Properties

Label 416.2.bd.a.83.15
Level $416$
Weight $2$
Character 416.83
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 83.15
Character \(\chi\) \(=\) 416.83
Dual form 416.2.bd.a.411.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.877210 - 1.10928i) q^{2} +(-1.94716 - 0.806541i) q^{3} +(-0.461004 + 1.94614i) q^{4} +(-0.00996722 + 0.0240630i) q^{5} +(0.813391 + 2.86746i) q^{6} -2.96755i q^{7} +(2.56322 - 1.19579i) q^{8} +(1.01961 + 1.01961i) q^{9} +O(q^{10})\) \(q+(-0.877210 - 1.10928i) q^{2} +(-1.94716 - 0.806541i) q^{3} +(-0.461004 + 1.94614i) q^{4} +(-0.00996722 + 0.0240630i) q^{5} +(0.813391 + 2.86746i) q^{6} -2.96755i q^{7} +(2.56322 - 1.19579i) q^{8} +(1.01961 + 1.01961i) q^{9} +(0.0354360 - 0.0100519i) q^{10} +(-4.21937 - 1.74772i) q^{11} +(2.46730 - 3.41764i) q^{12} +(-1.90143 + 3.06342i) q^{13} +(-3.29184 + 2.60316i) q^{14} +(0.0388156 - 0.0388156i) q^{15} +(-3.57495 - 1.79436i) q^{16} +0.268171 q^{17} +(0.236622 - 2.02545i) q^{18} +(1.32058 + 3.18817i) q^{19} +(-0.0422351 - 0.0304908i) q^{20} +(-2.39345 + 5.77830i) q^{21} +(1.76256 + 6.21358i) q^{22} +(0.593999 + 0.593999i) q^{23} +(-5.95546 + 0.261067i) q^{24} +(3.53505 + 3.53505i) q^{25} +(5.06615 - 0.578050i) q^{26} +(1.25663 + 3.03377i) q^{27} +(5.77528 + 1.36805i) q^{28} +(-1.36076 + 3.28517i) q^{29} +(-0.0771068 - 0.00900793i) q^{30} +(-3.68370 - 3.68370i) q^{31} +(1.14553 + 5.53965i) q^{32} +(6.80619 + 6.80619i) q^{33} +(-0.235242 - 0.297477i) q^{34} +(0.0714081 + 0.0295782i) q^{35} +(-2.45436 + 1.51427i) q^{36} +(2.06714 + 0.856238i) q^{37} +(2.37814 - 4.26159i) q^{38} +(6.17317 - 4.43141i) q^{39} +(0.00322627 + 0.0735974i) q^{40} -11.1368 q^{41} +(8.50931 - 2.41378i) q^{42} +(1.83875 + 4.43912i) q^{43} +(5.34646 - 7.40580i) q^{44} +(-0.0346977 + 0.0143723i) q^{45} +(0.137849 - 1.17997i) q^{46} +(3.17617 + 3.17617i) q^{47} +(5.51378 + 6.37726i) q^{48} -1.80635 q^{49} +(0.820379 - 7.02235i) q^{50} +(-0.522173 - 0.216291i) q^{51} +(-5.08530 - 5.11271i) q^{52} +(0.167087 + 0.403384i) q^{53} +(2.26297 - 4.05521i) q^{54} +(0.0841108 - 0.0841108i) q^{55} +(-3.54858 - 7.60647i) q^{56} -7.27299i q^{57} +(4.83784 - 1.37232i) q^{58} +(1.69544 - 4.09314i) q^{59} +(0.0576466 + 0.0934349i) q^{60} +(-4.09323 + 9.88192i) q^{61} +(-0.854876 + 7.31764i) q^{62} +(3.02576 - 3.02576i) q^{63} +(5.14015 - 6.13016i) q^{64} +(-0.0547632 - 0.0762879i) q^{65} +(1.57951 - 13.5204i) q^{66} +(-13.8508 + 5.73720i) q^{67} +(-0.123628 + 0.521899i) q^{68} +(-0.677528 - 1.63570i) q^{69} +(-0.0298294 - 0.105158i) q^{70} -8.21571 q^{71} +(3.83274 + 1.39424i) q^{72} +10.2218i q^{73} +(-0.863510 - 3.04414i) q^{74} +(-4.03216 - 9.73449i) q^{75} +(-6.81343 + 1.10028i) q^{76} +(-5.18645 + 12.5212i) q^{77} +(-10.3308 - 2.96050i) q^{78} -1.80629 q^{79} +(0.0788100 - 0.0681393i) q^{80} -11.2466i q^{81} +(9.76934 + 12.3539i) q^{82} +(-5.60506 - 13.5318i) q^{83} +(-10.1420 - 7.32182i) q^{84} +(-0.00267292 + 0.00645300i) q^{85} +(3.31126 - 5.93373i) q^{86} +(5.29924 - 5.29924i) q^{87} +(-12.9051 + 0.565715i) q^{88} -0.316072 q^{89} +(0.0463801 + 0.0258820i) q^{90} +(9.09086 + 5.64258i) q^{91} +(-1.42984 + 0.882171i) q^{92} +(4.20171 + 10.1438i) q^{93} +(0.737093 - 6.30943i) q^{94} -0.0898794 q^{95} +(2.23742 - 11.7105i) q^{96} +(8.51081 - 8.51081i) q^{97} +(1.58455 + 2.00374i) q^{98} +(-2.52013 - 6.08413i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24} - 4 q^{26} - 8 q^{27} + 56 q^{28} - 8 q^{29} - 16 q^{30} - 44 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} - 28 q^{39} - 8 q^{40} - 8 q^{41} - 48 q^{42} - 32 q^{43} + 12 q^{44} - 36 q^{45} - 48 q^{46} - 8 q^{47} - 8 q^{48} - 168 q^{49} + 76 q^{50} - 4 q^{52} - 8 q^{53} - 28 q^{54} - 40 q^{55} + 56 q^{56} + 32 q^{58} + 52 q^{59} - 36 q^{60} - 8 q^{61} + 72 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} + 20 q^{70} + 56 q^{71} + 8 q^{72} - 8 q^{74} - 68 q^{76} + 56 q^{77} - 48 q^{78} - 16 q^{79} + 28 q^{80} - 88 q^{82} + 36 q^{83} + 100 q^{84} - 24 q^{85} + 96 q^{86} - 8 q^{87} + 64 q^{88} - 8 q^{89} - 64 q^{90} + 72 q^{91} - 8 q^{92} - 40 q^{93} - 56 q^{94} + 36 q^{96} - 8 q^{97} + 52 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.877210 1.10928i −0.620281 0.784379i
\(3\) −1.94716 0.806541i −1.12420 0.465657i −0.258391 0.966040i \(-0.583192\pi\)
−0.865804 + 0.500384i \(0.833192\pi\)
\(4\) −0.461004 + 1.94614i −0.230502 + 0.973072i
\(5\) −0.00996722 + 0.0240630i −0.00445748 + 0.0107613i −0.926093 0.377296i \(-0.876854\pi\)
0.921635 + 0.388058i \(0.126854\pi\)
\(6\) 0.813391 + 2.86746i 0.332066 + 1.17063i
\(7\) 2.96755i 1.12163i −0.827942 0.560814i \(-0.810488\pi\)
0.827942 0.560814i \(-0.189512\pi\)
\(8\) 2.56322 1.19579i 0.906234 0.422777i
\(9\) 1.01961 + 1.01961i 0.339872 + 0.339872i
\(10\) 0.0354360 0.0100519i 0.0112058 0.00317868i
\(11\) −4.21937 1.74772i −1.27219 0.526958i −0.358559 0.933507i \(-0.616732\pi\)
−0.913629 + 0.406549i \(0.866732\pi\)
\(12\) 2.46730 3.41764i 0.712247 0.986588i
\(13\) −1.90143 + 3.06342i −0.527362 + 0.849641i
\(14\) −3.29184 + 2.60316i −0.879782 + 0.695725i
\(15\) 0.0388156 0.0388156i 0.0100221 0.0100221i
\(16\) −3.57495 1.79436i −0.893738 0.448590i
\(17\) 0.268171 0.0650410 0.0325205 0.999471i \(-0.489647\pi\)
0.0325205 + 0.999471i \(0.489647\pi\)
\(18\) 0.236622 2.02545i 0.0557723 0.477404i
\(19\) 1.32058 + 3.18817i 0.302962 + 0.731416i 0.999898 + 0.0142821i \(0.00454630\pi\)
−0.696936 + 0.717134i \(0.745454\pi\)
\(20\) −0.0422351 0.0304908i −0.00944406 0.00681795i
\(21\) −2.39345 + 5.77830i −0.522294 + 1.26093i
\(22\) 1.76256 + 6.21358i 0.375780 + 1.32474i
\(23\) 0.593999 + 0.593999i 0.123857 + 0.123857i 0.766318 0.642461i \(-0.222087\pi\)
−0.642461 + 0.766318i \(0.722087\pi\)
\(24\) −5.95546 + 0.261067i −1.21565 + 0.0532901i
\(25\) 3.53505 + 3.53505i 0.707011 + 0.707011i
\(26\) 5.06615 0.578050i 0.993553 0.113365i
\(27\) 1.25663 + 3.03377i 0.241838 + 0.583850i
\(28\) 5.77528 + 1.36805i 1.09142 + 0.258538i
\(29\) −1.36076 + 3.28517i −0.252687 + 0.610040i −0.998419 0.0562056i \(-0.982100\pi\)
0.745732 + 0.666246i \(0.232100\pi\)
\(30\) −0.0771068 0.00900793i −0.0140777 0.00164462i
\(31\) −3.68370 3.68370i −0.661613 0.661613i 0.294147 0.955760i \(-0.404964\pi\)
−0.955760 + 0.294147i \(0.904964\pi\)
\(32\) 1.14553 + 5.53965i 0.202504 + 0.979281i
\(33\) 6.80619 + 6.80619i 1.18481 + 1.18481i
\(34\) −0.235242 0.297477i −0.0403437 0.0510168i
\(35\) 0.0714081 + 0.0295782i 0.0120702 + 0.00499963i
\(36\) −2.45436 + 1.51427i −0.409060 + 0.252378i
\(37\) 2.06714 + 0.856238i 0.339836 + 0.140765i 0.546073 0.837737i \(-0.316122\pi\)
−0.206238 + 0.978502i \(0.566122\pi\)
\(38\) 2.37814 4.26159i 0.385786 0.691321i
\(39\) 6.17317 4.43141i 0.988498 0.709593i
\(40\) 0.00322627 + 0.0735974i 0.000510117 + 0.0116368i
\(41\) −11.1368 −1.73928 −0.869640 0.493686i \(-0.835649\pi\)
−0.869640 + 0.493686i \(0.835649\pi\)
\(42\) 8.50931 2.41378i 1.31302 0.372454i
\(43\) 1.83875 + 4.43912i 0.280406 + 0.676960i 0.999845 0.0175955i \(-0.00560110\pi\)
−0.719439 + 0.694555i \(0.755601\pi\)
\(44\) 5.34646 7.40580i 0.806010 1.11647i
\(45\) −0.0346977 + 0.0143723i −0.00517243 + 0.00214249i
\(46\) 0.137849 1.17997i 0.0203247 0.173977i
\(47\) 3.17617 + 3.17617i 0.463292 + 0.463292i 0.899733 0.436441i \(-0.143761\pi\)
−0.436441 + 0.899733i \(0.643761\pi\)
\(48\) 5.51378 + 6.37726i 0.795846 + 0.920478i
\(49\) −1.80635 −0.258050
\(50\) 0.820379 7.02235i 0.116019 0.993110i
\(51\) −0.522173 0.216291i −0.0731188 0.0302868i
\(52\) −5.08530 5.11271i −0.705204 0.709005i
\(53\) 0.167087 + 0.403384i 0.0229512 + 0.0554090i 0.934940 0.354807i \(-0.115453\pi\)
−0.911988 + 0.410216i \(0.865453\pi\)
\(54\) 2.26297 4.05521i 0.307952 0.551844i
\(55\) 0.0841108 0.0841108i 0.0113415 0.0113415i
\(56\) −3.54858 7.60647i −0.474199 1.01646i
\(57\) 7.27299i 0.963331i
\(58\) 4.83784 1.37232i 0.635240 0.180194i
\(59\) 1.69544 4.09314i 0.220727 0.532882i −0.774262 0.632865i \(-0.781879\pi\)
0.994989 + 0.0999830i \(0.0318788\pi\)
\(60\) 0.0576466 + 0.0934349i 0.00744214 + 0.0120624i
\(61\) −4.09323 + 9.88192i −0.524084 + 1.26525i 0.411262 + 0.911517i \(0.365088\pi\)
−0.935346 + 0.353733i \(0.884912\pi\)
\(62\) −0.854876 + 7.31764i −0.108569 + 0.929342i
\(63\) 3.02576 3.02576i 0.381209 0.381209i
\(64\) 5.14015 6.13016i 0.642519 0.766270i
\(65\) −0.0547632 0.0762879i −0.00679254 0.00946235i
\(66\) 1.57951 13.5204i 0.194424 1.66425i
\(67\) −13.8508 + 5.73720i −1.69215 + 0.700910i −0.999787 0.0206421i \(-0.993429\pi\)
−0.692360 + 0.721552i \(0.743429\pi\)
\(68\) −0.123628 + 0.521899i −0.0149921 + 0.0632896i
\(69\) −0.677528 1.63570i −0.0815648 0.196915i
\(70\) −0.0298294 0.105158i −0.00356530 0.0125688i
\(71\) −8.21571 −0.975026 −0.487513 0.873116i \(-0.662096\pi\)
−0.487513 + 0.873116i \(0.662096\pi\)
\(72\) 3.83274 + 1.39424i 0.451693 + 0.164313i
\(73\) 10.2218i 1.19637i 0.801357 + 0.598186i \(0.204112\pi\)
−0.801357 + 0.598186i \(0.795888\pi\)
\(74\) −0.863510 3.04414i −0.100381 0.353874i
\(75\) −4.03216 9.73449i −0.465594 1.12404i
\(76\) −6.81343 + 1.10028i −0.781554 + 0.126211i
\(77\) −5.18645 + 12.5212i −0.591051 + 1.42692i
\(78\) −10.3308 2.96050i −1.16974 0.335211i
\(79\) −1.80629 −0.203224 −0.101612 0.994824i \(-0.532400\pi\)
−0.101612 + 0.994824i \(0.532400\pi\)
\(80\) 0.0788100 0.0681393i 0.00881123 0.00761820i
\(81\) 11.2466i 1.24963i
\(82\) 9.76934 + 12.3539i 1.07884 + 1.36426i
\(83\) −5.60506 13.5318i −0.615235 1.48531i −0.857179 0.515018i \(-0.827785\pi\)
0.241945 0.970290i \(-0.422215\pi\)
\(84\) −10.1420 7.32182i −1.10658 0.798876i
\(85\) −0.00267292 + 0.00645300i −0.000289919 + 0.000699926i
\(86\) 3.31126 5.93373i 0.357063 0.639850i
\(87\) 5.29924 5.29924i 0.568139 0.568139i
\(88\) −12.9051 + 0.565715i −1.37569 + 0.0603055i
\(89\) −0.316072 −0.0335035 −0.0167518 0.999860i \(-0.505333\pi\)
−0.0167518 + 0.999860i \(0.505333\pi\)
\(90\) 0.0463801 + 0.0258820i 0.00488889 + 0.00272820i
\(91\) 9.09086 + 5.64258i 0.952981 + 0.591503i
\(92\) −1.42984 + 0.882171i −0.149071 + 0.0919727i
\(93\) 4.20171 + 10.1438i 0.435697 + 1.05187i
\(94\) 0.737093 6.30943i 0.0760253 0.650768i
\(95\) −0.0898794 −0.00922144
\(96\) 2.23742 11.7105i 0.228355 1.19520i
\(97\) 8.51081 8.51081i 0.864141 0.864141i −0.127675 0.991816i \(-0.540751\pi\)
0.991816 + 0.127675i \(0.0407514\pi\)
\(98\) 1.58455 + 2.00374i 0.160063 + 0.202409i
\(99\) −2.52013 6.08413i −0.253283 0.611478i
\(100\) −8.50940 + 5.25005i −0.850940 + 0.525005i
\(101\) −6.38965 15.4260i −0.635794 1.53494i −0.832232 0.554427i \(-0.812938\pi\)
0.196438 0.980516i \(-0.437062\pi\)
\(102\) 0.218128 + 0.768969i 0.0215979 + 0.0761392i
\(103\) −3.66386 + 3.66386i −0.361011 + 0.361011i −0.864185 0.503174i \(-0.832165\pi\)
0.503174 + 0.864185i \(0.332165\pi\)
\(104\) −1.21055 + 10.1259i −0.118704 + 0.992930i
\(105\) −0.115187 0.115187i −0.0112411 0.0112411i
\(106\) 0.300895 0.539199i 0.0292255 0.0523716i
\(107\) 1.31915 0.546410i 0.127527 0.0528234i −0.318007 0.948088i \(-0.603014\pi\)
0.445534 + 0.895265i \(0.353014\pi\)
\(108\) −6.48347 + 1.04700i −0.623872 + 0.100748i
\(109\) −0.990292 + 0.410192i −0.0948528 + 0.0392893i −0.429605 0.903017i \(-0.641347\pi\)
0.334753 + 0.942306i \(0.391347\pi\)
\(110\) −0.167085 0.0195196i −0.0159310 0.00186112i
\(111\) −3.33447 3.33447i −0.316494 0.316494i
\(112\) −5.32485 + 10.6088i −0.503151 + 1.00244i
\(113\) 9.61963i 0.904939i −0.891780 0.452469i \(-0.850543\pi\)
0.891780 0.452469i \(-0.149457\pi\)
\(114\) −8.06778 + 6.37994i −0.755617 + 0.597536i
\(115\) −0.0202139 + 0.00837288i −0.00188496 + 0.000780775i
\(116\) −5.76609 4.16271i −0.535368 0.386498i
\(117\) −5.06224 + 1.18479i −0.468004 + 0.109534i
\(118\) −6.02770 + 1.70984i −0.554894 + 0.157403i
\(119\) 0.795811i 0.0729518i
\(120\) 0.0530773 0.145908i 0.00484527 0.0133195i
\(121\) 6.97039 + 6.97039i 0.633672 + 0.633672i
\(122\) 14.5524 4.12799i 1.31752 0.373731i
\(123\) 21.6852 + 8.98231i 1.95529 + 0.809908i
\(124\) 8.86722 5.47082i 0.796300 0.491294i
\(125\) −0.240614 + 0.0996655i −0.0215211 + 0.00891435i
\(126\) −6.01064 0.702186i −0.535470 0.0625557i
\(127\) 11.4366 1.01483 0.507417 0.861701i \(-0.330601\pi\)
0.507417 + 0.861701i \(0.330601\pi\)
\(128\) −11.3091 0.324428i −0.999589 0.0286757i
\(129\) 10.1267i 0.891608i
\(130\) −0.0365858 + 0.127668i −0.00320879 + 0.0111973i
\(131\) −8.63610 3.57719i −0.754540 0.312541i −0.0279474 0.999609i \(-0.508897\pi\)
−0.726592 + 0.687069i \(0.758897\pi\)
\(132\) −16.3835 + 10.1081i −1.42600 + 0.879801i
\(133\) 9.46104 3.91889i 0.820376 0.339811i
\(134\) 18.5142 + 10.3317i 1.59939 + 0.892524i
\(135\) −0.0855268 −0.00736097
\(136\) 0.687380 0.320677i 0.0589424 0.0274979i
\(137\) 16.0392i 1.37032i −0.728391 0.685162i \(-0.759732\pi\)
0.728391 0.685162i \(-0.240268\pi\)
\(138\) −1.22011 + 2.18642i −0.103863 + 0.186120i
\(139\) −13.5185 + 5.59954i −1.14662 + 0.474947i −0.873400 0.487004i \(-0.838090\pi\)
−0.273224 + 0.961951i \(0.588090\pi\)
\(140\) −0.0904829 + 0.125335i −0.00764720 + 0.0105927i
\(141\) −3.62281 8.74624i −0.305096 0.736566i
\(142\) 7.20691 + 9.11353i 0.604790 + 0.764790i
\(143\) 13.3768 9.60256i 1.11863 0.803006i
\(144\) −1.81551 5.47463i −0.151293 0.456219i
\(145\) −0.0654880 0.0654880i −0.00543848 0.00543848i
\(146\) 11.3389 8.96668i 0.938410 0.742088i
\(147\) 3.51725 + 1.45689i 0.290098 + 0.120163i
\(148\) −2.61932 + 3.62822i −0.215307 + 0.298238i
\(149\) 15.2610 + 6.32130i 1.25023 + 0.517861i 0.906896 0.421354i \(-0.138445\pi\)
0.343331 + 0.939215i \(0.388445\pi\)
\(150\) −7.26123 + 13.0120i −0.592877 + 1.06242i
\(151\) 0.214554 0.0174602 0.00873009 0.999962i \(-0.497221\pi\)
0.00873009 + 0.999962i \(0.497221\pi\)
\(152\) 7.19733 + 6.59282i 0.583781 + 0.534748i
\(153\) 0.273431 + 0.273431i 0.0221056 + 0.0221056i
\(154\) 18.4391 5.23050i 1.48587 0.421485i
\(155\) 0.125357 0.0519247i 0.0100689 0.00417069i
\(156\) 5.77829 + 14.0568i 0.462634 + 1.12544i
\(157\) −7.17191 + 17.3145i −0.572381 + 1.38185i 0.327141 + 0.944975i \(0.393915\pi\)
−0.899522 + 0.436875i \(0.856085\pi\)
\(158\) 1.58450 + 2.00368i 0.126056 + 0.159405i
\(159\) 0.920216i 0.0729779i
\(160\) −0.144718 0.0276499i −0.0114410 0.00218592i
\(161\) 1.76272 1.76272i 0.138922 0.138922i
\(162\) −12.4757 + 9.86566i −0.980181 + 0.775119i
\(163\) −4.63693 11.1945i −0.363192 0.876824i −0.994829 0.101560i \(-0.967617\pi\)
0.631637 0.775264i \(-0.282383\pi\)
\(164\) 5.13412 21.6739i 0.400908 1.69244i
\(165\) −0.231616 + 0.0959386i −0.0180313 + 0.00746881i
\(166\) −10.0937 + 18.0878i −0.783426 + 1.40389i
\(167\) 22.1889i 1.71703i 0.512788 + 0.858515i \(0.328613\pi\)
−0.512788 + 0.858515i \(0.671387\pi\)
\(168\) 0.774730 + 17.6731i 0.0597717 + 1.36351i
\(169\) −5.76914 11.6498i −0.443780 0.896136i
\(170\) 0.00950290 0.00269562i 0.000728839 0.000206745i
\(171\) −1.90422 + 4.59719i −0.145619 + 0.351556i
\(172\) −9.48684 + 1.53201i −0.723365 + 0.116814i
\(173\) −0.663233 + 1.60119i −0.0504247 + 0.121736i −0.947085 0.320984i \(-0.895986\pi\)
0.896660 + 0.442720i \(0.145986\pi\)
\(174\) −10.5269 1.22979i −0.798042 0.0932305i
\(175\) 10.4904 10.4904i 0.793003 0.793003i
\(176\) 11.9480 + 13.8191i 0.900614 + 1.04165i
\(177\) −6.60258 + 6.60258i −0.496280 + 0.496280i
\(178\) 0.277261 + 0.350612i 0.0207816 + 0.0262795i
\(179\) −9.91253 4.10590i −0.740897 0.306890i −0.0198758 0.999802i \(-0.506327\pi\)
−0.721021 + 0.692913i \(0.756327\pi\)
\(180\) −0.0119747 0.0741524i −0.000892541 0.00552699i
\(181\) −10.4244 + 4.31792i −0.774839 + 0.320949i −0.734831 0.678251i \(-0.762738\pi\)
−0.0400082 + 0.999199i \(0.512738\pi\)
\(182\) −1.71539 15.0340i −0.127153 1.11440i
\(183\) 15.9404 15.9404i 1.17835 1.17835i
\(184\) 2.23285 + 0.812246i 0.164608 + 0.0598796i
\(185\) −0.0412073 + 0.0412073i −0.00302962 + 0.00302962i
\(186\) 7.56657 13.5592i 0.554807 0.994205i
\(187\) −1.13151 0.468688i −0.0827444 0.0342739i
\(188\) −7.64551 + 4.71706i −0.557606 + 0.344027i
\(189\) 9.00287 3.72911i 0.654862 0.271253i
\(190\) 0.0788432 + 0.0997015i 0.00571988 + 0.00723310i
\(191\) 18.5536i 1.34249i 0.741236 + 0.671244i \(0.234240\pi\)
−0.741236 + 0.671244i \(0.765760\pi\)
\(192\) −14.9529 + 7.79067i −1.07914 + 0.562244i
\(193\) −14.2878 14.2878i −1.02846 1.02846i −0.999583 0.0288750i \(-0.990808\pi\)
−0.0288750 0.999583i \(-0.509192\pi\)
\(194\) −16.9066 1.97510i −1.21383 0.141804i
\(195\) 0.0451036 + 0.192714i 0.00322993 + 0.0138005i
\(196\) 0.832733 3.51541i 0.0594810 0.251101i
\(197\) 7.76230 18.7399i 0.553041 1.33516i −0.362142 0.932123i \(-0.617955\pi\)
0.915184 0.403037i \(-0.132045\pi\)
\(198\) −4.53832 + 8.13260i −0.322525 + 0.577958i
\(199\) −3.43778 + 3.43778i −0.243698 + 0.243698i −0.818378 0.574680i \(-0.805126\pi\)
0.574680 + 0.818378i \(0.305126\pi\)
\(200\) 13.2883 + 4.83391i 0.939625 + 0.341809i
\(201\) 31.5971 2.22869
\(202\) −11.5067 + 20.6197i −0.809606 + 1.45080i
\(203\) 9.74889 + 4.03812i 0.684238 + 0.283421i
\(204\) 0.661657 0.916512i 0.0463253 0.0641687i
\(205\) 0.111003 0.267986i 0.00775280 0.0187169i
\(206\) 7.27822 + 0.850271i 0.507098 + 0.0592412i
\(207\) 1.21130i 0.0841911i
\(208\) 12.2944 7.53974i 0.852463 0.522787i
\(209\) 15.7601i 1.09015i
\(210\) −0.0267315 + 0.228818i −0.00184465 + 0.0157900i
\(211\) 3.04036 7.34007i 0.209307 0.505312i −0.784008 0.620751i \(-0.786828\pi\)
0.993314 + 0.115440i \(0.0368277\pi\)
\(212\) −0.862071 + 0.139214i −0.0592072 + 0.00956124i
\(213\) 15.9973 + 6.62631i 1.09612 + 0.454027i
\(214\) −1.76329 0.983991i −0.120536 0.0672642i
\(215\) −0.125146 −0.00853488
\(216\) 6.84878 + 6.27354i 0.466000 + 0.426860i
\(217\) −10.9316 + 10.9316i −0.742084 + 0.742084i
\(218\) 1.32371 + 0.738686i 0.0896531 + 0.0500301i
\(219\) 8.24432 19.9035i 0.557099 1.34496i
\(220\) 0.124916 + 0.202467i 0.00842186 + 0.0136503i
\(221\) −0.509908 + 0.821522i −0.0343001 + 0.0552615i
\(222\) −0.773829 + 6.62389i −0.0519360 + 0.444566i
\(223\) 10.3641 + 10.3641i 0.694032 + 0.694032i 0.963117 0.269084i \(-0.0867210\pi\)
−0.269084 + 0.963117i \(0.586721\pi\)
\(224\) 16.4392 3.39943i 1.09839 0.227134i
\(225\) 7.20879i 0.480586i
\(226\) −10.6709 + 8.43844i −0.709815 + 0.561317i
\(227\) −19.8036 + 8.20293i −1.31441 + 0.544448i −0.926169 0.377109i \(-0.876918\pi\)
−0.388244 + 0.921557i \(0.626918\pi\)
\(228\) 14.1543 + 3.35288i 0.937390 + 0.222050i
\(229\) 14.0168 + 5.80594i 0.926255 + 0.383667i 0.794257 0.607582i \(-0.207861\pi\)
0.131999 + 0.991250i \(0.457861\pi\)
\(230\) 0.0270197 + 0.0150781i 0.00178163 + 0.000994221i
\(231\) 20.1977 20.1977i 1.32891 1.32891i
\(232\) 0.440461 + 10.0478i 0.0289177 + 0.659669i
\(233\) −9.87813 + 9.87813i −0.647138 + 0.647138i −0.952300 0.305163i \(-0.901289\pi\)
0.305163 + 0.952300i \(0.401289\pi\)
\(234\) 5.75491 + 4.57613i 0.376210 + 0.299151i
\(235\) −0.108086 + 0.0447706i −0.00705074 + 0.00292051i
\(236\) 7.18424 + 5.18652i 0.467654 + 0.337614i
\(237\) 3.51715 + 1.45685i 0.228463 + 0.0946325i
\(238\) −0.882777 + 0.698093i −0.0572219 + 0.0452507i
\(239\) −11.4619 + 11.4619i −0.741406 + 0.741406i −0.972849 0.231443i \(-0.925655\pi\)
0.231443 + 0.972849i \(0.425655\pi\)
\(240\) −0.208413 + 0.0691147i −0.0134530 + 0.00446133i
\(241\) −3.34883 + 3.34883i −0.215717 + 0.215717i −0.806691 0.590974i \(-0.798744\pi\)
0.590974 + 0.806691i \(0.298744\pi\)
\(242\) 1.61762 13.8466i 0.103984 0.890094i
\(243\) −5.30098 + 12.7977i −0.340058 + 0.820973i
\(244\) −17.3446 12.5216i −1.11038 0.801614i
\(245\) 0.0180043 0.0434661i 0.00115025 0.00277695i
\(246\) −9.05860 31.9344i −0.577555 2.03606i
\(247\) −12.2777 2.01657i −0.781212 0.128311i
\(248\) −13.8471 5.03718i −0.879291 0.319861i
\(249\) 30.8693i 1.95626i
\(250\) 0.321626 + 0.179480i 0.0203414 + 0.0113513i
\(251\) −17.5824 + 7.28285i −1.10979 + 0.459690i −0.860865 0.508833i \(-0.830077\pi\)
−0.248924 + 0.968523i \(0.580077\pi\)
\(252\) 4.49367 + 7.28344i 0.283075 + 0.458814i
\(253\) −1.46816 3.54444i −0.0923022 0.222837i
\(254\) −10.0323 12.6864i −0.629482 0.796014i
\(255\) 0.0104092 0.0104092i 0.000651851 0.000651851i
\(256\) 9.56054 + 12.8295i 0.597534 + 0.801844i
\(257\) 28.3298i 1.76717i 0.468275 + 0.883583i \(0.344876\pi\)
−0.468275 + 0.883583i \(0.655124\pi\)
\(258\) −11.2334 + 8.88326i −0.699359 + 0.553048i
\(259\) 2.54093 6.13434i 0.157886 0.381169i
\(260\) 0.173713 0.0714080i 0.0107732 0.00442854i
\(261\) −4.73705 + 1.96215i −0.293216 + 0.121454i
\(262\) 3.60757 + 12.7178i 0.222877 + 0.785709i
\(263\) 10.7169 + 10.7169i 0.660835 + 0.660835i 0.955577 0.294742i \(-0.0952338\pi\)
−0.294742 + 0.955577i \(0.595234\pi\)
\(264\) 25.5846 + 9.30694i 1.57462 + 0.572802i
\(265\) −0.0113720 −0.000698578
\(266\) −12.6465 7.05725i −0.775405 0.432708i
\(267\) 0.615443 + 0.254925i 0.0376645 + 0.0156011i
\(268\) −4.78012 29.6006i −0.291993 1.80814i
\(269\) −11.6979 4.84543i −0.713233 0.295431i −0.00359137 0.999994i \(-0.501143\pi\)
−0.709642 + 0.704563i \(0.751143\pi\)
\(270\) 0.0750250 + 0.0948731i 0.00456587 + 0.00577380i
\(271\) 10.1650 + 10.1650i 0.617478 + 0.617478i 0.944884 0.327406i \(-0.106174\pi\)
−0.327406 + 0.944884i \(0.606174\pi\)
\(272\) −0.958698 0.481196i −0.0581296 0.0291768i
\(273\) −13.1504 18.3192i −0.795899 1.10873i
\(274\) −17.7920 + 14.0698i −1.07485 + 0.849986i
\(275\) −8.73742 21.0940i −0.526886 1.27202i
\(276\) 3.49564 0.564503i 0.210413 0.0339791i
\(277\) −5.10546 + 2.11475i −0.306758 + 0.127063i −0.530752 0.847527i \(-0.678090\pi\)
0.223994 + 0.974590i \(0.428090\pi\)
\(278\) 18.0700 + 10.0838i 1.08377 + 0.604787i
\(279\) 7.51192i 0.449727i
\(280\) 0.218404 0.00957410i 0.0130521 0.000572162i
\(281\) 4.91247 0.293053 0.146527 0.989207i \(-0.453191\pi\)
0.146527 + 0.989207i \(0.453191\pi\)
\(282\) −6.52406 + 11.6910i −0.388502 + 0.696189i
\(283\) 18.3084 7.58361i 1.08832 0.450799i 0.234902 0.972019i \(-0.424523\pi\)
0.853422 + 0.521220i \(0.174523\pi\)
\(284\) 3.78748 15.9890i 0.224746 0.948770i
\(285\) 0.175010 + 0.0724915i 0.0103667 + 0.00429402i
\(286\) −22.3862 6.41521i −1.32373 0.379339i
\(287\) 33.0491i 1.95083i
\(288\) −4.48031 + 6.81631i −0.264005 + 0.401655i
\(289\) −16.9281 −0.995770
\(290\) −0.0151978 + 0.130091i −0.000892444 + 0.00763922i
\(291\) −23.4362 + 9.70761i −1.37386 + 0.569070i
\(292\) −19.8931 4.71230i −1.16416 0.275766i
\(293\) 20.7746 + 8.60511i 1.21366 + 0.502716i 0.895390 0.445283i \(-0.146897\pi\)
0.318274 + 0.947999i \(0.396897\pi\)
\(294\) −1.46927 5.17962i −0.0856894 0.302081i
\(295\) 0.0815946 + 0.0815946i 0.00475062 + 0.00475062i
\(296\) 6.32241 0.277153i 0.367483 0.0161092i
\(297\) 14.9968i 0.870205i
\(298\) −6.37499 22.4738i −0.369293 1.30187i
\(299\) −2.94912 + 0.690224i −0.170552 + 0.0399167i
\(300\) 20.8036 3.35952i 1.20109 0.193962i
\(301\) 13.1733 5.45657i 0.759297 0.314511i
\(302\) −0.188209 0.238001i −0.0108302 0.0136954i
\(303\) 35.1904i 2.02164i
\(304\) 0.999707 13.7671i 0.0573371 0.789600i
\(305\) −0.196991 0.196991i −0.0112797 0.0112797i
\(306\) 0.0634551 0.543168i 0.00362749 0.0310509i
\(307\) 8.84131 3.66219i 0.504600 0.209012i −0.115837 0.993268i \(-0.536955\pi\)
0.620437 + 0.784256i \(0.286955\pi\)
\(308\) −21.9771 15.8659i −1.25226 0.904043i
\(309\) 10.0892 4.17908i 0.573954 0.237739i
\(310\) −0.167564 0.0935075i −0.00951698 0.00531087i
\(311\) −11.3087 11.3087i −0.641257 0.641257i 0.309607 0.950864i \(-0.399802\pi\)
−0.950864 + 0.309607i \(0.899802\pi\)
\(312\) 10.5241 18.7405i 0.595811 1.06097i
\(313\) −1.65788 + 1.65788i −0.0937087 + 0.0937087i −0.752407 0.658698i \(-0.771107\pi\)
0.658698 + 0.752407i \(0.271107\pi\)
\(314\) 25.4979 7.23282i 1.43893 0.408172i
\(315\) 0.0426504 + 0.102967i 0.00240308 + 0.00580154i
\(316\) 0.832708 3.51530i 0.0468435 0.197751i
\(317\) −6.72640 16.2390i −0.377792 0.912071i −0.992379 0.123222i \(-0.960677\pi\)
0.614587 0.788849i \(-0.289323\pi\)
\(318\) −1.02078 + 0.807223i −0.0572424 + 0.0452668i
\(319\) 11.4831 11.4831i 0.642931 0.642931i
\(320\) 0.0962770 + 0.184788i 0.00538205 + 0.0103300i
\(321\) −3.00930 −0.167963
\(322\) −3.50163 0.409074i −0.195138 0.0227968i
\(323\) 0.354142 + 0.854974i 0.0197050 + 0.0475720i
\(324\) 21.8876 + 5.18474i 1.21598 + 0.288041i
\(325\) −17.5510 + 4.10772i −0.973556 + 0.227855i
\(326\) −8.35032 + 14.9636i −0.462481 + 0.828758i
\(327\) 2.25910 0.124928
\(328\) −28.5461 + 13.3174i −1.57619 + 0.735328i
\(329\) 9.42544 9.42544i 0.519642 0.519642i
\(330\) 0.309599 + 0.172769i 0.0170429 + 0.00951062i
\(331\) 4.07077 9.82772i 0.223750 0.540180i −0.771643 0.636055i \(-0.780565\pi\)
0.995393 + 0.0958752i \(0.0305650\pi\)
\(332\) 28.9188 4.67003i 1.58712 0.256301i
\(333\) 1.23465 + 2.98072i 0.0676586 + 0.163342i
\(334\) 24.6137 19.4644i 1.34680 1.06504i
\(335\) 0.390476i 0.0213340i
\(336\) 18.9248 16.3624i 1.03243 0.892644i
\(337\) −6.73096 −0.366659 −0.183329 0.983052i \(-0.558687\pi\)
−0.183329 + 0.983052i \(0.558687\pi\)
\(338\) −7.86211 + 16.6189i −0.427642 + 0.903948i
\(339\) −7.75863 + 18.7310i −0.421391 + 1.01733i
\(340\) −0.0113262 0.00817675i −0.000614252 0.000443446i
\(341\) 9.10483 + 21.9810i 0.493054 + 1.19034i
\(342\) 6.76997 1.92039i 0.366078 0.103843i
\(343\) 15.4124i 0.832192i
\(344\) 10.0214 + 9.17967i 0.540317 + 0.494935i
\(345\) 0.0461128 0.00248263
\(346\) 2.35796 0.668866i 0.126765 0.0359585i
\(347\) 5.50962 + 13.3014i 0.295772 + 0.714056i 0.999992 + 0.00407413i \(0.00129684\pi\)
−0.704220 + 0.709982i \(0.748703\pi\)
\(348\) 7.87012 + 12.7561i 0.421883 + 0.683797i
\(349\) 29.0284 12.0240i 1.55386 0.643629i 0.569848 0.821750i \(-0.307002\pi\)
0.984009 + 0.178121i \(0.0570020\pi\)
\(350\) −20.8392 2.43451i −1.11390 0.130130i
\(351\) −11.6831 1.91891i −0.623599 0.102424i
\(352\) 4.84833 25.3759i 0.258417 1.35254i
\(353\) 5.36936 5.36936i 0.285782 0.285782i −0.549627 0.835410i \(-0.685230\pi\)
0.835410 + 0.549627i \(0.185230\pi\)
\(354\) 13.1160 + 1.53226i 0.697105 + 0.0814386i
\(355\) 0.0818879 0.197695i 0.00434616 0.0104925i
\(356\) 0.145710 0.615121i 0.00772263 0.0326013i
\(357\) −0.641854 + 1.54957i −0.0339705 + 0.0820121i
\(358\) 4.14077 + 14.5975i 0.218847 + 0.771502i
\(359\) 12.2132i 0.644587i 0.946640 + 0.322293i \(0.104454\pi\)
−0.946640 + 0.322293i \(0.895546\pi\)
\(360\) −0.0717515 + 0.0783306i −0.00378163 + 0.00412838i
\(361\) 5.01455 5.01455i 0.263924 0.263924i
\(362\) 13.9342 + 7.77584i 0.732364 + 0.408689i
\(363\) −7.95058 19.1944i −0.417297 1.00744i
\(364\) −15.1722 + 15.0909i −0.795240 + 0.790976i
\(365\) −0.245968 0.101883i −0.0128745 0.00533281i
\(366\) −31.6654 3.69927i −1.65518 0.193364i
\(367\) −30.7403 −1.60463 −0.802316 0.596900i \(-0.796399\pi\)
−0.802316 + 0.596900i \(0.796399\pi\)
\(368\) −1.05767 3.18936i −0.0551347 0.166257i
\(369\) −11.3553 11.3553i −0.591132 0.591132i
\(370\) 0.0818579 + 0.00956297i 0.00425559 + 0.000497155i
\(371\) 1.19706 0.495839i 0.0621483 0.0257427i
\(372\) −21.6784 + 3.50079i −1.12397 + 0.181507i
\(373\) −13.5003 32.5925i −0.699017 1.68758i −0.725773 0.687935i \(-0.758518\pi\)
0.0267554 0.999642i \(-0.491482\pi\)
\(374\) 0.472669 + 1.66630i 0.0244411 + 0.0861625i
\(375\) 0.548899 0.0283450
\(376\) 11.9393 + 4.34316i 0.615720 + 0.223982i
\(377\) −7.47647 10.4151i −0.385058 0.536405i
\(378\) −12.0340 6.71549i −0.618964 0.345407i
\(379\) −29.3794 12.1693i −1.50912 0.625097i −0.533743 0.845647i \(-0.679215\pi\)
−0.975376 + 0.220549i \(0.929215\pi\)
\(380\) 0.0414348 0.174918i 0.00212556 0.00897312i
\(381\) −22.2689 9.22408i −1.14087 0.472564i
\(382\) 20.5811 16.2754i 1.05302 0.832721i
\(383\) −11.6463 11.6463i −0.595097 0.595097i 0.343907 0.939004i \(-0.388249\pi\)
−0.939004 + 0.343907i \(0.888249\pi\)
\(384\) 21.7589 + 9.75294i 1.11038 + 0.497702i
\(385\) −0.249603 0.249603i −0.0127209 0.0127209i
\(386\) −3.31576 + 28.3826i −0.168768 + 1.44463i
\(387\) −2.65138 + 6.40101i −0.134777 + 0.325381i
\(388\) 12.6397 + 20.4868i 0.641685 + 1.04006i
\(389\) −6.53556 15.7782i −0.331366 0.799989i −0.998484 0.0550369i \(-0.982472\pi\)
0.667118 0.744952i \(-0.267528\pi\)
\(390\) 0.174208 0.219083i 0.00882138 0.0110937i
\(391\) 0.159293 + 0.159293i 0.00805581 + 0.00805581i
\(392\) −4.63006 + 2.16002i −0.233853 + 0.109097i
\(393\) 13.9307 + 13.9307i 0.702713 + 0.702713i
\(394\) −27.5969 + 7.82823i −1.39031 + 0.394380i
\(395\) 0.0180037 0.0434648i 0.000905866 0.00218695i
\(396\) 13.0024 2.09973i 0.653395 0.105515i
\(397\) −4.08975 9.87354i −0.205259 0.495539i 0.787406 0.616434i \(-0.211423\pi\)
−0.992665 + 0.120896i \(0.961423\pi\)
\(398\) 6.82912 + 0.797805i 0.342313 + 0.0399904i
\(399\) −21.5829 −1.08050
\(400\) −6.29448 18.9808i −0.314724 0.949040i
\(401\) 17.9244 17.9244i 0.895104 0.895104i −0.0998942 0.994998i \(-0.531850\pi\)
0.994998 + 0.0998942i \(0.0318504\pi\)
\(402\) −27.7173 35.0500i −1.38241 1.74814i
\(403\) 18.2891 4.28045i 0.911043 0.213224i
\(404\) 32.9668 5.32374i 1.64016 0.264866i
\(405\) 0.270628 + 0.112098i 0.0134476 + 0.00557018i
\(406\) −4.07242 14.3565i −0.202111 0.712503i
\(407\) −7.22557 7.22557i −0.358158 0.358158i
\(408\) −1.59708 + 0.0700107i −0.0790673 + 0.00346605i
\(409\) 7.38002i 0.364919i −0.983213 0.182459i \(-0.941594\pi\)
0.983213 0.182459i \(-0.0584058\pi\)
\(410\) −0.394644 + 0.111946i −0.0194901 + 0.00552862i
\(411\) −12.9363 + 31.2310i −0.638100 + 1.54051i
\(412\) −5.44134 8.81945i −0.268076 0.434503i
\(413\) −12.1466 5.03129i −0.597695 0.247574i
\(414\) 1.34367 1.06256i 0.0660378 0.0522222i
\(415\) 0.381483 0.0187262
\(416\) −19.1485 7.02400i −0.938830 0.344380i
\(417\) 30.8390 1.51019
\(418\) −17.4823 + 13.8249i −0.855089 + 0.676198i
\(419\) 12.6984 + 5.25983i 0.620356 + 0.256960i 0.670649 0.741775i \(-0.266016\pi\)
−0.0502934 + 0.998734i \(0.516016\pi\)
\(420\) 0.277273 0.171069i 0.0135295 0.00834732i
\(421\) −3.06061 + 7.38897i −0.149165 + 0.360116i −0.980746 0.195287i \(-0.937436\pi\)
0.831581 + 0.555403i \(0.187436\pi\)
\(422\) −10.8092 + 3.06618i −0.526185 + 0.149259i
\(423\) 6.47694i 0.314920i
\(424\) 0.910644 + 0.834158i 0.0442248 + 0.0405103i
\(425\) 0.947999 + 0.947999i 0.0459847 + 0.0459847i
\(426\) −6.68259 23.5582i −0.323773 1.14140i
\(427\) 29.3251 + 12.1468i 1.41914 + 0.587827i
\(428\) 0.455258 + 2.81915i 0.0220057 + 0.136269i
\(429\) −33.7918 + 7.90877i −1.63148 + 0.381839i
\(430\) 0.109779 + 0.138822i 0.00529402 + 0.00669458i
\(431\) −9.74838 + 9.74838i −0.469563 + 0.469563i −0.901773 0.432210i \(-0.857734\pi\)
0.432210 + 0.901773i \(0.357734\pi\)
\(432\) 0.951294 13.1004i 0.0457691 0.630295i
\(433\) −4.81238 −0.231268 −0.115634 0.993292i \(-0.536890\pi\)
−0.115634 + 0.993292i \(0.536890\pi\)
\(434\) 21.7155 + 2.53689i 1.04238 + 0.121774i
\(435\) 0.0746970 + 0.180335i 0.00358145 + 0.00864638i
\(436\) −0.341764 2.11635i −0.0163675 0.101355i
\(437\) −1.10934 + 2.67819i −0.0530671 + 0.128115i
\(438\) −29.3106 + 8.31434i −1.40051 + 0.397274i
\(439\) 20.4045 + 20.4045i 0.973852 + 0.973852i 0.999667 0.0258147i \(-0.00821800\pi\)
−0.0258147 + 0.999667i \(0.508218\pi\)
\(440\) 0.115015 0.316174i 0.00548312 0.0150730i
\(441\) −1.84178 1.84178i −0.0877037 0.0877037i
\(442\) 1.35859 0.155016i 0.0646217 0.00737337i
\(443\) −2.21608 5.35010i −0.105289 0.254191i 0.862451 0.506141i \(-0.168928\pi\)
−0.967740 + 0.251950i \(0.918928\pi\)
\(444\) 8.02656 4.95215i 0.380924 0.235019i
\(445\) 0.00315036 0.00760563i 0.000149341 0.000360542i
\(446\) 2.40520 20.5882i 0.113889 0.974880i
\(447\) −24.6172 24.6172i −1.16435 1.16435i
\(448\) −18.1915 15.2536i −0.859470 0.720667i
\(449\) −24.3563 24.3563i −1.14944 1.14944i −0.986662 0.162783i \(-0.947953\pi\)
−0.162783 0.986662i \(-0.552047\pi\)
\(450\) 7.99656 6.32362i 0.376962 0.298098i
\(451\) 46.9904 + 19.4641i 2.21269 + 0.916527i
\(452\) 18.7212 + 4.43469i 0.880570 + 0.208590i
\(453\) −0.417772 0.173047i −0.0196286 0.00813045i
\(454\) 26.4713 + 14.7721i 1.24236 + 0.693288i
\(455\) −0.226388 + 0.162513i −0.0106132 + 0.00761871i
\(456\) −8.69700 18.6422i −0.407274 0.873003i
\(457\) 16.9751 0.794063 0.397031 0.917805i \(-0.370040\pi\)
0.397031 + 0.917805i \(0.370040\pi\)
\(458\) −5.85525 20.6416i −0.273598 0.964517i
\(459\) 0.336992 + 0.813570i 0.0157294 + 0.0379742i
\(460\) −0.00697612 0.0431991i −0.000325263 0.00201417i
\(461\) −27.4151 + 11.3557i −1.27685 + 0.528888i −0.915040 0.403364i \(-0.867841\pi\)
−0.361809 + 0.932252i \(0.617841\pi\)
\(462\) −40.1226 4.68728i −1.86667 0.218072i
\(463\) 12.0839 + 12.0839i 0.561585 + 0.561585i 0.929758 0.368172i \(-0.120016\pi\)
−0.368172 + 0.929758i \(0.620016\pi\)
\(464\) 10.7594 9.30261i 0.499494 0.431863i
\(465\) −0.285971 −0.0132616
\(466\) 19.6228 + 2.29241i 0.909009 + 0.106194i
\(467\) 8.83362 + 3.65900i 0.408771 + 0.169319i 0.577587 0.816329i \(-0.303994\pi\)
−0.168816 + 0.985648i \(0.553994\pi\)
\(468\) 0.0279463 10.3980i 0.00129182 0.480649i
\(469\) 17.0254 + 41.1030i 0.786161 + 1.89796i
\(470\) 0.144477 + 0.0806242i 0.00666423 + 0.00371892i
\(471\) 27.9298 27.9298i 1.28694 1.28694i
\(472\) −0.548791 12.5190i −0.0252602 0.576234i
\(473\) 21.9439i 1.00898i
\(474\) −1.46922 5.17946i −0.0674836 0.237901i
\(475\) −6.60202 + 15.9387i −0.302921 + 0.731317i
\(476\) 1.54876 + 0.366872i 0.0709874 + 0.0168156i
\(477\) −0.240932 + 0.581660i −0.0110315 + 0.0266324i
\(478\) 22.7689 + 2.65995i 1.04142 + 0.121663i
\(479\) −22.4193 + 22.4193i −1.02437 + 1.02437i −0.0246703 + 0.999696i \(0.507854\pi\)
−0.999696 + 0.0246703i \(0.992146\pi\)
\(480\) 0.259490 + 0.170560i 0.0118440 + 0.00778498i
\(481\) −6.55354 + 4.70445i −0.298816 + 0.214505i
\(482\) 6.65242 + 0.777162i 0.303010 + 0.0353988i
\(483\) −4.85401 + 2.01060i −0.220865 + 0.0914853i
\(484\) −16.7788 + 10.3520i −0.762671 + 0.470546i
\(485\) 0.119966 + 0.289625i 0.00544740 + 0.0131512i
\(486\) 18.8463 5.34601i 0.854886 0.242500i
\(487\) −25.6151 −1.16073 −0.580365 0.814357i \(-0.697090\pi\)
−0.580365 + 0.814357i \(0.697090\pi\)
\(488\) 1.32493 + 30.2242i 0.0599766 + 1.36818i
\(489\) 25.5375i 1.15484i
\(490\) −0.0640096 + 0.0181572i −0.00289166 + 0.000820257i
\(491\) −4.59810 11.1008i −0.207509 0.500972i 0.785520 0.618836i \(-0.212395\pi\)
−0.993030 + 0.117864i \(0.962395\pi\)
\(492\) −27.4778 + 38.0617i −1.23880 + 1.71595i
\(493\) −0.364917 + 0.880987i −0.0164350 + 0.0396776i
\(494\) 8.53319 + 15.3884i 0.383926 + 0.692355i
\(495\) 0.171521 0.00770931
\(496\) 6.55917 + 19.7790i 0.294515 + 0.888101i
\(497\) 24.3805i 1.09362i
\(498\) 34.2427 27.0789i 1.53445 1.21343i
\(499\) 10.5089 + 25.3708i 0.470444 + 1.13575i 0.963968 + 0.266019i \(0.0857084\pi\)
−0.493524 + 0.869732i \(0.664292\pi\)
\(500\) −0.0830394 0.514215i −0.00371363 0.0229964i
\(501\) 17.8963 43.2055i 0.799547 1.93028i
\(502\) 23.5022 + 13.1152i 1.04895 + 0.585359i
\(503\) 21.8546 21.8546i 0.974450 0.974450i −0.0252319 0.999682i \(-0.508032\pi\)
0.999682 + 0.0252319i \(0.00803242\pi\)
\(504\) 4.13748 11.3738i 0.184298 0.506631i
\(505\) 0.434883 0.0193520
\(506\) −2.64390 + 4.73782i −0.117536 + 0.210622i
\(507\) 1.83743 + 27.3370i 0.0816030 + 1.21408i
\(508\) −5.27232 + 22.2572i −0.233921 + 0.987506i
\(509\) 16.2627 + 39.2615i 0.720829 + 1.74024i 0.670976 + 0.741479i \(0.265875\pi\)
0.0498536 + 0.998757i \(0.484125\pi\)
\(510\) −0.0206778 0.00241567i −0.000915629 0.000106967i
\(511\) 30.3337 1.34189
\(512\) 5.84491 21.8595i 0.258311 0.966062i
\(513\) −8.01269 + 8.01269i −0.353769 + 0.353769i
\(514\) 31.4257 24.8512i 1.38613 1.09614i
\(515\) −0.0516450 0.124682i −0.00227575 0.00549415i
\(516\) 19.7081 + 4.66846i 0.867599 + 0.205518i
\(517\) −7.85039 18.9525i −0.345260 0.833530i
\(518\) −9.03363 + 2.56251i −0.396915 + 0.112590i
\(519\) 2.58285 2.58285i 0.113374 0.113374i
\(520\) −0.231595 0.130057i −0.0101561 0.00570337i
\(521\) 2.55737 + 2.55737i 0.112040 + 0.112040i 0.760904 0.648864i \(-0.224756\pi\)
−0.648864 + 0.760904i \(0.724756\pi\)
\(522\) 6.33197 + 3.53350i 0.277143 + 0.154657i
\(523\) 21.3029 8.82393i 0.931509 0.385844i 0.135258 0.990810i \(-0.456814\pi\)
0.796251 + 0.604967i \(0.206814\pi\)
\(524\) 10.9430 15.1580i 0.478047 0.662180i
\(525\) −28.8876 + 11.9656i −1.26076 + 0.522223i
\(526\) 2.48708 21.2891i 0.108442 0.928248i
\(527\) −0.987863 0.987863i −0.0430320 0.0430320i
\(528\) −12.1190 36.5446i −0.527413 1.59040i
\(529\) 22.2943i 0.969319i
\(530\) 0.00997565 + 0.0126148i 0.000433315 + 0.000547950i
\(531\) 5.90212 2.44474i 0.256130 0.106093i
\(532\) 3.26515 + 20.2192i 0.141562 + 0.876612i
\(533\) 21.1759 34.1168i 0.917229 1.47776i
\(534\) −0.257090 0.906321i −0.0111254 0.0392204i
\(535\) 0.0371889i 0.00160782i
\(536\) −28.6421 + 31.2684i −1.23715 + 1.35059i
\(537\) 15.9897 + 15.9897i 0.690008 + 0.690008i
\(538\) 4.88658 + 17.2267i 0.210675 + 0.742696i
\(539\) 7.62165 + 3.15699i 0.328288 + 0.135981i
\(540\) 0.0394282 0.166447i 0.00169672 0.00716276i
\(541\) −9.37221 + 3.88210i −0.402943 + 0.166904i −0.574945 0.818192i \(-0.694976\pi\)
0.172002 + 0.985097i \(0.444976\pi\)
\(542\) 2.35898 20.1926i 0.101327 0.867347i
\(543\) 23.7806 1.02052
\(544\) 0.307199 + 1.48557i 0.0131711 + 0.0636935i
\(545\) 0.0279179i 0.00119587i
\(546\) −8.78543 + 30.6573i −0.375982 + 1.31201i
\(547\) 0.663968 + 0.275024i 0.0283892 + 0.0117592i 0.396833 0.917891i \(-0.370109\pi\)
−0.368444 + 0.929650i \(0.620109\pi\)
\(548\) 31.2146 + 7.39415i 1.33342 + 0.315862i
\(549\) −14.2493 + 5.90224i −0.608144 + 0.251901i
\(550\) −15.7346 + 28.1961i −0.670925 + 1.20229i
\(551\) −12.2707 −0.522748
\(552\) −3.69261 3.38246i −0.157168 0.143967i
\(553\) 5.36026i 0.227941i
\(554\) 6.82442 + 3.80831i 0.289942 + 0.161799i
\(555\) 0.113473 0.0470019i 0.00481665 0.00199512i
\(556\) −4.66543 28.8903i −0.197858 1.22522i
\(557\) 2.47229 + 5.96863i 0.104754 + 0.252899i 0.967562 0.252633i \(-0.0812964\pi\)
−0.862808 + 0.505532i \(0.831296\pi\)
\(558\) −8.33282 + 6.58953i −0.352756 + 0.278957i
\(559\) −17.0952 2.80782i −0.723048 0.118758i
\(560\) −0.202207 0.233873i −0.00854479 0.00988292i
\(561\) 1.82522 + 1.82522i 0.0770610 + 0.0770610i
\(562\) −4.30927 5.44930i −0.181775 0.229865i
\(563\) −17.8075 7.37612i −0.750497 0.310866i −0.0255529 0.999673i \(-0.508135\pi\)
−0.724945 + 0.688807i \(0.758135\pi\)
\(564\) 18.6916 3.01846i 0.787057 0.127100i
\(565\) 0.231477 + 0.0958810i 0.00973832 + 0.00403374i
\(566\) −24.4727 13.6568i −1.02866 0.574037i
\(567\) −33.3749 −1.40162
\(568\) −21.0586 + 9.82431i −0.883601 + 0.412219i
\(569\) −3.04769 3.04769i −0.127766 0.127766i 0.640332 0.768098i \(-0.278797\pi\)
−0.768098 + 0.640332i \(0.778797\pi\)
\(570\) −0.0731071 0.257725i −0.00306212 0.0107949i
\(571\) 29.9921 12.4231i 1.25513 0.519893i 0.346720 0.937969i \(-0.387296\pi\)
0.908412 + 0.418076i \(0.137296\pi\)
\(572\) 12.5212 + 30.4601i 0.523537 + 1.27360i
\(573\) 14.9642 36.1268i 0.625139 1.50922i
\(574\) 36.6607 28.9910i 1.53019 1.21006i
\(575\) 4.19963i 0.175137i
\(576\) 11.4914 1.00943i 0.478807 0.0420594i
\(577\) −11.2926 + 11.2926i −0.470118 + 0.470118i −0.901953 0.431834i \(-0.857866\pi\)
0.431834 + 0.901953i \(0.357866\pi\)
\(578\) 14.8495 + 18.7780i 0.617657 + 0.781061i
\(579\) 16.2970 + 39.3444i 0.677279 + 1.63510i
\(580\) 0.157639 0.0972588i 0.00654561 0.00403845i
\(581\) −40.1563 + 16.6333i −1.66596 + 0.690065i
\(582\) 31.3270 + 17.4817i 1.29854 + 0.724641i
\(583\) 1.99405i 0.0825850i
\(584\) 12.2232 + 26.2007i 0.505799 + 1.08419i
\(585\) 0.0219469 0.133622i 0.000907393 0.00552458i
\(586\) −8.67819 30.5933i −0.358493 1.26380i
\(587\) −16.2027 + 39.1168i −0.668758 + 1.61452i 0.114934 + 0.993373i \(0.463334\pi\)
−0.783691 + 0.621151i \(0.786666\pi\)
\(588\) −4.45679 + 6.17344i −0.183795 + 0.254588i
\(589\) 6.87963 16.6089i 0.283470 0.684358i
\(590\) 0.0189356 0.162087i 0.000779567 0.00667301i
\(591\) −30.2289 + 30.2289i −1.24345 + 1.24345i
\(592\) −5.85352 6.77020i −0.240578 0.278254i
\(593\) 2.04495 2.04495i 0.0839759 0.0839759i −0.663871 0.747847i \(-0.731088\pi\)
0.747847 + 0.663871i \(0.231088\pi\)
\(594\) −16.6357 + 13.1554i −0.682571 + 0.539772i
\(595\) 0.0191496 + 0.00793202i 0.000785057 + 0.000325181i
\(596\) −19.3375 + 26.7859i −0.792096 + 1.09719i
\(597\) 9.46664 3.92121i 0.387444 0.160484i
\(598\) 3.35265 + 2.66592i 0.137100 + 0.109018i
\(599\) −14.5412 + 14.5412i −0.594136 + 0.594136i −0.938746 0.344610i \(-0.888011\pi\)
0.344610 + 0.938746i \(0.388011\pi\)
\(600\) −21.9757 20.1300i −0.897156 0.821803i
\(601\) −3.65663 + 3.65663i −0.149157 + 0.149157i −0.777741 0.628584i \(-0.783635\pi\)
0.628584 + 0.777741i \(0.283635\pi\)
\(602\) −17.6086 9.82634i −0.717674 0.400492i
\(603\) −19.9722 8.27277i −0.813332 0.336893i
\(604\) −0.0989104 + 0.417553i −0.00402461 + 0.0169900i
\(605\) −0.237204 + 0.0982531i −0.00964372 + 0.00399456i
\(606\) 39.0360 30.8694i 1.58573 1.25398i
\(607\) 26.1390i 1.06095i 0.847701 + 0.530475i \(0.177986\pi\)
−0.847701 + 0.530475i \(0.822014\pi\)
\(608\) −16.1486 + 10.9677i −0.654911 + 0.444800i
\(609\) −15.7258 15.7258i −0.637240 0.637240i
\(610\) −0.0457156 + 0.391320i −0.00185097 + 0.0158441i
\(611\) −15.7692 + 3.69070i −0.637955 + 0.149310i
\(612\) −0.658189 + 0.406083i −0.0266057 + 0.0164149i
\(613\) 15.4920 37.4009i 0.625715 1.51061i −0.219185 0.975683i \(-0.570340\pi\)
0.844899 0.534925i \(-0.179660\pi\)
\(614\) −11.8181 6.59498i −0.476939 0.266152i
\(615\) −0.432283 + 0.432283i −0.0174313 + 0.0174313i
\(616\) 1.67879 + 38.2964i 0.0676403 + 1.54301i
\(617\) −6.84111 −0.275413 −0.137706 0.990473i \(-0.543973\pi\)
−0.137706 + 0.990473i \(0.543973\pi\)
\(618\) −13.4861 7.52580i −0.542491 0.302732i
\(619\) −23.9314 9.91270i −0.961883 0.398425i −0.154199 0.988040i \(-0.549280\pi\)
−0.807685 + 0.589615i \(0.799280\pi\)
\(620\) 0.0432627 + 0.267901i 0.00173747 + 0.0107592i
\(621\) −1.05562 + 2.54849i −0.0423606 + 0.102267i
\(622\) −2.62440 + 22.4646i −0.105229 + 0.900749i
\(623\) 0.937958i 0.0375785i
\(624\) −30.0203 + 4.76516i −1.20177 + 0.190759i
\(625\) 24.9898i 0.999593i
\(626\) 3.29335 + 0.384743i 0.131629 + 0.0153774i
\(627\) −12.7111 + 30.6874i −0.507634 + 1.22554i
\(628\) −30.3903 21.9396i −1.21270 0.875487i
\(629\) 0.554347 + 0.229618i 0.0221033 + 0.00915547i
\(630\) 0.0768061 0.137635i 0.00306003 0.00548351i
\(631\) −23.9231 −0.952362 −0.476181 0.879347i \(-0.657979\pi\)
−0.476181 + 0.879347i \(0.657979\pi\)
\(632\) −4.62992 + 2.15995i −0.184168 + 0.0859184i
\(633\) −11.8401 + 11.8401i −0.470604 + 0.470604i
\(634\) −12.1131 + 21.7065i −0.481072 + 0.862073i
\(635\) −0.113991 + 0.275199i −0.00452360 + 0.0109209i
\(636\) 1.79087 + 0.424224i 0.0710128 + 0.0168216i
\(637\) 3.43464 5.53361i 0.136085 0.219249i
\(638\) −22.8111 2.66488i −0.903099 0.105504i
\(639\) −8.37686 8.37686i −0.331384 0.331384i
\(640\) 0.120527 0.268896i 0.00476423 0.0106291i
\(641\) 20.1156i 0.794520i 0.917706 + 0.397260i \(0.130039\pi\)
−0.917706 + 0.397260i \(0.869961\pi\)
\(642\) 2.63979 + 3.33816i 0.104184 + 0.131747i
\(643\) 36.6469 15.1797i 1.44521 0.598627i 0.484158 0.874981i \(-0.339126\pi\)
0.961056 + 0.276353i \(0.0891260\pi\)
\(644\) 2.61789 + 4.24313i 0.103159 + 0.167203i
\(645\) 0.243679 + 0.100935i 0.00959487 + 0.00397432i
\(646\) 0.637749 1.14283i 0.0250919 0.0449642i
\(647\) 34.1698 34.1698i 1.34335 1.34335i 0.450652 0.892699i \(-0.351191\pi\)
0.892699 0.450652i \(-0.148809\pi\)
\(648\) −13.4487 28.8275i −0.528313 1.13245i
\(649\) −14.3073 + 14.3073i −0.561612 + 0.561612i
\(650\) 19.9525 + 15.8657i 0.782603 + 0.622303i
\(651\) 30.1023 12.4688i 1.17980 0.488690i
\(652\) 23.9238 3.86340i 0.936929 0.151303i
\(653\) −2.00059 0.828670i −0.0782890 0.0324284i 0.343195 0.939264i \(-0.388491\pi\)
−0.421484 + 0.906836i \(0.638491\pi\)
\(654\) −1.98170 2.50597i −0.0774907 0.0979912i
\(655\) 0.172156 0.172156i 0.00672669 0.00672669i
\(656\) 39.8136 + 19.9835i 1.55446 + 0.780224i
\(657\) −10.4223 + 10.4223i −0.406613 + 0.406613i
\(658\) −18.7236 2.18736i −0.729920 0.0852722i
\(659\) 0.844373 2.03850i 0.0328921 0.0794085i −0.906580 0.422034i \(-0.861316\pi\)
0.939472 + 0.342626i \(0.111316\pi\)
\(660\) −0.0799343 0.494987i −0.00311144 0.0192673i
\(661\) −16.8604 + 40.7045i −0.655792 + 1.58322i 0.148449 + 0.988920i \(0.452572\pi\)
−0.804242 + 0.594303i \(0.797428\pi\)
\(662\) −14.4726 + 4.10535i −0.562494 + 0.159559i
\(663\) 1.65547 1.18837i 0.0642930 0.0461526i
\(664\) −30.5482 27.9824i −1.18550 1.08593i
\(665\) 0.266722i 0.0103430i
\(666\) 2.22340 3.98429i 0.0861550 0.154388i
\(667\) −2.75967 + 1.14309i −0.106855 + 0.0442608i
\(668\) −43.1828 10.2292i −1.67079 0.395779i
\(669\) −11.8215 28.5397i −0.457047 1.10341i
\(670\) −0.433148 + 0.342530i −0.0167339 + 0.0132331i
\(671\) 34.5417 34.5417i 1.33347 1.33347i
\(672\) −34.7516 6.63964i −1.34057 0.256130i
\(673\) 26.9636i 1.03937i 0.854357 + 0.519686i \(0.173951\pi\)
−0.854357 + 0.519686i \(0.826049\pi\)
\(674\) 5.90446 + 7.46651i 0.227431 + 0.287599i
\(675\) −6.28230 + 15.1668i −0.241806 + 0.583770i
\(676\) 25.3317 5.85697i 0.974297 0.225268i
\(677\) 13.7619 5.70038i 0.528914 0.219083i −0.102214 0.994762i \(-0.532593\pi\)
0.631127 + 0.775679i \(0.282593\pi\)
\(678\) 27.5839 7.82452i 1.05935 0.300499i
\(679\) −25.2562 25.2562i −0.969245 0.969245i
\(680\) 0.000865191 0.0197367i 3.31786e−5 0.000756868i
\(681\) 45.1769 1.73118
\(682\) 16.3962 29.3818i 0.627844 1.12509i
\(683\) 33.6598 + 13.9423i 1.28795 + 0.533488i 0.918375 0.395711i \(-0.129502\pi\)
0.369579 + 0.929199i \(0.379502\pi\)
\(684\) −8.06893 5.82520i −0.308523 0.222732i
\(685\) 0.385952 + 0.159867i 0.0147465 + 0.00610819i
\(686\) −17.0967 + 13.5199i −0.652755 + 0.516193i
\(687\) −22.6102 22.6102i −0.862634 0.862634i
\(688\) 1.39197 19.1690i 0.0530682 0.730812i
\(689\) −1.55344 0.255147i −0.0591813 0.00972033i
\(690\) −0.0404507 0.0511521i −0.00153993 0.00194733i
\(691\) −17.6631 42.6425i −0.671936 1.62220i −0.778316 0.627873i \(-0.783926\pi\)
0.106380 0.994326i \(-0.466074\pi\)
\(692\) −2.81039 2.02890i −0.106835 0.0771273i
\(693\) −18.0550 + 7.47861i −0.685851 + 0.284089i
\(694\) 9.92187 17.7798i 0.376629 0.674913i
\(695\) 0.381107i 0.0144562i
\(696\) 7.24630 19.9199i 0.274670 0.755062i
\(697\) −2.98657 −0.113125
\(698\) −38.8020 21.6531i −1.46868 0.819582i
\(699\) 27.2014 11.2672i 1.02885 0.426165i
\(700\) 15.5798 + 25.2521i 0.588860 + 0.954438i
\(701\) 15.8848 + 6.57970i 0.599960 + 0.248512i 0.661929 0.749566i \(-0.269738\pi\)
−0.0619688 + 0.998078i \(0.519738\pi\)
\(702\) 8.11994 + 14.6431i 0.306468 + 0.552670i
\(703\) 7.72112i 0.291208i
\(704\) −32.4020 + 16.8819i −1.22120 + 0.636259i
\(705\) 0.246570 0.00928637
\(706\) −10.6662 1.24607i −0.401427 0.0468963i
\(707\) −45.7774 + 18.9616i −1.72164 + 0.713125i
\(708\) −9.80575 15.8934i −0.368523 0.597310i
\(709\) 29.1944 + 12.0927i 1.09642 + 0.454151i 0.856240 0.516578i \(-0.172794\pi\)
0.240178 + 0.970729i \(0.422794\pi\)
\(710\) −0.291132 + 0.0825833i −0.0109260 + 0.00309930i
\(711\) −1.84172 1.84172i −0.0690700 0.0690700i
\(712\) −0.810160 + 0.377957i −0.0303620 + 0.0141645i
\(713\) 4.37623i 0.163891i
\(714\) 2.28195 0.647306i 0.0853999 0.0242248i
\(715\) 0.0977364 + 0.417598i 0.00365513 + 0.0156173i
\(716\) 12.5604 17.3984i 0.469404 0.650207i
\(717\) 31.5626 13.0736i 1.17873 0.488244i
\(718\) 13.5478 10.7135i 0.505601 0.399825i
\(719\) 4.47179i 0.166770i −0.996517 0.0833849i \(-0.973427\pi\)
0.996517 0.0833849i \(-0.0265731\pi\)
\(720\) 0.149832 + 0.0108801i 0.00558390 + 0.000405477i
\(721\) 10.8727 + 10.8727i 0.404920 + 0.404920i
\(722\) −9.96136 1.16373i −0.370724 0.0433094i
\(723\) 9.22169 3.81975i 0.342958 0.142058i
\(724\) −3.59761 22.2779i −0.133704 0.827953i
\(725\) −16.4236 + 6.80288i −0.609957 + 0.252653i
\(726\) −14.3176 + 25.6569i −0.531377 + 0.952218i
\(727\) 23.0378 + 23.0378i 0.854423 + 0.854423i 0.990674 0.136251i \(-0.0435053\pi\)
−0.136251 + 0.990674i \(0.543505\pi\)
\(728\) 30.0492 + 3.59236i 1.11370 + 0.133142i
\(729\) −3.21395 + 3.21395i −0.119035 + 0.119035i
\(730\) 0.102748 + 0.362220i 0.00380289 + 0.0134064i
\(731\) 0.493098 + 1.19044i 0.0182379 + 0.0440302i
\(732\) 23.6737 + 38.3708i 0.875003 + 1.41823i
\(733\) 7.97874 + 19.2624i 0.294701 + 0.711472i 0.999997 + 0.00255843i \(0.000814376\pi\)
−0.705295 + 0.708914i \(0.749186\pi\)
\(734\) 26.9657 + 34.0996i 0.995323 + 1.25864i
\(735\) −0.0701145 + 0.0701145i −0.00258621 + 0.00258621i
\(736\) −2.61010 + 3.97099i −0.0962096 + 0.146373i
\(737\) 68.4688 2.52208
\(738\) −2.63521 + 22.5571i −0.0970036 + 0.830340i
\(739\) −13.8276 33.3829i −0.508658 1.22801i −0.944656 0.328062i \(-0.893605\pi\)
0.435998 0.899948i \(-0.356395\pi\)
\(740\) −0.0611986 0.0991921i −0.00224970 0.00364637i
\(741\) 22.2802 + 13.8291i 0.818485 + 0.508023i
\(742\) −1.60010 0.892921i −0.0587415 0.0327802i
\(743\) 5.31469 0.194977 0.0974885 0.995237i \(-0.468919\pi\)
0.0974885 + 0.995237i \(0.468919\pi\)
\(744\) 22.8998 + 20.9764i 0.839549 + 0.769034i
\(745\) −0.304219 + 0.304219i −0.0111457 + 0.0111457i
\(746\) −24.3117 + 43.5661i −0.890113 + 1.59507i
\(747\) 8.08222 19.5122i 0.295713 0.713915i
\(748\) 1.43377 1.98602i 0.0524237 0.0726161i
\(749\) −1.62150 3.91464i −0.0592483 0.143038i
\(750\) −0.481499 0.608882i −0.0175819 0.0222332i
\(751\) 43.4197i 1.58441i −0.610256 0.792204i \(-0.708933\pi\)
0.610256 0.792204i \(-0.291067\pi\)
\(752\) −5.65546 17.0539i −0.206233 0.621890i
\(753\) 40.1097 1.46168
\(754\) −4.99482 + 17.4297i −0.181901 + 0.634753i
\(755\) −0.00213851 + 0.00516282i −7.78283e−5 + 0.000187894i
\(756\) 3.10702 + 19.2400i 0.113001 + 0.699752i
\(757\) −6.55370 15.8220i −0.238198 0.575061i 0.758898 0.651209i \(-0.225738\pi\)
−0.997097 + 0.0761479i \(0.975738\pi\)
\(758\) 12.2727 + 43.2651i 0.445765 + 1.57146i
\(759\) 8.08574i 0.293494i
\(760\) −0.230380 + 0.107477i −0.00835677 + 0.00389861i
\(761\) −8.40562 −0.304703 −0.152352 0.988326i \(-0.548685\pi\)
−0.152352 + 0.988326i \(0.548685\pi\)
\(762\) 9.30242 + 32.7939i 0.336991 + 1.18800i
\(763\) 1.21727 + 2.93874i 0.0440680 + 0.106390i
\(764\) −36.1079 8.55327i −1.30634 0.309446i
\(765\) −0.00930492 + 0.00385423i −0.000336420 + 0.000139350i
\(766\) −2.70275 + 23.1352i −0.0976542 + 0.835909i
\(767\) 9.31529 + 12.9767i 0.336355 + 0.468560i
\(768\) −8.26840 32.6921i −0.298360 1.17967i