.46917 + 2.04859i) q^{40} +10.1839 q^{41} +(0.894869 + 1.37180i) q^{42} +(0.0881390 + 0.212786i) q^{43} +(0.111464 - 5.05007i) q^{44} +(0.866592 - 0.358954i) q^{45} +(-11.9013 + 2.23110i) q^{46} +(5.95825 + 5.95825i) q^{47} +(5.24657 - 1.90661i) q^{48} +6.31130 q^{49} +(-5.84578 + 1.09589i) q^{50} +(2.88442 + 1.19476i) q^{51} +(-7.14838 + 0.949061i) q^{52} +(-2.97291 - 7.17724i) q^{53} +(-7.82655 - 1.64677i) q^{54} +(-1.59176 + 1.59176i) q^{55} +(-0.533866 + 2.28573i) q^{56} -5.85780i q^{57} +(-8.17758 - 12.5359i) q^{58} +(2.74340 - 6.62316i) q^{59} +(-2.27678 - 1.00249i) q^{60} +(-0.566092 + 1.36667i) q^{61} +(-1.52969 + 0.286765i) q^{62} +(0.617560 - 0.617560i) q^{63} +(7.17231 + 3.54372i) q^{64} +(2.59414 + 1.89674i) q^{65} +(4.89934 - 0.918462i) q^{66} +(-12.4932 + 5.17487i) q^{67} +(1.62060 + 4.17047i) q^{68} +(-4.57267 - 11.0394i) q^{69} +(0.876110 - 0.571517i) q^{70} +7.77796 q^{71} +(-1.57091 - 2.52835i) q^{72} -0.109606i q^{73} +(11.1362 - 7.26450i) q^{74} +(-2.24604 - 5.42242i) q^{75} +(6.06562 - 5.80364i) q^{76} +(-0.802096 + 1.93643i) q^{77} +(-2.36892 - 6.71013i) q^{78} -1.79121 q^{79} +(-1.21767 - 3.35077i) q^{80} -4.73526i q^{81} +(-8.13306 + 11.8860i) q^{82} +(0.736523 + 1.77812i) q^{83} +(-2.31573 - 0.0511121i) q^{84} +(0.763048 - 1.84216i) q^{85} +(-0.318740 - 0.0670657i) q^{86} +(10.4439 - 10.4439i) q^{87} +(5.80509 + 4.16318i) q^{88} +5.10185 q^{89} +(-0.273131 + 1.29810i) q^{90} +(2.90737 + 0.707283i) q^{91} +(6.90065 - 15.6722i) q^{92} +(-0.587730 - 1.41890i) q^{93} +(-11.7125 + 2.19569i) q^{94} -3.74114 q^{95} +(-1.96476 + 7.64611i) q^{96} +(-0.0376467 + 0.0376467i) q^{97} +(-5.04034 + 7.36614i) q^{98} +(-1.01717 - 2.45566i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24} - 4 q^{26} - 8 q^{27} + 56 q^{28} - 8 q^{29} - 16 q^{30} - 44 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} - 28 q^{39} - 8 q^{40} - 8 q^{41} - 48 q^{42} - 32 q^{43} + 12 q^{44} - 36 q^{45} - 48 q^{46} - 8 q^{47} - 8 q^{48} - 168 q^{49} + 76 q^{50} - 4 q^{52} - 8 q^{53} - 28 q^{54} - 40 q^{55} + 56 q^{56} + 32 q^{58} + 52 q^{59} - 36 q^{60} - 8 q^{61} + 72 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} + 20 q^{70} + 56 q^{71} + 8 q^{72} - 8 q^{74} - 68 q^{76} + 56 q^{77} - 48 q^{78} - 16 q^{79} + 28 q^{80} - 88 q^{82} + 36 q^{83} + 100 q^{84} - 24 q^{85} + 96 q^{86} - 8 q^{87} + 64 q^{88} - 8 q^{89} - 64 q^{90} + 72 q^{91} - 8 q^{92} - 40 q^{93} - 56 q^{94} + 36 q^{96} - 8 q^{97} + 52 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.798622 + 1.16713i −0.564711 + 0.825289i
\(3\) −1.28933 0.534060i −0.744397 0.308339i −0.0219441 0.999759i \(-0.506986\pi\)
−0.722453 + 0.691420i \(0.756986\pi\)
\(4\) −0.724407 1.86420i −0.362204 0.932099i
\(5\) −0.341082 + 0.823446i −0.152537 + 0.368256i −0.981614 0.190878i \(-0.938866\pi\)
0.829077 + 0.559134i \(0.188866\pi\)
\(6\) 1.65301 1.07832i 0.674838 0.440220i
\(7\) 0.829877i 0.313664i 0.987625 + 0.156832i \(0.0501281\pi\)
−0.987625 + 0.156832i \(0.949872\pi\)
\(8\) 2.75430 + 0.643308i 0.973791 + 0.227444i
\(9\) −0.744158 0.744158i −0.248053 0.248053i
\(10\) −0.688676 1.05571i −0.217779 0.333845i
\(11\) 2.33339 + 0.966524i 0.703545 + 0.291418i 0.705630 0.708580i \(-0.250664\pi\)
−0.00208563 + 0.999998i \(0.500664\pi\)
\(12\) −0.0615900 + 2.79045i −0.0177795 + 0.805534i
\(13\) 0.852274 3.50337i 0.236378 0.971661i
\(14\) −0.968579 0.662758i −0.258864 0.177129i
\(15\) 0.879538 0.879538i 0.227096 0.227096i
\(16\) −2.95047 + 2.70088i −0.737617 + 0.675219i
\(17\) −2.23714 −0.542586 −0.271293 0.962497i \(-0.587451\pi\)
−0.271293 + 0.962497i \(0.587451\pi\)
\(18\) 1.46283 0.274232i 0.344793 0.0646371i
\(19\) 1.60629 + 3.87793i 0.368508 + 0.889658i 0.993995 + 0.109423i \(0.0349003\pi\)
−0.625487 + 0.780235i \(0.715100\pi\)
\(20\) 1.78215 + 0.0393350i 0.398500 + 0.00879558i
\(21\) 0.443204 1.06999i 0.0967150 0.233491i
\(22\) −2.99156 + 1.95150i −0.637803 + 0.416061i
\(23\) 6.05432 + 6.05432i 1.26241 + 1.26241i 0.949920 + 0.312492i \(0.101164\pi\)
0.312492 + 0.949920i \(0.398836\pi\)
\(24\) −3.20764 2.30040i −0.654758 0.469567i
\(25\) 2.97381 + 2.97381i 0.594762 + 0.594762i
\(26\) 3.40826 + 3.79259i 0.668416 + 0.743788i
\(27\) 2.16422 + 5.22489i 0.416505 + 1.00553i
\(28\) 1.54706 0.601169i 0.292366 0.113610i
\(29\) −4.05013 + 9.77788i −0.752090 + 1.81571i −0.204708 + 0.978823i \(0.565624\pi\)
−0.547382 + 0.836883i \(0.684376\pi\)
\(30\) 0.324121 + 1.72896i 0.0591762 + 0.315663i
\(31\) 0.778167 + 0.778167i 0.139763 + 0.139763i 0.773527 0.633764i \(-0.218491\pi\)
−0.633764 + 0.773527i \(0.718491\pi\)
\(32\) −0.795980 5.60057i −0.140711 0.990051i
\(33\) −2.49234 2.49234i −0.433861 0.433861i
\(34\) 1.78663 2.61104i 0.306404 0.447790i
\(35\) −0.683359 0.283056i −0.115509 0.0478453i
\(36\) −0.848184 + 1.92633i −0.141364 + 0.321055i
\(37\) −8.68611 3.59791i −1.42799 0.591492i −0.471134 0.882062i \(-0.656155\pi\)
−0.956854 + 0.290570i \(0.906155\pi\)
\(38\) −5.80888 1.22224i −0.942325 0.198273i
\(39\) −2.96988 + 4.06185i −0.475561 + 0.650417i
\(40\) −1.46917 + 2.04859i −0.232296 + 0.323911i
\(41\) 10.1839 1.59045 0.795227 0.606311i \(-0.207352\pi\)
0.795227 + 0.606311i \(0.207352\pi\)
\(42\) 0.894869 + 1.37180i 0.138081 + 0.211673i
\(43\) 0.0881390 + 0.212786i 0.0134411 + 0.0324496i 0.930458 0.366400i \(-0.119410\pi\)
−0.917017 + 0.398849i \(0.869410\pi\)
\(44\) 0.111464 5.05007i 0.0168038 0.761326i
\(45\) 0.866592 0.358954i 0.129184 0.0535097i
\(46\) −11.9013 + 2.23110i −1.75475 + 0.328957i
\(47\) 5.95825 + 5.95825i 0.869100 + 0.869100i 0.992373 0.123273i \(-0.0393391\pi\)
−0.123273 + 0.992373i \(0.539339\pi\)
\(48\) 5.24657 1.90661i 0.757277 0.275195i
\(49\) 6.31130 0.901615
\(50\) −5.84578 + 1.09589i −0.826719 + 0.154982i
\(51\) 2.88442 + 1.19476i 0.403899 + 0.167301i
\(52\) −7.14838 + 0.949061i −0.991301 + 0.131611i
\(53\) −2.97291 7.17724i −0.408360 0.985869i −0.985569 0.169273i \(-0.945858\pi\)
0.577209 0.816597i \(-0.304142\pi\)
\(54\) −7.82655 1.64677i −1.06506 0.224098i
\(55\) −1.59176 + 1.59176i −0.214633 + 0.214633i
\(56\) −0.533866 + 2.28573i −0.0713409 + 0.305443i
\(57\) 5.85780i 0.775884i
\(58\) −8.17758 12.5359i −1.07377 1.64604i
\(59\) 2.74340 6.62316i 0.357161 0.862262i −0.638536 0.769592i \(-0.720460\pi\)
0.995697 0.0926704i \(-0.0295403\pi\)
\(60\) −2.27678 1.00249i −0.293931 0.129421i
\(61\) −0.566092 + 1.36667i −0.0724806 + 0.174984i −0.955968 0.293472i \(-0.905189\pi\)
0.883487 + 0.468455i \(0.155189\pi\)
\(62\) −1.52969 + 0.286765i −0.194270 + 0.0364192i
\(63\) 0.617560 0.617560i 0.0778052 0.0778052i
\(64\) 7.17231 + 3.54372i 0.896539 + 0.442965i
\(65\) 2.59414 + 1.89674i 0.321764 + 0.235262i
\(66\) 4.89934 0.918462i 0.603067 0.113055i
\(67\) −12.4932 + 5.17487i −1.52629 + 0.632211i −0.978840 0.204625i \(-0.934402\pi\)
−0.547453 + 0.836836i \(0.684402\pi\)
\(68\) 1.62060 + 4.17047i 0.196526 + 0.505743i
\(69\) −4.57267 11.0394i −0.550485 1.32899i
\(70\) 0.876110 0.571517i 0.104715 0.0683093i
\(71\) 7.77796 0.923074 0.461537 0.887121i \(-0.347298\pi\)
0.461537 + 0.887121i \(0.347298\pi\)
\(72\) −1.57091 2.52835i −0.185133 0.297969i
\(73\) 0.109606i 0.0128284i −0.999979 0.00641419i \(-0.997958\pi\)
0.999979 0.00641419i \(-0.00204171\pi\)
\(74\) 11.1362 7.26450i 1.29455 0.844481i
\(75\) −2.24604 5.42242i −0.259351 0.626128i
\(76\) 6.06562 5.80364i 0.695774 0.665723i
\(77\) −0.802096 + 1.93643i −0.0914073 + 0.220677i
\(78\) −2.36892 6.71013i −0.268228 0.759773i
\(79\) −1.79121 −0.201527 −0.100764 0.994910i \(-0.532129\pi\)
−0.100764 + 0.994910i \(0.532129\pi\)
\(80\) −1.21767 3.35077i −0.136140 0.374628i
\(81\) 4.73526i 0.526141i
\(82\) −8.13306 + 11.8860i −0.898147 + 1.31258i
\(83\) 0.736523 + 1.77812i 0.0808440 + 0.195175i 0.959133 0.282955i \(-0.0913148\pi\)
−0.878289 + 0.478130i \(0.841315\pi\)
\(84\) −2.31573 0.0511121i −0.252667 0.00557679i
\(85\) 0.763048 1.84216i 0.0827642 0.199810i
\(86\) −0.318740 0.0670657i −0.0343706 0.00723188i
\(87\) 10.4439 10.4439i 1.11971 1.11971i
\(88\) 5.80509 + 4.16318i 0.618825 + 0.443797i
\(89\) 5.10185 0.540795 0.270398 0.962749i \(-0.412845\pi\)
0.270398 + 0.962749i \(0.412845\pi\)
\(90\) −0.273131 + 1.29810i −0.0287906 + 0.136832i
\(91\) 2.90737 + 0.707283i 0.304775 + 0.0741434i
\(92\) 6.90065 15.6722i 0.719443 1.63394i
\(93\) −0.587730 1.41890i −0.0609447 0.147134i
\(94\) −11.7125 + 2.19569i −1.20805 + 0.226468i
\(95\) −3.74114 −0.383833
\(96\) −1.96476 + 7.64611i −0.200527 + 0.780378i
\(97\) −0.0376467 + 0.0376467i −0.00382244 + 0.00382244i −0.709015 0.705193i \(-0.750860\pi\)
0.705193 + 0.709015i \(0.250860\pi\)
\(98\) −5.04034 + 7.36614i −0.509152 + 0.744093i
\(99\) −1.01717 2.45566i −0.102229 0.246803i
\(100\) 3.38952 7.69802i 0.338952 0.769802i
\(101\) 5.45788 + 13.1765i 0.543079 + 1.31111i 0.922540 + 0.385902i \(0.126110\pi\)
−0.379461 + 0.925208i \(0.623890\pi\)
\(102\) −3.69801 + 2.41234i −0.366158 + 0.238857i
\(103\) −6.30366 + 6.30366i −0.621118 + 0.621118i −0.945817 0.324699i \(-0.894737\pi\)
0.324699 + 0.945817i \(0.394737\pi\)
\(104\) 4.60116 9.10106i 0.451181 0.892432i
\(105\) 0.729909 + 0.729909i 0.0712318 + 0.0712318i
\(106\) 10.7510 + 2.26211i 1.04423 + 0.219716i
\(107\) 1.87203 0.775420i 0.180976 0.0749627i −0.290356 0.956919i \(-0.593774\pi\)
0.471331 + 0.881956i \(0.343774\pi\)
\(108\) 8.17246 7.81949i 0.786395 0.752431i
\(109\) 12.4324 5.14966i 1.19081 0.493248i 0.302789 0.953058i \(-0.402082\pi\)
0.888017 + 0.459810i \(0.152082\pi\)
\(110\) −0.586584 3.12901i −0.0559286 0.298339i
\(111\) 9.27780 + 9.27780i 0.880610 + 0.880610i
\(112\) −2.24140 2.44853i −0.211792 0.231364i
\(113\) 20.6945i 1.94677i −0.229172 0.973386i \(-0.573602\pi\)
0.229172 0.973386i \(-0.426398\pi\)
\(114\) 6.83684 + 4.67816i 0.640329 + 0.438150i
\(115\) −7.05042 + 2.92038i −0.657455 + 0.272327i
\(116\) 21.1618 + 0.467078i 1.96483 + 0.0433671i
\(117\) −3.24129 + 1.97284i −0.299657 + 0.182389i
\(118\) 5.53918 + 8.49132i 0.509923 + 0.781689i
\(119\) 1.85655i 0.170190i
\(120\) 2.98832 1.85670i 0.272795 0.169492i
\(121\) −3.26761 3.26761i −0.297056 0.297056i
\(122\) −1.14299 1.75216i −0.103482 0.158633i
\(123\) −13.1304 5.43880i −1.18393 0.490400i
\(124\) 0.886947 2.01437i 0.0796502 0.180896i
\(125\) −7.58031 + 3.13987i −0.678004 + 0.280838i
\(126\) 0.227579 + 1.21397i 0.0202743 + 0.108149i
\(127\) 5.33063 0.473017 0.236508 0.971629i \(-0.423997\pi\)
0.236508 + 0.971629i \(0.423997\pi\)
\(128\) −9.86396 + 5.54096i −0.871859 + 0.489756i
\(129\) 0.321424i 0.0282998i
\(130\) −4.28549 + 1.51294i −0.375862 + 0.132693i
\(131\) −11.8671 4.91551i −1.03683 0.429470i −0.201658 0.979456i \(-0.564633\pi\)
−0.835174 + 0.549986i \(0.814633\pi\)
\(132\) −2.84075 + 6.45169i −0.247256 + 0.561548i
\(133\) −3.21820 + 1.33302i −0.279054 + 0.115588i
\(134\) 3.93760 18.7141i 0.340157 1.61665i
\(135\) −5.04059 −0.433825
\(136\) −6.16174 1.43917i −0.528365 0.123408i
\(137\) 6.07190i 0.518758i 0.965776 + 0.259379i \(0.0835178\pi\)
−0.965776 + 0.259379i \(0.916482\pi\)
\(138\) 16.5363 + 3.47938i 1.40766 + 0.296185i
\(139\) 19.0052 7.87221i 1.61200 0.667712i 0.618953 0.785428i \(-0.287557\pi\)
0.993047 + 0.117716i \(0.0375572\pi\)
\(140\) −0.0326432 + 1.47896i −0.00275886 + 0.124995i
\(141\) −4.50011 10.8642i −0.378978 0.914933i
\(142\) −6.21164 + 9.07792i −0.521270 + 0.761802i
\(143\) 5.37479 7.35101i 0.449462 0.614722i
\(144\) 4.20549 + 0.185735i 0.350458 + 0.0154779i
\(145\) −6.67012 6.67012i −0.553923 0.553923i
\(146\) 0.127925 + 0.0875335i 0.0105871 + 0.00724433i
\(147\) −8.13738 3.37061i −0.671160 0.278003i
\(148\) −0.414925 + 18.7990i −0.0341067 + 1.54527i
\(149\) −0.560642 0.232226i −0.0459296 0.0190247i 0.359600 0.933106i \(-0.382913\pi\)
−0.405530 + 0.914082i \(0.632913\pi\)
\(150\) 8.12244 + 1.70903i 0.663194 + 0.139542i
\(151\) −21.8946 −1.78175 −0.890877 0.454244i \(-0.849909\pi\)
−0.890877 + 0.454244i \(0.849909\pi\)
\(152\) 1.92950 + 11.7143i 0.156503 + 0.950156i
\(153\) 1.66478 + 1.66478i 0.134590 + 0.134590i
\(154\) −1.61950 2.48263i −0.130503 0.200056i
\(155\) −0.906197 + 0.375359i −0.0727875 + 0.0301496i
\(156\) 9.72350 + 2.59400i 0.778503 + 0.207686i
\(157\) −6.14895 + 14.8449i −0.490740 + 1.18475i 0.463604 + 0.886042i \(0.346556\pi\)
−0.954344 + 0.298709i \(0.903444\pi\)
\(158\) 1.43050 2.09059i 0.113805 0.166318i
\(159\) 10.8416i 0.859792i
\(160\) 4.88326 + 1.25481i 0.386056 + 0.0992014i
\(161\) −5.02434 + 5.02434i −0.395973 + 0.395973i
\(162\) 5.52669 + 3.78168i 0.434218 + 0.297117i
\(163\) −3.23712 7.81511i −0.253551 0.612127i 0.744935 0.667138i \(-0.232481\pi\)
−0.998486 + 0.0550109i \(0.982481\pi\)
\(164\) −7.37727 18.9848i −0.576068 1.48246i
\(165\) 2.90240 1.20221i 0.225952 0.0935923i
\(166\) −2.66351 0.560427i −0.206729 0.0434975i
\(167\) 5.20162i 0.402513i 0.979539 + 0.201257i \(0.0645025\pi\)
−0.979539 + 0.201257i \(0.935497\pi\)
\(168\) 1.90905 2.66195i 0.147286 0.205374i
\(169\) −11.5473 5.97167i −0.888251 0.459359i
\(170\) 1.54066 + 2.36177i 0.118163 + 0.181139i
\(171\) 1.69046 4.08112i 0.129272 0.312091i
\(172\) 0.332828 0.318453i 0.0253779 0.0242818i
\(173\) −4.66094 + 11.2525i −0.354364 + 0.855511i 0.641706 + 0.766950i \(0.278227\pi\)
−0.996071 + 0.0885608i \(0.971773\pi\)
\(174\) 3.84873 + 20.5302i 0.291771 + 1.55639i
\(175\) −2.46790 + 2.46790i −0.186555 + 0.186555i
\(176\) −9.49507 + 3.45051i −0.715718 + 0.260092i
\(177\) −7.07433 + 7.07433i −0.531739 + 0.531739i
\(178\) −4.07445 + 5.95455i −0.305393 + 0.446312i
\(179\) 15.2058 + 6.29843i 1.13653 + 0.470767i 0.869997 0.493058i \(-0.164121\pi\)
0.266536 + 0.963825i \(0.414121\pi\)
\(180\) −1.29693 1.35547i −0.0966673 0.101031i
\(181\) −11.0913 + 4.59417i −0.824411 + 0.341482i −0.754688 0.656084i \(-0.772212\pi\)
−0.0697233 + 0.997566i \(0.522212\pi\)
\(182\) −3.14738 + 2.82844i −0.233300 + 0.209658i
\(183\) 1.45976 1.45976i 0.107909 0.107909i
\(184\) 12.7806 + 20.5702i 0.942198 + 1.51645i
\(185\) 5.92536 5.92536i 0.435641 0.435641i
\(186\) 2.12543 + 0.447208i 0.155844 + 0.0327909i
\(187\) −5.22012 2.16225i −0.381733 0.158119i
\(188\) 6.79116 15.4236i 0.495296 1.12488i
\(189\) −4.33602 + 1.79604i −0.315399 + 0.130643i
\(190\) 2.98775 4.36641i 0.216754 0.316773i
\(191\) 19.8925i 1.43937i 0.694301 + 0.719684i \(0.255714\pi\)
−0.694301 + 0.719684i \(0.744286\pi\)
\(192\) −7.35494 8.39948i −0.530797 0.606180i
\(193\) −6.02037 6.02037i −0.433356 0.433356i 0.456412 0.889768i \(-0.349134\pi\)
−0.889768 + 0.456412i \(0.849134\pi\)
\(194\) −0.0138733 0.0740042i −0.000996045 0.00531319i
\(195\) −2.33174 3.83096i −0.166980 0.274341i
\(196\) −4.57195 11.7655i −0.326568 0.840394i
\(197\) 6.66483 16.0903i 0.474849 1.14639i −0.487145 0.873321i \(-0.661962\pi\)
0.961995 0.273067i \(-0.0880381\pi\)
\(198\) 3.67842 + 0.773971i 0.261414 + 0.0550037i
\(199\) −1.80087 + 1.80087i −0.127660 + 0.127660i −0.768050 0.640390i \(-0.778773\pi\)
0.640390 + 0.768050i \(0.278773\pi\)
\(200\) 6.27768 + 10.1038i 0.443899 + 0.714449i
\(201\) 18.8717 1.33110
\(202\) −19.7375 4.15295i −1.38873 0.292200i
\(203\) −8.11444 3.36111i −0.569522 0.235904i
\(204\) 0.137785 6.24262i 0.00964690 0.437071i
\(205\) −3.47354 + 8.38587i −0.242603 + 0.585694i
\(206\) −2.32298 12.3915i −0.161850 0.863354i
\(207\) 9.01073i 0.626289i
\(208\) 6.94757 + 12.6385i 0.481728 + 0.876321i
\(209\) 10.6013i 0.733304i
\(210\) −1.43482 + 0.268981i −0.0990122 + 0.0185615i
\(211\) −1.02245 + 2.46842i −0.0703886 + 0.169933i −0.955158 0.296095i \(-0.904315\pi\)
0.884770 + 0.466028i \(0.154315\pi\)
\(212\) −11.2262 + 10.7413i −0.771018 + 0.737718i
\(213\) −10.0284 4.15389i −0.687134 0.284620i
\(214\) −0.590023 + 2.80418i −0.0403332 + 0.191690i
\(215\) −0.205281 −0.0140000
\(216\) 2.59970 + 15.7832i 0.176887 + 1.07391i
\(217\) −0.645783 + 0.645783i −0.0438386 + 0.0438386i
\(218\) −3.91842 + 18.6229i −0.265389 + 1.26130i
\(219\) −0.0585360 + 0.141318i −0.00395550 + 0.00954942i
\(220\) 4.12044 + 1.81427i 0.277800 + 0.122318i
\(221\) −1.90665 + 7.83753i −0.128255 + 0.527209i
\(222\) −18.2379 + 3.41899i −1.22405 + 0.229468i
\(223\) −7.29274 7.29274i −0.488358 0.488358i 0.419430 0.907788i \(-0.362230\pi\)
−0.907788 + 0.419430i \(0.862230\pi\)
\(224\) 4.64779 0.660566i 0.310543 0.0441359i
\(225\) 4.42597i 0.295064i
\(226\) 24.1532 + 16.5270i 1.60665 + 1.09936i
\(227\) −8.31242 + 3.44312i −0.551715 + 0.228528i −0.641084 0.767471i \(-0.721515\pi\)
0.0893692 + 0.995999i \(0.471515\pi\)
\(228\) −10.9201 + 4.24343i −0.723201 + 0.281028i
\(229\) 5.19562 + 2.15210i 0.343337 + 0.142215i 0.547687 0.836683i \(-0.315508\pi\)
−0.204351 + 0.978898i \(0.565508\pi\)
\(230\) 2.22214 10.5611i 0.146524 0.696376i
\(231\) 2.06834 2.06834i 0.136087 0.136087i
\(232\) −17.4454 + 24.3257i −1.14535 + 1.59706i
\(233\) 3.79321 3.79321i 0.248501 0.248501i −0.571854 0.820355i \(-0.693776\pi\)
0.820355 + 0.571854i \(0.193776\pi\)
\(234\) 0.285998 5.35857i 0.0186962 0.350301i
\(235\) −6.93855 + 2.87404i −0.452621 + 0.187482i
\(236\) −14.3342 0.316381i −0.933079 0.0205946i
\(237\) 2.30947 + 0.956615i 0.150016 + 0.0621388i
\(238\) 2.16684 + 1.48268i 0.140456 + 0.0961079i
\(239\) −3.82332 + 3.82332i −0.247310 + 0.247310i −0.819866 0.572556i \(-0.805952\pi\)
0.572556 + 0.819866i \(0.305952\pi\)
\(240\) −0.219525 + 4.97057i −0.0141703 + 0.320849i
\(241\) 16.0420 16.0420i 1.03336 1.03336i 0.0339314 0.999424i \(-0.489197\pi\)
0.999424 0.0339314i \(-0.0108028\pi\)
\(242\) 6.42333 1.20416i 0.412907 0.0774063i
\(243\) 3.96375 9.56935i 0.254275 0.613874i
\(244\) 2.95782 + 0.0652841i 0.189355 + 0.00417939i
\(245\) −2.15267 + 5.19701i −0.137529 + 0.332025i
\(246\) 16.8340 10.9814i 1.07330 0.700150i
\(247\) 14.9548 2.32238i 0.951553 0.147769i
\(248\) 1.64270 + 2.64390i 0.104312 + 0.167888i
\(249\) 2.68594i 0.170215i
\(250\) 2.38915 11.3548i 0.151103 0.718141i
\(251\) 7.98132 3.30597i 0.503776 0.208671i −0.116298 0.993214i \(-0.537103\pi\)
0.620074 + 0.784543i \(0.287103\pi\)
\(252\) −1.59862 0.703889i −0.100703 0.0443408i
\(253\) 8.27547 + 19.9787i 0.520274 + 1.25605i
\(254\) −4.25716 + 6.22156i −0.267118 + 0.390376i
\(255\) −1.96765 + 1.96765i −0.123219 + 0.123219i
\(256\) 1.41053 15.9377i 0.0881579 0.996107i
\(257\) 25.6188i 1.59806i 0.601294 + 0.799028i \(0.294652\pi\)
−0.601294 + 0.799028i \(0.705348\pi\)
\(258\) 0.375146 + 0.256696i 0.0233555 + 0.0159812i
\(259\) 2.98582 7.20841i 0.185530 0.447909i
\(260\) 1.65668 6.21001i 0.102743 0.385128i
\(261\) 10.2902 4.26235i 0.636948 0.263833i
\(262\) 15.2144 9.92486i 0.939947 0.613160i
\(263\) −9.41630 9.41630i −0.580634 0.580634i 0.354444 0.935077i \(-0.384670\pi\)
−0.935077 + 0.354444i \(0.884670\pi\)
\(264\) −5.26131 8.46800i −0.323811 0.521169i
\(265\) 6.92407 0.425342
\(266\) 1.01431 4.82066i 0.0621913 0.295574i
\(267\) −6.57799 2.72469i −0.402566 0.166748i
\(268\) 18.6972 + 19.5412i 1.14211 + 1.19367i
\(269\) −1.36161 0.563998i −0.0830190 0.0343876i 0.340788 0.940140i \(-0.389306\pi\)
−0.423806 + 0.905753i \(0.639306\pi\)
\(270\) 4.02553 5.88305i 0.244986 0.358031i
\(271\) 17.1691 + 17.1691i 1.04295 + 1.04295i 0.999035 + 0.0439147i \(0.0139830\pi\)
0.0439147 + 0.999035i \(0.486017\pi\)
\(272\) 6.60060 6.04223i 0.400220 0.366364i
\(273\) −3.37084 2.46463i −0.204013 0.149166i
\(274\) −7.08673 4.84915i −0.428125 0.292948i
\(275\) 4.06481 + 9.81332i 0.245117 + 0.591766i
\(276\) −17.2672 + 16.5214i −1.03936 + 0.994471i
\(277\) −2.78714 + 1.15447i −0.167463 + 0.0693654i −0.464840 0.885395i \(-0.653888\pi\)
0.297377 + 0.954760i \(0.403888\pi\)
\(278\) −5.99003 + 28.4686i −0.359258 + 1.70743i
\(279\) 1.15816i 0.0693371i
\(280\) −1.70008 1.21923i −0.101599 0.0728630i
\(281\) −7.47748 −0.446069 −0.223035 0.974811i \(-0.571596\pi\)
−0.223035 + 0.974811i \(0.571596\pi\)
\(282\) 16.2739 + 3.42417i 0.969097 + 0.203906i
\(283\) 18.1443 7.51563i 1.07857 0.446758i 0.228562 0.973529i \(-0.426598\pi\)
0.850007 + 0.526772i \(0.176598\pi\)
\(284\) −5.63441 14.4997i −0.334341 0.860396i
\(285\) 4.82358 + 1.99799i 0.285724 + 0.118351i
\(286\) 4.28720 + 12.1438i 0.253507 + 0.718076i
\(287\) 8.45137i 0.498868i
\(288\) −3.57537 + 4.76004i −0.210681 + 0.280488i
\(289\) −11.9952 −0.705601
\(290\) 13.1118 2.45803i 0.769953 0.144340i
\(291\) 0.0686447 0.0284336i 0.00402402 0.00166681i
\(292\) −0.204327 + 0.0793992i −0.0119573 + 0.00464649i
\(293\) −23.3719 9.68096i −1.36540 0.565568i −0.424864 0.905257i \(-0.639678\pi\)
−0.940538 + 0.339690i \(0.889678\pi\)
\(294\) 10.4326 6.80557i 0.608444 0.396909i
\(295\) 4.51809 + 4.51809i 0.263053 + 0.263053i
\(296\) −21.6096 15.4975i −1.25603 0.900776i
\(297\) 14.2835i 0.828813i
\(298\) 0.718780 0.468885i 0.0416378 0.0271618i
\(299\) 26.3705 16.0506i 1.52504 0.928230i
\(300\) −8.48142 + 8.11511i −0.489675 + 0.468526i
\(301\) −0.176587 + 0.0731446i −0.0101783 + 0.00421598i
\(302\) 17.4855 25.5539i 1.00618 1.47046i
\(303\) 19.9037i 1.14344i
\(304\) −15.2131 7.10331i −0.872532 0.407403i
\(305\) −0.932292 0.932292i −0.0533829 0.0533829i
\(306\) −3.27256 + 0.613495i −0.187080 + 0.0350712i
\(307\) −7.65544 + 3.17099i −0.436919 + 0.180978i −0.590291 0.807191i \(-0.700987\pi\)
0.153372 + 0.988169i \(0.450987\pi\)
\(308\) 4.19093 + 0.0925010i 0.238801 + 0.00527074i
\(309\) 11.4941 4.76100i 0.653874 0.270844i
\(310\) 0.285614 1.35742i 0.0162218 0.0770965i
\(311\) −2.94510 2.94510i −0.167001 0.167001i 0.618659 0.785660i \(-0.287676\pi\)
−0.785660 + 0.618659i \(0.787676\pi\)
\(312\) −10.7929 + 9.27701i −0.611030 + 0.525207i
\(313\) 3.74367 3.74367i 0.211605 0.211605i −0.593344 0.804949i \(-0.702193\pi\)
0.804949 + 0.593344i \(0.202193\pi\)
\(314\) −12.4153 19.0321i −0.700636 1.07404i
\(315\) 0.297888 + 0.719165i 0.0167841 + 0.0405204i
\(316\) 1.29757 + 3.33918i 0.0729939 + 0.187843i
\(317\) −0.912543 2.20307i −0.0512535 0.123737i 0.896179 0.443693i \(-0.146332\pi\)
−0.947432 + 0.319956i \(0.896332\pi\)
\(318\) −12.6536 8.65831i −0.709577 0.485534i
\(319\) −18.9011 + 18.9011i −1.05826 + 1.05826i
\(320\) −5.36441 + 4.69731i −0.299880 + 0.262587i
\(321\) −2.82779 −0.157832
\(322\) −1.85154 9.87663i −0.103182 0.550403i
\(323\) −3.59349 8.67546i −0.199947 0.482715i
\(324\) −8.82747 + 3.43026i −0.490415 + 0.190570i
\(325\) 12.9529 7.88386i 0.718496 0.437318i
\(326\) 11.7065 + 2.46315i 0.648364 + 0.136422i
\(327\) −18.7797 −1.03852
\(328\) 28.0494 + 6.55137i 1.54877 + 0.361739i
\(329\) −4.94461 + 4.94461i −0.272605 + 0.272605i
\(330\) −0.914775 + 4.34761i −0.0503567 + 0.239328i
\(331\) 2.04707 4.94206i 0.112517 0.271640i −0.857583 0.514346i \(-0.828035\pi\)
0.970100 + 0.242705i \(0.0780348\pi\)
\(332\) 2.78123 2.66111i 0.152640 0.146047i
\(333\) 3.78643 + 9.14125i 0.207495 + 0.500937i
\(334\) −6.07099 4.15412i −0.332190 0.227304i
\(335\) 12.0526i 0.658502i
\(336\) 1.58225 + 4.35401i 0.0863188 + 0.237531i
\(337\) 2.89843 0.157888 0.0789438 0.996879i \(-0.474845\pi\)
0.0789438 + 0.996879i \(0.474845\pi\)
\(338\) 16.1916 8.70810i 0.880709 0.473658i
\(339\) −11.0521 + 26.6821i −0.600267 + 1.44917i
\(340\) −3.98691 0.0879979i −0.216221 0.00477235i
\(341\) 1.06365 + 2.56789i 0.0576001 + 0.139059i
\(342\) 3.41319 + 5.23226i 0.184564 + 0.282928i
\(343\) 11.0467i 0.596468i
\(344\) 0.105874 + 0.642778i 0.00570834 + 0.0346563i
\(345\) 10.6500 0.573377
\(346\) −9.41085 14.4264i −0.505931 0.775569i
\(347\) −10.8694 26.2411i −0.583502 1.40870i −0.889619 0.456704i \(-0.849030\pi\)
0.306117 0.951994i \(-0.400970\pi\)
\(348\) −27.0352 11.9039i −1.44924 0.638116i
\(349\) 12.9761 5.37487i 0.694594 0.287710i −0.00731850 0.999973i \(-0.502330\pi\)
0.701913 + 0.712263i \(0.252330\pi\)
\(350\) −0.909452 4.85128i −0.0486123 0.259312i
\(351\) 20.1493 3.12904i 1.07549 0.167016i
\(352\) 3.55575 13.8377i 0.189522 0.737551i
\(353\) 6.18989 6.18989i 0.329455 0.329455i −0.522924 0.852379i \(-0.675159\pi\)
0.852379 + 0.522924i \(0.175159\pi\)
\(354\) −2.60698 13.9064i −0.138560 0.739117i
\(355\) −2.65292 + 6.40472i −0.140803 + 0.339927i
\(356\) −3.69582 9.51086i −0.195878 0.504075i
\(357\) −0.991508 + 2.39371i −0.0524762 + 0.126689i
\(358\) −19.4948 + 12.7171i −1.03033 + 0.672120i
\(359\) 16.6589i 0.879226i −0.898187 0.439613i \(-0.855116\pi\)
0.898187 0.439613i \(-0.144884\pi\)
\(360\) 2.61777 0.431181i 0.137969 0.0227253i
\(361\) 0.976874 0.976874i 0.0514144 0.0514144i
\(362\) 3.49574 16.6141i 0.183732 0.873216i
\(363\) 2.46794 + 5.95815i 0.129534 + 0.312722i
\(364\) −0.787604 5.93227i −0.0412817 0.310936i
\(365\) 0.0902544 + 0.0373846i 0.00472413 + 0.00195680i
\(366\) 0.537942 + 2.86954i 0.0281187 + 0.149993i
\(367\) 13.1908 0.688552 0.344276 0.938869i \(-0.388124\pi\)
0.344276 + 0.938869i \(0.388124\pi\)
\(368\) −34.2150 1.51110i −1.78358 0.0787718i
\(369\) −7.57841 7.57841i −0.394516 0.394516i
\(370\) 2.18357 + 11.6478i 0.113519 + 0.605541i
\(371\) 5.95622 2.46715i 0.309232 0.128088i
\(372\) −2.21936 + 2.12351i −0.115069 + 0.110099i
\(373\) −5.15365 12.4420i −0.266846 0.644223i 0.732486 0.680782i \(-0.238360\pi\)
−0.999331 + 0.0365598i \(0.988360\pi\)
\(374\) 6.69254 4.36577i 0.346063 0.225749i
\(375\) 11.4504 0.591298
\(376\) 12.5778 + 20.2438i 0.648651 + 1.04399i
\(377\) 30.8037 + 22.5225i 1.58647 + 1.15997i
\(378\) 1.36662 6.49508i 0.0702914 0.334071i
\(379\) −11.7367 4.86151i −0.602875 0.249719i 0.0603036 0.998180i \(-0.480793\pi\)
−0.663179 + 0.748461i \(0.730793\pi\)
\(380\) 2.71011 + 6.97422i 0.139026 + 0.357770i
\(381\) −6.87296 2.84687i −0.352112 0.145850i
\(382\) −23.2172 15.8866i −1.18790 0.812827i
\(383\) 21.2202 + 21.2202i 1.08430 + 1.08430i 0.996103 + 0.0881968i \(0.0281105\pi\)
0.0881968 + 0.996103i \(0.471890\pi\)
\(384\) 15.6771 1.87620i 0.800021 0.0957446i
\(385\) −1.32096 1.32096i −0.0673226 0.0673226i
\(386\) 11.8346 2.21859i 0.602365 0.112923i
\(387\) 0.0927573 0.223936i 0.00471512 0.0113833i
\(388\) 0.0974524 + 0.0429093i 0.00494739 + 0.00217839i
\(389\) 12.2318 + 29.5302i 0.620177 + 1.49724i 0.851496 + 0.524361i \(0.175696\pi\)
−0.231319 + 0.972878i \(0.574304\pi\)
\(390\) 6.33343 + 0.338028i 0.320705 + 0.0171167i
\(391\) −13.5443 13.5443i −0.684967 0.684967i
\(392\) 17.3832 + 4.06011i 0.877985 + 0.205067i
\(393\) 12.6755 + 12.6755i 0.639393 + 0.639393i
\(394\) 13.4569 + 20.6288i 0.677949 + 1.03927i
\(395\) 0.610951 1.47497i 0.0307403 0.0742136i
\(396\) −3.84099 + 3.67510i −0.193017 + 0.184681i
\(397\) −0.632732 1.52755i −0.0317559 0.0766656i 0.907206 0.420687i \(-0.138211\pi\)
−0.938962 + 0.344021i \(0.888211\pi\)
\(398\) −0.663643 3.54006i −0.0332654 0.177447i
\(399\) 4.86125 0.243367
\(400\) −16.8060 0.742236i −0.840301 0.0371118i
\(401\) −0.453877 + 0.453877i −0.0226655 + 0.0226655i −0.718349 0.695683i \(-0.755102\pi\)
0.695683 + 0.718349i \(0.255102\pi\)
\(402\) −15.0713 + 22.0258i −0.751689 + 1.09855i
\(403\) 3.38942 2.06300i 0.168839 0.102765i
\(404\) 20.6099 19.7197i 1.02538 0.981092i
\(405\) 3.89923 + 1.61512i 0.193754 + 0.0802557i
\(406\) 10.4032 6.78639i 0.516304 0.336803i
\(407\) −16.7907 16.7907i −0.832282 0.832282i
\(408\) 7.17594 + 5.14631i 0.355262 + 0.254780i
\(409\) 26.5907i 1.31483i −0.753531 0.657413i \(-0.771651\pi\)
0.753531 0.657413i \(-0.228349\pi\)
\(410\) −7.01339 10.7512i −0.346367 0.530965i
\(411\) 3.24276 7.82871i 0.159953 0.386162i
\(412\) 16.3177 + 7.18486i 0.803915 + 0.353973i
\(413\) 5.49641 + 2.27669i 0.270461 + 0.112028i
\(414\) 10.5167 + 7.19617i 0.516870 + 0.353672i
\(415\) −1.71540 −0.0842059
\(416\) −20.2993 1.98461i −0.995255 0.0973034i
\(417\) −28.7083 −1.40585
\(418\) −12.3731 8.46639i −0.605188 0.414105i
\(419\) −24.2779 10.0562i −1.18605 0.491279i −0.299585 0.954069i \(-0.596848\pi\)
−0.886468 + 0.462790i \(0.846848\pi\)
\(420\) 0.831943 1.88945i 0.0405947 0.0921955i
\(421\) 8.86234 21.3956i 0.431924 1.04276i −0.546742 0.837301i \(-0.684132\pi\)
0.978666 0.205456i \(-0.0658677\pi\)
\(422\) −2.06443 3.16467i −0.100495 0.154054i
\(423\) 8.86775i 0.431165i
\(424\) −3.57110 21.6807i −0.173428 1.05291i
\(425\) −6.65282 6.65282i −0.322709 0.322709i
\(426\) 12.8570 8.38709i 0.622925 0.406356i
\(427\) −1.13417 0.469787i −0.0548861 0.0227346i
\(428\) −2.80165 2.92811i −0.135423 0.141536i
\(429\) −10.8558 + 6.60745i −0.524122 + 0.319011i
\(430\) 0.163942 0.239590i 0.00790597 0.0115541i
\(431\) −5.29119 + 5.29119i −0.254867 + 0.254867i −0.822963 0.568095i \(-0.807680\pi\)
0.568095 + 0.822963i \(0.307680\pi\)
\(432\) −20.4973 9.57059i −0.986175 0.460465i
\(433\) 8.11000 0.389742 0.194871 0.980829i \(-0.437571\pi\)
0.194871 + 0.980829i \(0.437571\pi\)
\(434\) −0.237980 1.26945i −0.0114234 0.0609357i
\(435\) 5.03777 + 12.1623i 0.241543 + 0.583136i
\(436\) −18.6061 19.4460i −0.891070 0.931293i
\(437\) −13.7532 + 33.2032i −0.657905 + 1.58832i
\(438\) −0.118190 0.181179i −0.00564732 0.00865709i
\(439\) −12.9581 12.9581i −0.618456 0.618456i 0.326679 0.945135i \(-0.394070\pi\)
−0.945135 + 0.326679i \(0.894070\pi\)
\(440\) −5.40817 + 3.36019i −0.257824 + 0.160191i
\(441\) −4.69661 4.69661i −0.223648 0.223648i
\(442\) −7.62476 8.48454i −0.362673 0.403569i
\(443\) 9.52286 + 22.9902i 0.452445 + 1.09230i 0.971390 + 0.237491i \(0.0763249\pi\)
−0.518945 + 0.854808i \(0.673675\pi\)
\(444\) 10.5748 24.0166i 0.501856 1.13978i
\(445\) −1.74015 + 4.20110i −0.0824911 + 0.199151i
\(446\) 14.3358 2.68747i 0.678818 0.127256i
\(447\) 0.598833 + 0.598833i 0.0283238 + 0.0283238i
\(448\) −2.94085 + 5.95214i −0.138942 + 0.281212i
\(449\) 11.1013 + 11.1013i 0.523902 + 0.523902i 0.918748 0.394845i \(-0.129202\pi\)
−0.394845 + 0.918748i \(0.629202\pi\)
\(450\) 5.16570 + 3.53467i 0.243513 + 0.166626i
\(451\) 23.7630 + 9.84296i 1.11896 + 0.463487i
\(452\) −38.5786 + 14.9912i −1.81458 + 0.705128i
\(453\) 28.2294 + 11.6930i 1.32633 + 0.549385i
\(454\) 2.61990 12.4515i 0.122958 0.584376i
\(455\) −1.57406 + 2.15282i −0.0737931 + 0.100926i
\(456\) 3.76837 16.1341i 0.176470 0.755549i
\(457\) 10.9893 0.514058 0.257029 0.966404i \(-0.417256\pi\)
0.257029 + 0.966404i \(0.417256\pi\)
\(458\) −6.66113 + 4.34528i −0.311254 + 0.203042i
\(459\) −4.84166 11.6888i −0.225989 0.545587i
\(460\) 10.5515 + 11.0278i 0.491968 + 0.514175i
\(461\) −11.7052 + 4.84845i −0.545165 + 0.225815i −0.638231 0.769845i \(-0.720333\pi\)
0.0930653 + 0.995660i \(0.470333\pi\)
\(462\) 0.762210 + 4.06585i 0.0354612 + 0.189160i
\(463\) −23.9065 23.9065i −1.11103 1.11103i −0.993012 0.118017i \(-0.962346\pi\)
−0.118017 0.993012i \(-0.537654\pi\)
\(464\) −14.4591 39.7882i −0.671245 1.84712i
\(465\) 1.36885 0.0634791
\(466\) 1.39785 + 7.45653i 0.0647541 + 0.345417i
\(467\) −23.0434 9.54488i −1.06632 0.441684i −0.220629 0.975358i \(-0.570811\pi\)
−0.845691 + 0.533674i \(0.820811\pi\)
\(468\) 6.02577 + 4.61327i 0.278541 + 0.213248i
\(469\) −4.29451 10.3679i −0.198302 0.478743i
\(470\) 2.18688 10.3935i 0.100873 0.479416i
\(471\) 15.8561 15.8561i 0.730611 0.730611i
\(472\) 11.8169 16.4773i 0.543916 0.758429i
\(473\) 0.581703i 0.0267467i
\(474\) −2.96089 + 1.93149i −0.135998 + 0.0887164i
\(475\) −6.75541 + 16.3090i −0.309960 + 0.748309i
\(476\) −3.46098 + 1.34490i −0.158634 + 0.0616433i
\(477\) −3.12868 + 7.55331i −0.143253 + 0.345842i
\(478\) −1.40894 7.51572i −0.0644436 0.343761i
\(479\) 18.0000 18.0000i 0.822443 0.822443i −0.164015 0.986458i \(-0.552445\pi\)
0.986458 + 0.164015i \(0.0524446\pi\)
\(480\) −5.62601 4.22582i −0.256791 0.192882i
\(481\) −20.0078 + 27.3643i −0.912275 + 1.24770i
\(482\) 5.91169 + 31.5346i 0.269270 + 1.43636i
\(483\) 9.16135 3.79476i 0.416856 0.172667i
\(484\) −3.72440 + 8.45856i −0.169291 + 0.384480i
\(485\) −0.0181594 0.0438406i −0.000824574 0.00199070i
\(486\) 8.00318 + 12.2685i 0.363032 + 0.556511i
\(487\) 0.103787 0.00470306 0.00235153 0.999997i \(-0.499251\pi\)
0.00235153 + 0.999997i \(0.499251\pi\)
\(488\) −2.43837 + 3.40004i −0.110380 + 0.153912i
\(489\) 11.8051i 0.533845i
\(490\) −4.34645 6.66291i −0.196352 0.301000i
\(491\) 1.07977 + 2.60680i 0.0487294 + 0.117643i 0.946370 0.323085i \(-0.104720\pi\)
−0.897640 + 0.440729i \(0.854720\pi\)
\(492\) −0.627225 + 28.4176i −0.0282775 + 1.28116i
\(493\) 9.06069 21.8745i 0.408073 0.985176i
\(494\) −9.23272 + 19.3090i −0.415400 + 0.868753i
\(495\) 2.36904 0.106480
\(496\) −4.39769 0.194224i −0.197462 0.00872090i
\(497\) 6.45475i 0.289535i
\(498\) 3.13486 + 2.14505i 0.140476 + 0.0961221i
\(499\) −11.6254 28.0661i −0.520423 1.25641i −0.937641 0.347606i \(-0.886995\pi\)
0.417217 0.908807i \(-0.363005\pi\)
\(500\) 11.3446 + 11.8567i 0.507344 + 0.530246i
\(501\) 2.77797 6.70662i 0.124111 0.299630i
\(502\) −2.51554 + 11.9555i −0.112274 + 0.533600i
\(503\) −19.1706 + 19.1706i −0.854777 + 0.854777i −0.990717 0.135940i \(-0.956594\pi\)
0.135940 + 0.990717i \(0.456594\pi\)
\(504\) 2.09822 1.30366i 0.0934623 0.0580697i
\(505\) −12.7117 −0.565664
\(506\) −29.9269 6.29687i −1.33041 0.279930i
\(507\) 11.6990 + 13.8664i 0.519573 + 0.615829i
\(508\) −3.86155 9.93735i −0.171328 0.440899i
\(509\) 7.30830 + 17.6438i 0.323935 + 0.782048i 0.999018 + 0.0443062i \(0.0141077\pi\)
−0.675083 + 0.737742i \(0.735892\pi\)
\(510\) −0.725104 3.86792i −0.0321082 0.171274i
\(511\) 0.0909593 0.00402380
\(512\) 17.4750 + 14.3745i 0.772292 + 0.635268i
\(513\) −16.7854 + 16.7854i −0.741093 + 0.741093i
\(514\) −29.9006 20.4597i −1.31886 0.902439i
\(515\) −3.04066 7.34079i −0.133987 0.323474i
\(516\) −0.599199 + 0.232842i −0.0263782 + 0.0102503i
\(517\) 8.14415 + 19.6617i 0.358180 + 0.864722i
\(518\) 6.02864 + 9.24164i 0.264883 + 0.406054i
\(519\) 12.0190 12.0190i 0.527576 0.527576i
\(520\) 5.92485 + 6.89302i 0.259822 + 0.302279i
\(521\) 16.1305 + 16.1305i 0.706691 + 0.706691i 0.965838 0.259147i \(-0.0834413\pi\)
−0.259147 + 0.965838i \(0.583441\pi\)
\(522\) −3.24325 + 15.4141i −0.141953 + 0.674656i
\(523\) −16.9456 + 7.01910i −0.740980 + 0.306924i −0.721055 0.692878i \(-0.756343\pi\)
−0.0199246 + 0.999801i \(0.506343\pi\)
\(524\) −0.566877 + 25.6834i −0.0247641 + 1.12199i
\(525\) 4.49995 1.86394i 0.196394 0.0813490i
\(526\) 18.5101 3.47003i 0.807081 0.151301i
\(527\) −1.74087 1.74087i −0.0758333 0.0758333i
\(528\) 14.0851 + 0.622067i 0.612975 + 0.0270720i
\(529\) 50.3095i 2.18737i
\(530\) −5.52971 + 8.08132i −0.240195 + 0.351030i
\(531\) −6.97020 + 2.88715i −0.302481 + 0.125292i
\(532\) 4.81631 + 5.03372i 0.208814 + 0.218239i
\(533\) 8.67946 35.6779i 0.375949 1.54538i
\(534\) 8.43341 5.50140i 0.364949 0.238069i
\(535\) 1.80600i 0.0780800i
\(536\) −37.7392 + 6.21614i −1.63008 + 0.268496i
\(537\) −16.2416 16.2416i −0.700876 0.700876i
\(538\) 1.74567 1.13876i 0.0752614 0.0490956i
\(539\) 14.7268 + 6.10002i 0.634326 + 0.262747i
\(540\) 3.65144 + 9.39667i 0.157133 + 0.404368i
\(541\) −0.792975 + 0.328461i −0.0340926 + 0.0141216i −0.399665 0.916661i \(-0.630873\pi\)
0.365572 + 0.930783i \(0.380873\pi\)
\(542\) −33.7503 + 6.32705i −1.44970 + 0.271770i
\(543\) 16.7540 0.718982
\(544\) 1.78072 + 12.5293i 0.0763476 + 0.537187i
\(545\) 11.9938i 0.513760i
\(546\) 5.56858 1.96592i 0.238313 0.0841334i
\(547\) 37.9355 + 15.7134i 1.62201 + 0.671857i 0.994302 0.106596i \(-0.0339951\pi\)
0.627703 + 0.778453i \(0.283995\pi\)
\(548\) 11.3192 4.39853i 0.483534 0.187896i
\(549\) 1.43828 0.595754i 0.0613842 0.0254262i
\(550\) −14.6997 3.09295i −0.626798 0.131884i
\(551\) −44.4236 −1.89251
\(552\) −5.49276 33.3474i −0.233787 1.41936i
\(553\) 1.48649i 0.0632119i
\(554\) 0.878446 4.17495i 0.0373216 0.177377i
\(555\) −10.8043 + 4.47527i −0.458615 + 0.189965i
\(556\) −28.4429 29.7268i −1.20625 1.26070i
\(557\) −9.25938 22.3541i −0.392333 0.947175i −0.989431 0.145007i \(-0.953680\pi\)
0.597098 0.802168i \(-0.296320\pi\)
\(558\) 1.35173 + 0.924930i 0.0572231 + 0.0391554i
\(559\) 0.820589 0.127432i 0.0347072 0.00538978i
\(560\) 2.78073 1.01052i 0.117507 0.0427022i
\(561\) 5.57571 + 5.57571i 0.235407 + 0.235407i
\(562\) 5.97168 8.72723i 0.251900 0.368136i
\(563\) 29.2302 + 12.1076i 1.23191 + 0.510272i 0.901176 0.433453i \(-0.142705\pi\)
0.330730 + 0.943725i \(0.392705\pi\)
\(564\) −16.9932 + 16.2592i −0.715541 + 0.684637i
\(565\) 17.0408 + 7.05852i 0.716910 + 0.296954i
\(566\) −5.71870 + 27.1790i −0.240375 + 1.14242i
\(567\) 3.92969 0.165031
\(568\) 21.4228 + 5.00362i 0.898881 + 0.209947i
\(569\) 8.76654 + 8.76654i 0.367513 + 0.367513i 0.866569 0.499057i \(-0.166320\pi\)
−0.499057 + 0.866569i \(0.666320\pi\)
\(570\) −6.18414 + 4.03413i −0.259025 + 0.168971i
\(571\) 11.9915 4.96705i 0.501829 0.207864i −0.117385 0.993086i \(-0.537451\pi\)
0.619214 + 0.785222i \(0.287451\pi\)
\(572\) −17.5973 4.69454i −0.735779 0.196289i
\(573\) 10.6238 25.6480i 0.443814 1.07146i
\(574\) −9.86389 6.74944i −0.411711 0.281716i
\(575\) 36.0088i 1.50167i
\(576\) −2.70024 7.97442i −0.112510 0.332267i
\(577\) 6.50897 6.50897i 0.270972 0.270972i −0.558519 0.829491i \(-0.688630\pi\)
0.829491 + 0.558519i \(0.188630\pi\)
\(578\) 9.57964 14.0000i 0.398460 0.582325i
\(579\) 4.54703 + 10.9775i 0.188968 + 0.456210i
\(580\) −7.60254 + 17.2663i −0.315678 + 0.716944i
\(581\) −1.47563 + 0.611224i −0.0612193 + 0.0253578i
\(582\) −0.0216353 + 0.102825i −0.000896813 + 0.00426225i
\(583\) 19.6207i 0.812607i
\(584\) 0.0705102 0.301887i 0.00291773 0.0124922i
\(585\) −0.518977 3.34192i −0.0214570 0.138172i
\(586\) 29.9643 19.5467i 1.23781 0.807468i
\(587\) 3.38471 8.17142i 0.139702 0.337271i −0.838508 0.544890i \(-0.816571\pi\)
0.978210 + 0.207619i \(0.0665715\pi\)
\(588\) −0.388713 + 17.6114i −0.0160303 + 0.726281i
\(589\) −1.76771 + 4.26764i −0.0728374 + 0.175845i
\(590\) −8.88146 + 1.66497i −0.365644 + 0.0685459i
\(591\) −17.1864 + 17.1864i −0.706953 + 0.706953i
\(592\) 35.3456 12.8446i 1.45270 0.527910i
\(593\) 8.99288 8.99288i 0.369293 0.369293i −0.497926 0.867219i \(-0.665905\pi\)
0.867219 + 0.497926i \(0.165905\pi\)
\(594\) −16.6708 11.4071i −0.684011 0.468040i
\(595\) 1.52877 + 0.633236i 0.0626733 + 0.0259602i
\(596\) −0.0267812 + 1.21337i −0.00109700 + 0.0497018i
\(597\) 3.28369 1.36015i 0.134392 0.0556671i
\(598\) −2.32682 + 43.5963i −0.0951507 + 1.78278i
\(599\) 12.4096 12.4096i 0.507042 0.507042i −0.406575 0.913617i \(-0.633277\pi\)
0.913617 + 0.406575i \(0.133277\pi\)
\(600\) −2.69798 16.3799i −0.110145 0.668705i
\(601\) 4.04864 4.04864i 0.165147 0.165147i −0.619695 0.784843i \(-0.712744\pi\)
0.784843 + 0.619695i \(0.212744\pi\)
\(602\) 0.0556563 0.264515i 0.00226838 0.0107808i
\(603\) 13.1479 + 5.44603i 0.535423 + 0.221779i
\(604\) 15.8606 + 40.8158i 0.645358 + 1.66077i
\(605\) 3.80523 1.57618i 0.154704 0.0640807i
\(606\) 23.2303 + 15.8955i 0.943668 + 0.645712i
\(607\) 3.67342i 0.149099i −0.997217 0.0745497i \(-0.976248\pi\)
0.997217 0.0745497i \(-0.0237519\pi\)
\(608\) 20.4400 12.0829i 0.828953 0.490026i
\(609\) 8.66719 + 8.66719i 0.351212 + 0.351212i
\(610\) 1.83266 0.343562i 0.0742022 0.0139104i
\(611\) 25.9520 15.7959i 1.04991 0.639034i
\(612\) 1.89750 4.30947i 0.0767021 0.174200i
\(613\) 8.32980 20.1099i 0.336437 0.812232i −0.661615 0.749844i \(-0.730129\pi\)
0.998052 0.0623875i \(-0.0198715\pi\)
\(614\) 2.41283 11.4673i 0.0973739 0.462785i
\(615\) 8.95711 8.95711i 0.361185 0.361185i
\(616\) −3.45493 + 4.81751i −0.139203 + 0.194103i
\(617\) −12.1373 −0.488628 −0.244314 0.969696i \(-0.578563\pi\)
−0.244314 + 0.969696i \(0.578563\pi\)
\(618\) −3.62268 + 17.2174i −0.145726 + 0.692584i
\(619\) 2.80738 + 1.16286i 0.112838 + 0.0467391i 0.438388 0.898786i \(-0.355549\pi\)
−0.325550 + 0.945525i \(0.605549\pi\)
\(620\) 1.35620 + 1.41742i 0.0544663 + 0.0569249i
\(621\) −18.5303 + 44.7361i −0.743595 + 1.79520i
\(622\) 5.78934 1.08531i 0.232132 0.0435169i
\(623\) 4.23391i 0.169628i
\(624\) −2.20804 20.0056i −0.0883924 0.800867i
\(625\) 13.7151i 0.548603i
\(626\) 1.37959 + 7.35914i 0.0551396 + 0.294131i
\(627\) 5.66170 13.6686i 0.226107 0.545870i
\(628\) 32.1282 + 0.709123i 1.28205 + 0.0282971i
\(629\) 19.4320 + 8.04901i 0.774806 + 0.320935i
\(630\) −1.07726 0.226665i −0.0429192 0.00903057i
\(631\) 13.0300 0.518718 0.259359 0.965781i \(-0.416489\pi\)
0.259359 + 0.965781i \(0.416489\pi\)
\(632\) −4.93353 1.15230i −0.196245 0.0458361i
\(633\) 2.63657 2.63657i 0.104794 0.104794i
\(634\) 3.30006 + 0.694361i 0.131062 + 0.0275766i
\(635\) −1.81818 + 4.38948i −0.0721524 + 0.174191i
\(636\) 20.2108 7.85371i 0.801411 0.311420i
\(637\) 5.37896 22.1109i 0.213122 0.876064i
\(638\) −6.96530 37.1549i −0.275759 1.47098i
\(639\) −5.78803 5.78803i −0.228971 0.228971i
\(640\) −1.19826 10.0124i −0.0473652 0.395773i
\(641\) 20.0675i 0.792619i −0.918117 0.396309i \(-0.870291\pi\)
0.918117 0.396309i \(-0.129709\pi\)
\(642\) 2.25834 3.30041i 0.0891294 0.130257i
\(643\) −35.6943 + 14.7851i −1.40765 + 0.583066i −0.951724 0.306954i \(-0.900690\pi\)
−0.455921 + 0.890020i \(0.650690\pi\)
\(644\) 13.0060 + 5.72670i 0.512509 + 0.225663i
\(645\) 0.264675 + 0.109632i 0.0104216 + 0.00431676i
\(646\) 12.9953 + 2.73432i 0.511292 + 0.107580i
\(647\) 15.4064 15.4064i 0.605688 0.605688i −0.336128 0.941816i \(-0.609118\pi\)
0.941816 + 0.336128i \(0.109118\pi\)
\(648\) 3.04623 13.0423i 0.119667 0.512351i
\(649\) 12.8029 12.8029i 0.502557 0.502557i
\(650\) −1.14291 + 21.4140i −0.0448285 + 0.839925i
\(651\) 1.17752 0.487743i 0.0461505 0.0191162i
\(652\) −12.2239 + 11.6960i −0.478725 + 0.458049i
\(653\) −4.44571 1.84147i −0.173974 0.0720624i 0.293996 0.955807i \(-0.405015\pi\)
−0.467970 + 0.883744i \(0.655015\pi\)
\(654\) 14.9979 21.9185i 0.586464 0.857080i
\(655\) 8.09531 8.09531i 0.316310 0.316310i
\(656\) −30.0472 + 27.5054i −1.17315 + 1.07391i
\(657\) −0.0815640 + 0.0815640i −0.00318211 + 0.00318211i
\(658\) −1.82216 9.71991i −0.0710350 0.378921i
\(659\) −15.6050 + 37.6738i −0.607885 + 1.46756i 0.257411 + 0.966302i \(0.417131\pi\)
−0.865296 + 0.501262i \(0.832869\pi\)
\(660\) −4.34369 4.53976i −0.169078 0.176710i
\(661\) 16.4803 39.7869i 0.641009 1.54753i −0.184312 0.982868i \(-0.559006\pi\)
0.825321 0.564664i \(-0.190994\pi\)
\(662\) 4.13322 + 6.33604i 0.160642 + 0.246257i
\(663\) 6.64402 9.08693i 0.258032 0.352907i
\(664\) 0.884723 + 5.37130i 0.0343339 + 0.208447i
\(665\) 3.10469i 0.120395i
\(666\) −13.6930 2.88112i −0.530593 0.111641i
\(667\) −83.7191 + 34.6776i −3.24162 + 1.34272i
\(668\) 9.69685 3.76809i 0.375182 0.145792i
\(669\) 5.50802 + 13.2975i 0.212952 + 0.514113i
\(670\) 14.0670 + 9.62544i 0.543455 + 0.371863i
\(671\) −2.64183 + 2.64183i −0.101987 + 0.101987i
\(672\) −6.34533 1.63051i −0.244777 0.0628981i
\(673\) 39.5769i 1.52558i −0.646648 0.762788i \(-0.723830\pi\)
0.646648 0.762788i \(-0.276170\pi\)
\(674\) −2.31475 + 3.38286i −0.0891608 + 0.130303i
\(675\) −9.10185 + 21.9738i −0.350331 + 0.845773i
\(676\) −2.76746 + 25.8523i −0.106441 + 0.994319i
\(677\) −18.1490 + 7.51754i −0.697521 + 0.288923i −0.703130 0.711062i \(-0.748215\pi\)
0.00560877 + 0.999984i \(0.498215\pi\)
\(678\) −22.3152 34.2082i −0.857008 1.31376i
\(679\) −0.0312421 0.0312421i −0.00119896 0.00119896i
\(680\) 3.28674 4.58298i 0.126041 0.175749i
\(681\) 12.5563 0.481159
\(682\) −3.84653 0.809343i −0.147291 0.0309913i
\(683\) 20.1952 + 8.36511i 0.772746 + 0.320082i 0.733984 0.679167i \(-0.237659\pi\)
0.0387620 + 0.999248i \(0.487659\pi\)
\(684\) −8.83260 0.194951i −0.337723 0.00745412i
\(685\) −4.99988 2.07102i −0.191036 0.0791296i
\(686\) −12.8930 8.82217i −0.492259 0.336832i
\(687\) −5.54955 5.54955i −0.211728 0.211728i
\(688\) −0.834762 0.389767i −0.0318250 0.0148597i
\(689\) −27.6783 + 4.29824i −1.05446 + 0.163750i
\(690\) −8.50532 + 12.4300i −0.323792 + 0.473202i
\(691\) 11.8233 + 28.5439i 0.449778 + 1.08586i 0.972405 + 0.233298i \(0.0749519\pi\)
−0.522627 + 0.852561i \(0.675048\pi\)
\(692\) 24.3533 + 0.537518i 0.925773 + 0.0204334i
\(693\) 2.03790 0.844124i 0.0774133 0.0320656i
\(694\) 39.3075 + 8.27064i 1.49209 + 0.313949i
\(695\) 18.3348i 0.695479i
\(696\) 35.4844 22.0470i 1.34503 0.835691i
\(697\) −22.7827 −0.862958
\(698\) −4.08979 + 19.4373i −0.154801 + 0.735714i
\(699\) −6.91651 + 2.86491i −0.261607 + 0.108361i
\(700\) 6.38841 + 2.81288i 0.241459 + 0.106317i
\(701\) −3.43432 1.42254i −0.129712 0.0537286i 0.316883 0.948465i \(-0.397364\pi\)
−0.446596 + 0.894736i \(0.647364\pi\)
\(702\) −12.4396 + 26.0158i −0.469504 + 0.981904i
\(703\) 39.4634i 1.48839i
\(704\) 13.3107 + 15.2011i 0.501667 + 0.572913i
\(705\) 10.4810 0.394738
\(706\) 2.28106 + 12.1678i 0.0858487 + 0.457942i
\(707\) −10.9349 + 4.52937i −0.411248 + 0.170345i
\(708\) 18.3126 + 8.06325i 0.688231 + 0.303036i
\(709\) −12.8333 5.31574i −0.481966 0.199637i 0.128453 0.991716i \(-0.458999\pi\)
−0.610419 + 0.792079i \(0.708999\pi\)
\(710\) −5.35649 8.21127i −0.201026 0.308163i
\(711\) 1.33295 + 1.33295i 0.0499893 + 0.0499893i
\(712\) 14.0520 + 3.28206i 0.526622 + 0.123000i
\(713\) 9.42254i 0.352877i
\(714\) −2.00195 3.06889i −0.0749209 0.114850i
\(715\) 4.21991 + 6.93314i 0.157816 + 0.259285i
\(716\) 0.726362 32.9092i 0.0271454 1.22987i
\(717\) 6.97142 2.88766i 0.260352 0.107842i
\(718\) 19.4432 + 13.3042i 0.725615 + 0.496508i
\(719\) 19.4222i 0.724324i 0.932115 + 0.362162i \(0.117961\pi\)
−0.932115 + 0.362162i \(0.882039\pi\)
\(720\) −1.58736 + 3.39964i −0.0591575 + 0.126697i
\(721\) −5.23127 5.23127i −0.194823 0.194823i
\(722\) 0.359991 + 1.92030i 0.0133975 + 0.0714660i
\(723\) −29.2509 + 12.1161i −1.08785 + 0.450603i
\(724\) 16.5991 + 17.3484i 0.616900 + 0.644747i
\(725\) −41.1218 + 17.0332i −1.52723 + 0.632598i
\(726\) −8.92491 1.87788i −0.331235 0.0696946i
\(727\) 4.53442 + 4.53442i 0.168172 + 0.168172i 0.786175 0.618003i \(-0.212058\pi\)
−0.618003 + 0.786175i \(0.712058\pi\)
\(728\) 7.55276 + 3.81840i 0.279924 + 0.141519i
\(729\) −20.2662 + 20.2662i −0.750601 + 0.750601i
\(730\) −0.115712 + 0.0754829i −0.00428269 + 0.00279375i
\(731\) −0.197179 0.476033i −0.00729293 0.0176067i
\(732\) −3.77875 1.66382i −0.139667 0.0614967i
\(733\) −17.7693 42.8989i −0.656324 1.58451i −0.803439 0.595387i \(-0.796999\pi\)
0.147115 0.989119i \(-0.453001\pi\)
\(734\) −10.5344 + 15.3954i −0.388832 + 0.568254i
\(735\) 5.55103 5.55103i 0.204753 0.204753i
\(736\) 29.0885 38.7268i 1.07222 1.42749i
\(737\) −34.1533 −1.25805
\(738\) 14.8973 2.79274i 0.548378 0.102802i
\(739\) 18.8383 + 45.4796i 0.692977 + 1.67300i 0.738694 + 0.674041i \(0.235443\pi\)
−0.0457165 + 0.998954i \(0.514557\pi\)
\(740\) −15.3384 6.75367i −0.563851 0.248270i
\(741\) −20.5221 4.99245i −0.753897 0.183402i
\(742\) −1.87727 + 8.92204i −0.0689169 + 0.327538i
\(743\) −24.2181 −0.888477 −0.444238 0.895909i \(-0.646526\pi\)
−0.444238 + 0.895909i \(0.646526\pi\)
\(744\) −0.705990 4.28618i −0.0258828 0.157139i
\(745\) 0.382450 0.382450i 0.0140119 0.0140119i
\(746\) 18.6373 + 3.92145i 0.682360 + 0.143575i
\(747\) 0.775116 1.87129i 0.0283600 0.0684671i
\(748\) −0.249359 + 11.2977i −0.00911748 + 0.413084i
\(749\) 0.643503 + 1.55355i 0.0235131 + 0.0567656i
\(750\) −9.14456 + 13.3642i −0.333912 + 0.487991i
\(751\) 38.3104i 1.39796i −0.715139 0.698982i \(-0.753637\pi\)
0.715139 0.698982i \(-0.246363\pi\)
\(752\) −33.6721 1.48713i −1.22790 0.0542299i
\(753\) −12.0562 −0.439351
\(754\) −50.8874 + 17.9651i −1.85321 + 0.654251i
\(755\) 7.46785 18.0290i 0.271783 0.656142i
\(756\) 6.48922 + 6.78214i 0.236011 + 0.246664i
\(757\) 2.34752 + 5.66742i 0.0853221 + 0.205986i 0.960782 0.277305i \(-0.0894413\pi\)
−0.875460 + 0.483291i \(0.839441\pi\)
\(758\) 15.0472 9.81583i 0.546540 0.356527i
\(759\) 30.1789i 1.09542i
\(760\) −10.3042 2.40670i −0.373773 0.0873003i
\(761\) −23.7237 −0.859984 −0.429992 0.902833i \(-0.641484\pi\)
−0.429992 + 0.902833i \(0.641484\pi\)
\(762\) 8.81158 5.74810i 0.319210 0.208232i
\(763\) 4.27359 + 10.3173i 0.154714 + 0.373513i
\(764\) 37.0835 14.4103i 1.34163 0.521345i
\(765\) −1.93869 + 0.803030i −0.0700933 + 0.0290336i
\(766\) −41.7137 + 7.81991i −1.50718 + 0.282545i
\(767\) −20.8653 15.2559i −0.753402 0.550859i
\(768\) −10.3303 + 19.7957i −0.372763 + 0.714317i
\(769\) 34.0861 34.0861i