Properties

Label 416.2.bd.a.83.5
Level $416$
Weight $2$
Character 416.83
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 83.5
Character \(\chi\) \(=\) 416.83
Dual form 416.2.bd.a.411.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.35152 + 0.416401i) q^{2} +(-2.25523 - 0.934148i) q^{3} +(1.65322 - 1.12555i) q^{4} +(0.261748 - 0.631915i) q^{5} +(3.43698 + 0.323439i) q^{6} -4.76655i q^{7} +(-1.76568 + 2.20961i) q^{8} +(2.09213 + 2.09213i) q^{9} +O(q^{10})\) \(q+(-1.35152 + 0.416401i) q^{2} +(-2.25523 - 0.934148i) q^{3} +(1.65322 - 1.12555i) q^{4} +(0.261748 - 0.631915i) q^{5} +(3.43698 + 0.323439i) q^{6} -4.76655i q^{7} +(-1.76568 + 2.20961i) q^{8} +(2.09213 + 2.09213i) q^{9} +(-0.0906275 + 0.963039i) q^{10} +(1.63978 + 0.679219i) q^{11} +(-4.77983 + 0.994027i) q^{12} +(3.28393 - 1.48856i) q^{13} +(1.98480 + 6.44209i) q^{14} +(-1.18061 + 1.18061i) q^{15} +(1.46627 - 3.72157i) q^{16} -2.74788 q^{17} +(-3.69872 - 1.95639i) q^{18} +(0.414355 + 1.00034i) q^{19} +(-0.278526 - 1.33931i) q^{20} +(-4.45266 + 10.7497i) q^{21} +(-2.49902 - 0.235173i) q^{22} +(-5.08603 - 5.08603i) q^{23} +(6.04613 - 3.33378i) q^{24} +(3.20473 + 3.20473i) q^{25} +(-3.81846 + 3.37925i) q^{26} +(0.0385689 + 0.0931135i) q^{27} +(-5.36499 - 7.88015i) q^{28} +(0.203632 - 0.491611i) q^{29} +(1.10401 - 2.08722i) q^{30} +(-5.24354 - 5.24354i) q^{31} +(-0.432033 + 5.64033i) q^{32} +(-3.06360 - 3.06360i) q^{33} +(3.71382 - 1.14422i) q^{34} +(-3.01206 - 1.24763i) q^{35} +(5.81354 + 1.10395i) q^{36} +(-4.94751 - 2.04933i) q^{37} +(-0.976552 - 1.17944i) q^{38} +(-8.79656 + 0.289375i) q^{39} +(0.934122 + 1.69412i) q^{40} -2.97903 q^{41} +(1.54169 - 16.3825i) q^{42} +(-2.44549 - 5.90392i) q^{43} +(3.47541 - 0.722757i) q^{44} +(1.86966 - 0.774437i) q^{45} +(8.99170 + 4.75604i) q^{46} +(-2.46927 - 2.46927i) q^{47} +(-6.78328 + 7.02328i) q^{48} -15.7200 q^{49} +(-5.66571 - 2.99681i) q^{50} +(6.19712 + 2.56693i) q^{51} +(3.75361 - 6.15715i) q^{52} +(1.10766 + 2.67412i) q^{53} +(-0.0908993 - 0.109785i) q^{54} +(0.858418 - 0.858418i) q^{55} +(10.5322 + 8.41621i) q^{56} -2.64307i q^{57} +(-0.0705055 + 0.749215i) q^{58} +(-3.75224 + 9.05870i) q^{59} +(-0.622969 + 3.28063i) q^{60} +(-4.09073 + 9.87589i) q^{61} +(9.27017 + 4.90334i) q^{62} +(9.97222 - 9.97222i) q^{63} +(-1.76474 - 7.80293i) q^{64} +(-0.0810828 - 2.46479i) q^{65} +(5.41620 + 2.86483i) q^{66} +(7.51832 - 3.11419i) q^{67} +(-4.54286 + 3.09288i) q^{68} +(6.71907 + 16.2213i) q^{69} +(4.59037 + 0.431980i) q^{70} +12.2690 q^{71} +(-8.31681 + 0.928752i) q^{72} -1.56983i q^{73} +(7.54001 + 0.709558i) q^{74} +(-4.23372 - 10.2211i) q^{75} +(1.81095 + 1.18741i) q^{76} +(3.23753 - 7.81609i) q^{77} +(11.7682 - 4.05400i) q^{78} -4.45846 q^{79} +(-1.96792 - 1.90067i) q^{80} -9.12216i q^{81} +(4.02623 - 1.24047i) q^{82} +(5.77758 + 13.9483i) q^{83} +(4.73808 + 22.7833i) q^{84} +(-0.719253 + 1.73643i) q^{85} +(5.76353 + 6.96098i) q^{86} +(-0.918475 + 0.918475i) q^{87} +(-4.39614 + 2.42399i) q^{88} +4.19672 q^{89} +(-2.20440 + 1.82520i) q^{90} +(-7.09530 - 15.6530i) q^{91} +(-14.1329 - 2.68374i) q^{92} +(6.92716 + 16.7236i) q^{93} +(4.36548 + 2.30906i) q^{94} +0.740587 q^{95} +(6.24324 - 12.3167i) q^{96} +(-0.245304 + 0.245304i) q^{97} +(21.2459 - 6.54582i) q^{98} +(2.00961 + 4.85164i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24} - 4 q^{26} - 8 q^{27} + 56 q^{28} - 8 q^{29} - 16 q^{30} - 44 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} - 28 q^{39} - 8 q^{40} - 8 q^{41} - 48 q^{42} - 32 q^{43} + 12 q^{44} - 36 q^{45} - 48 q^{46} - 8 q^{47} - 8 q^{48} - 168 q^{49} + 76 q^{50} - 4 q^{52} - 8 q^{53} - 28 q^{54} - 40 q^{55} + 56 q^{56} + 32 q^{58} + 52 q^{59} - 36 q^{60} - 8 q^{61} + 72 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} + 20 q^{70} + 56 q^{71} + 8 q^{72} - 8 q^{74} - 68 q^{76} + 56 q^{77} - 48 q^{78} - 16 q^{79} + 28 q^{80} - 88 q^{82} + 36 q^{83} + 100 q^{84} - 24 q^{85} + 96 q^{86} - 8 q^{87} + 64 q^{88} - 8 q^{89} - 64 q^{90} + 72 q^{91} - 8 q^{92} - 40 q^{93} - 56 q^{94} + 36 q^{96} - 8 q^{97} + 52 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.35152 + 0.416401i −0.955670 + 0.294440i
\(3\) −2.25523 0.934148i −1.30206 0.539331i −0.379502 0.925191i \(-0.623905\pi\)
−0.922557 + 0.385860i \(0.873905\pi\)
\(4\) 1.65322 1.12555i 0.826610 0.562775i
\(5\) 0.261748 0.631915i 0.117057 0.282601i −0.854482 0.519482i \(-0.826125\pi\)
0.971539 + 0.236881i \(0.0761250\pi\)
\(6\) 3.43698 + 0.323439i 1.40314 + 0.132043i
\(7\) 4.76655i 1.80159i −0.434249 0.900793i \(-0.642986\pi\)
0.434249 0.900793i \(-0.357014\pi\)
\(8\) −1.76568 + 2.20961i −0.624263 + 0.781215i
\(9\) 2.09213 + 2.09213i 0.697375 + 0.697375i
\(10\) −0.0906275 + 0.963039i −0.0286589 + 0.304540i
\(11\) 1.63978 + 0.679219i 0.494412 + 0.204792i 0.615936 0.787796i \(-0.288778\pi\)
−0.121524 + 0.992589i \(0.538778\pi\)
\(12\) −4.77983 + 0.994027i −1.37982 + 0.286951i
\(13\) 3.28393 1.48856i 0.910798 0.412852i
\(14\) 1.98480 + 6.44209i 0.530459 + 1.72172i
\(15\) −1.18061 + 1.18061i −0.304831 + 0.304831i
\(16\) 1.46627 3.72157i 0.366568 0.930391i
\(17\) −2.74788 −0.666460 −0.333230 0.942846i \(-0.608138\pi\)
−0.333230 + 0.942846i \(0.608138\pi\)
\(18\) −3.69872 1.95639i −0.871796 0.461125i
\(19\) 0.414355 + 1.00034i 0.0950595 + 0.229494i 0.964256 0.264973i \(-0.0853632\pi\)
−0.869196 + 0.494467i \(0.835363\pi\)
\(20\) −0.278526 1.33931i −0.0622803 0.299478i
\(21\) −4.45266 + 10.7497i −0.971651 + 2.34577i
\(22\) −2.49902 0.235173i −0.532794 0.0501390i
\(23\) −5.08603 5.08603i −1.06051 1.06051i −0.998047 0.0624623i \(-0.980105\pi\)
−0.0624623 0.998047i \(-0.519895\pi\)
\(24\) 6.04613 3.33378i 1.23416 0.680504i
\(25\) 3.20473 + 3.20473i 0.640946 + 0.640946i
\(26\) −3.81846 + 3.37925i −0.748862 + 0.662726i
\(27\) 0.0385689 + 0.0931135i 0.00742259 + 0.0179197i
\(28\) −5.36499 7.88015i −1.01389 1.48921i
\(29\) 0.203632 0.491611i 0.0378135 0.0912899i −0.903845 0.427861i \(-0.859267\pi\)
0.941658 + 0.336571i \(0.109267\pi\)
\(30\) 1.10401 2.08722i 0.201563 0.381072i
\(31\) −5.24354 5.24354i −0.941767 0.941767i 0.0566280 0.998395i \(-0.481965\pi\)
−0.998395 + 0.0566280i \(0.981965\pi\)
\(32\) −0.432033 + 5.64033i −0.0763734 + 0.997079i
\(33\) −3.06360 3.06360i −0.533303 0.533303i
\(34\) 3.71382 1.14422i 0.636915 0.196233i
\(35\) −3.01206 1.24763i −0.509130 0.210889i
\(36\) 5.81354 + 1.10395i 0.968923 + 0.183992i
\(37\) −4.94751 2.04933i −0.813366 0.336907i −0.0630697 0.998009i \(-0.520089\pi\)
−0.750296 + 0.661102i \(0.770089\pi\)
\(38\) −0.976552 1.17944i −0.158418 0.191331i
\(39\) −8.79656 + 0.289375i −1.40858 + 0.0463371i
\(40\) 0.934122 + 1.69412i 0.147698 + 0.267864i
\(41\) −2.97903 −0.465247 −0.232623 0.972567i \(-0.574731\pi\)
−0.232623 + 0.972567i \(0.574731\pi\)
\(42\) 1.54169 16.3825i 0.237888 2.52788i
\(43\) −2.44549 5.90392i −0.372933 0.900340i −0.993250 0.115989i \(-0.962996\pi\)
0.620317 0.784351i \(-0.287004\pi\)
\(44\) 3.47541 0.722757i 0.523938 0.108960i
\(45\) 1.86966 0.774437i 0.278712 0.115446i
\(46\) 8.99170 + 4.75604i 1.32575 + 0.701240i
\(47\) −2.46927 2.46927i −0.360180 0.360180i 0.503699 0.863879i \(-0.331972\pi\)
−0.863879 + 0.503699i \(0.831972\pi\)
\(48\) −6.78328 + 7.02328i −0.979082 + 1.01372i
\(49\) −15.7200 −2.24571
\(50\) −5.66571 2.99681i −0.801253 0.423812i
\(51\) 6.19712 + 2.56693i 0.867770 + 0.359442i
\(52\) 3.75361 6.15715i 0.520531 0.853842i
\(53\) 1.10766 + 2.67412i 0.152148 + 0.367318i 0.981515 0.191387i \(-0.0612984\pi\)
−0.829367 + 0.558705i \(0.811298\pi\)
\(54\) −0.0908993 0.109785i −0.0123698 0.0149398i
\(55\) 0.858418 0.858418i 0.115749 0.115749i
\(56\) 10.5322 + 8.41621i 1.40743 + 1.12466i
\(57\) 2.64307i 0.350083i
\(58\) −0.0705055 + 0.749215i −0.00925782 + 0.0983768i
\(59\) −3.75224 + 9.05870i −0.488499 + 1.17934i 0.466976 + 0.884270i \(0.345344\pi\)
−0.955475 + 0.295072i \(0.904656\pi\)
\(60\) −0.622969 + 3.28063i −0.0804250 + 0.423528i
\(61\) −4.09073 + 9.87589i −0.523764 + 1.26448i 0.411785 + 0.911281i \(0.364905\pi\)
−0.935549 + 0.353197i \(0.885095\pi\)
\(62\) 9.27017 + 4.90334i 1.17731 + 0.622725i
\(63\) 9.97222 9.97222i 1.25638 1.25638i
\(64\) −1.76474 7.80293i −0.220592 0.975366i
\(65\) −0.0810828 2.46479i −0.0100571 0.305720i
\(66\) 5.41620 + 2.86483i 0.666688 + 0.352636i
\(67\) 7.51832 3.11419i 0.918509 0.380459i 0.127201 0.991877i \(-0.459401\pi\)
0.791308 + 0.611418i \(0.209401\pi\)
\(68\) −4.54286 + 3.09288i −0.550902 + 0.375067i
\(69\) 6.71907 + 16.2213i 0.808881 + 1.95281i
\(70\) 4.59037 + 0.431980i 0.548655 + 0.0516315i
\(71\) 12.2690 1.45606 0.728028 0.685547i \(-0.240437\pi\)
0.728028 + 0.685547i \(0.240437\pi\)
\(72\) −8.31681 + 0.928752i −0.980145 + 0.109454i
\(73\) 1.56983i 0.183734i −0.995771 0.0918672i \(-0.970716\pi\)
0.995771 0.0918672i \(-0.0292835\pi\)
\(74\) 7.54001 + 0.709558i 0.876508 + 0.0824844i
\(75\) −4.23372 10.2211i −0.488868 1.18023i
\(76\) 1.81095 + 1.18741i 0.207731 + 0.136205i
\(77\) 3.23753 7.81609i 0.368951 0.890726i
\(78\) 11.7682 4.05400i 1.33249 0.459025i
\(79\) −4.45846 −0.501616 −0.250808 0.968037i \(-0.580696\pi\)
−0.250808 + 0.968037i \(0.580696\pi\)
\(80\) −1.96792 1.90067i −0.220020 0.212502i
\(81\) 9.12216i 1.01357i
\(82\) 4.02623 1.24047i 0.444622 0.136987i
\(83\) 5.77758 + 13.9483i 0.634172 + 1.53103i 0.834331 + 0.551263i \(0.185854\pi\)
−0.200159 + 0.979763i \(0.564146\pi\)
\(84\) 4.73808 + 22.7833i 0.516967 + 2.48586i
\(85\) −0.719253 + 1.73643i −0.0780139 + 0.188342i
\(86\) 5.76353 + 6.96098i 0.621497 + 0.750621i
\(87\) −0.918475 + 0.918475i −0.0984709 + 0.0984709i
\(88\) −4.39614 + 2.42399i −0.468630 + 0.258398i
\(89\) 4.19672 0.444851 0.222426 0.974950i \(-0.428603\pi\)
0.222426 + 0.974950i \(0.428603\pi\)
\(90\) −2.20440 + 1.82520i −0.232365 + 0.192392i
\(91\) −7.09530 15.6530i −0.743789 1.64088i
\(92\) −14.1329 2.68374i −1.47346 0.279799i
\(93\) 6.92716 + 16.7236i 0.718313 + 1.73416i
\(94\) 4.36548 + 2.30906i 0.450264 + 0.238162i
\(95\) 0.740587 0.0759826
\(96\) 6.24324 12.3167i 0.637198 1.25707i
\(97\) −0.245304 + 0.245304i −0.0249069 + 0.0249069i −0.719451 0.694544i \(-0.755606\pi\)
0.694544 + 0.719451i \(0.255606\pi\)
\(98\) 21.2459 6.54582i 2.14616 0.661228i
\(99\) 2.00961 + 4.85164i 0.201974 + 0.487608i
\(100\) 8.90521 + 1.69104i 0.890521 + 0.169104i
\(101\) −2.01267 4.85902i −0.200268 0.483490i 0.791557 0.611096i \(-0.209271\pi\)
−0.991825 + 0.127605i \(0.959271\pi\)
\(102\) −9.44441 0.888773i −0.935136 0.0880017i
\(103\) −8.16643 + 8.16643i −0.804663 + 0.804663i −0.983820 0.179158i \(-0.942663\pi\)
0.179158 + 0.983820i \(0.442663\pi\)
\(104\) −2.50924 + 9.88452i −0.246051 + 0.969257i
\(105\) 5.62741 + 5.62741i 0.549179 + 0.549179i
\(106\) −2.61053 3.15290i −0.253557 0.306236i
\(107\) −0.342942 + 0.142051i −0.0331534 + 0.0137326i −0.399199 0.916865i \(-0.630712\pi\)
0.366045 + 0.930597i \(0.380712\pi\)
\(108\) 0.168567 + 0.110526i 0.0162204 + 0.0106354i
\(109\) 19.0153 7.87639i 1.82133 0.754421i 0.846178 0.532901i \(-0.178898\pi\)
0.975156 0.221520i \(-0.0711019\pi\)
\(110\) −0.802724 + 1.51762i −0.0765367 + 0.144699i
\(111\) 9.24342 + 9.24342i 0.877346 + 0.877346i
\(112\) −17.7390 6.98906i −1.67618 0.660404i
\(113\) 0.911688i 0.0857644i 0.999080 + 0.0428822i \(0.0136540\pi\)
−0.999080 + 0.0428822i \(0.986346\pi\)
\(114\) 1.10058 + 3.57217i 0.103079 + 0.334564i
\(115\) −4.54519 + 1.88268i −0.423842 + 0.175561i
\(116\) −0.216685 1.04194i −0.0201187 0.0967416i
\(117\) 9.98465 + 3.75614i 0.923081 + 0.347255i
\(118\) 1.29917 13.8055i 0.119599 1.27090i
\(119\) 13.0979i 1.20068i
\(120\) −0.524103 4.69325i −0.0478438 0.428433i
\(121\) −5.55064 5.55064i −0.504603 0.504603i
\(122\) 1.41637 15.0509i 0.128232 1.36264i
\(123\) 6.71842 + 2.78286i 0.605779 + 0.250922i
\(124\) −14.5706 2.76685i −1.30848 0.248471i
\(125\) 6.02353 2.49503i 0.538761 0.223162i
\(126\) −9.32522 + 17.6301i −0.830757 + 1.57062i
\(127\) −19.1141 −1.69611 −0.848053 0.529911i \(-0.822225\pi\)
−0.848053 + 0.529911i \(0.822225\pi\)
\(128\) 5.63423 + 9.81098i 0.498001 + 0.867177i
\(129\) 15.5992i 1.37343i
\(130\) 1.13593 + 3.29746i 0.0996275 + 0.289206i
\(131\) −12.2119 5.05835i −1.06696 0.441950i −0.221044 0.975264i \(-0.570946\pi\)
−0.845917 + 0.533314i \(0.820946\pi\)
\(132\) −8.51303 1.61657i −0.740964 0.140704i
\(133\) 4.76817 1.97504i 0.413453 0.171258i
\(134\) −8.86442 + 7.33953i −0.765769 + 0.634039i
\(135\) 0.0689352 0.00593300
\(136\) 4.85189 6.07175i 0.416046 0.520648i
\(137\) 13.5356i 1.15642i −0.815887 0.578212i \(-0.803751\pi\)
0.815887 0.578212i \(-0.196249\pi\)
\(138\) −15.8355 19.1256i −1.34801 1.62808i
\(139\) −1.05909 + 0.438691i −0.0898311 + 0.0372093i −0.427146 0.904182i \(-0.640481\pi\)
0.337315 + 0.941392i \(0.390481\pi\)
\(140\) −6.38387 + 1.32761i −0.539535 + 0.112203i
\(141\) 3.26211 + 7.87544i 0.274720 + 0.663232i
\(142\) −16.5818 + 5.10881i −1.39151 + 0.428722i
\(143\) 6.39598 0.210405i 0.534859 0.0175949i
\(144\) 10.8536 4.71836i 0.904467 0.393196i
\(145\) −0.257356 0.257356i −0.0213723 0.0213723i
\(146\) 0.653678 + 2.12165i 0.0540988 + 0.175589i
\(147\) 35.4523 + 14.6848i 2.92405 + 1.21118i
\(148\) −10.4859 + 2.18069i −0.861939 + 0.179251i
\(149\) −16.1546 6.69145i −1.32344 0.548185i −0.394660 0.918827i \(-0.629137\pi\)
−0.928776 + 0.370643i \(0.879137\pi\)
\(150\) 9.97804 + 12.0511i 0.814704 + 0.983969i
\(151\) 21.8089 1.77478 0.887392 0.461016i \(-0.152515\pi\)
0.887392 + 0.461016i \(0.152515\pi\)
\(152\) −2.94198 0.850721i −0.238626 0.0690026i
\(153\) −5.74892 5.74892i −0.464772 0.464772i
\(154\) −1.12096 + 11.9117i −0.0903296 + 0.959874i
\(155\) −4.68596 + 1.94099i −0.376385 + 0.155904i
\(156\) −14.2169 + 10.3794i −1.13827 + 0.831015i
\(157\) 4.63951 11.2008i 0.370273 0.893918i −0.623431 0.781879i \(-0.714262\pi\)
0.993704 0.112040i \(-0.0357384\pi\)
\(158\) 6.02571 1.85651i 0.479380 0.147696i
\(159\) 7.06547i 0.560329i
\(160\) 3.45113 + 1.74935i 0.272836 + 0.138299i
\(161\) −24.2428 + 24.2428i −1.91060 + 1.91060i
\(162\) 3.79848 + 12.3288i 0.298437 + 0.968641i
\(163\) 1.91518 + 4.62366i 0.150009 + 0.362153i 0.980965 0.194185i \(-0.0622061\pi\)
−0.830956 + 0.556338i \(0.812206\pi\)
\(164\) −4.92500 + 3.35305i −0.384578 + 0.261829i
\(165\) −2.73782 + 1.13404i −0.213139 + 0.0882851i
\(166\) −13.6166 16.4457i −1.05685 1.27643i
\(167\) 20.0885i 1.55450i −0.629195 0.777248i \(-0.716615\pi\)
0.629195 0.777248i \(-0.283385\pi\)
\(168\) −15.8906 28.8192i −1.22599 2.22345i
\(169\) 8.56837 9.77665i 0.659106 0.752050i
\(170\) 0.249034 2.64632i 0.0191000 0.202963i
\(171\) −1.22596 + 2.95972i −0.0937512 + 0.226335i
\(172\) −10.6881 7.00797i −0.814959 0.534353i
\(173\) 6.32717 15.2752i 0.481046 1.16135i −0.478066 0.878324i \(-0.658662\pi\)
0.959113 0.283025i \(-0.0913378\pi\)
\(174\) 0.858885 1.62379i 0.0651119 0.123099i
\(175\) 15.2755 15.2755i 1.15472 1.15472i
\(176\) 4.93212 5.10663i 0.371773 0.384926i
\(177\) 16.9243 16.9243i 1.27211 1.27211i
\(178\) −5.67195 + 1.74752i −0.425131 + 0.130982i
\(179\) −8.30332 3.43935i −0.620619 0.257069i 0.0501422 0.998742i \(-0.484033\pi\)
−0.670761 + 0.741673i \(0.734033\pi\)
\(180\) 2.21928 3.38471i 0.165416 0.252281i
\(181\) 7.67585 3.17944i 0.570542 0.236326i −0.0787128 0.996897i \(-0.525081\pi\)
0.649254 + 0.760571i \(0.275081\pi\)
\(182\) 16.1074 + 18.2009i 1.19396 + 1.34914i
\(183\) 18.4511 18.4511i 1.36394 1.36394i
\(184\) 20.2184 2.25783i 1.49052 0.166449i
\(185\) −2.59000 + 2.59000i −0.190421 + 0.190421i
\(186\) −16.3260 19.7179i −1.19708 1.44579i
\(187\) −4.50592 1.86641i −0.329506 0.136486i
\(188\) −6.86153 1.30296i −0.500429 0.0950279i
\(189\) 0.443830 0.183840i 0.0322839 0.0133724i
\(190\) −1.00092 + 0.308381i −0.0726143 + 0.0223723i
\(191\) 7.74904i 0.560701i 0.959898 + 0.280350i \(0.0904507\pi\)
−0.959898 + 0.280350i \(0.909549\pi\)
\(192\) −3.30919 + 19.2460i −0.238820 + 1.38896i
\(193\) 12.4434 + 12.4434i 0.895696 + 0.895696i 0.995052 0.0993562i \(-0.0316783\pi\)
−0.0993562 + 0.995052i \(0.531678\pi\)
\(194\) 0.229389 0.433679i 0.0164692 0.0311363i
\(195\) −2.11962 + 5.63443i −0.151789 + 0.403490i
\(196\) −25.9886 + 17.6936i −1.85633 + 1.26383i
\(197\) 2.23719 5.40104i 0.159393 0.384809i −0.823926 0.566697i \(-0.808221\pi\)
0.983319 + 0.181889i \(0.0582210\pi\)
\(198\) −4.73626 5.72028i −0.336592 0.406523i
\(199\) 3.20031 3.20031i 0.226864 0.226864i −0.584517 0.811381i \(-0.698716\pi\)
0.811381 + 0.584517i \(0.198716\pi\)
\(200\) −12.7397 + 1.42267i −0.900835 + 0.100598i
\(201\) −19.8647 −1.40115
\(202\) 4.74347 + 5.72899i 0.333749 + 0.403090i
\(203\) −2.34329 0.970622i −0.164467 0.0681243i
\(204\) 13.1344 2.73147i 0.919593 0.191241i
\(205\) −0.779756 + 1.88250i −0.0544605 + 0.131479i
\(206\) 7.63660 14.4376i 0.532067 1.00592i
\(207\) 21.2812i 1.47915i
\(208\) −0.724642 14.4040i −0.0502449 0.998737i
\(209\) 1.92178i 0.132932i
\(210\) −9.94883 5.26231i −0.686535 0.363134i
\(211\) −0.961172 + 2.32047i −0.0661698 + 0.159748i −0.953505 0.301377i \(-0.902554\pi\)
0.887335 + 0.461125i \(0.152554\pi\)
\(212\) 4.84105 + 3.17418i 0.332485 + 0.218004i
\(213\) −27.6694 11.4610i −1.89587 0.785296i
\(214\) 0.404343 0.334787i 0.0276403 0.0228855i
\(215\) −4.37088 −0.298092
\(216\) −0.273845 0.0791867i −0.0186328 0.00538797i
\(217\) −24.9936 + 24.9936i −1.69668 + 1.69668i
\(218\) −22.4198 + 18.5631i −1.51846 + 1.25725i
\(219\) −1.46645 + 3.54033i −0.0990936 + 0.239233i
\(220\) 0.452961 2.38535i 0.0305386 0.160820i
\(221\) −9.02385 + 4.09039i −0.607010 + 0.275149i
\(222\) −16.3416 8.64371i −1.09678 0.580128i
\(223\) 6.19432 + 6.19432i 0.414802 + 0.414802i 0.883408 0.468605i \(-0.155243\pi\)
−0.468605 + 0.883408i \(0.655243\pi\)
\(224\) 26.8849 + 2.05931i 1.79632 + 0.137593i
\(225\) 13.4094i 0.893959i
\(226\) −0.379628 1.23217i −0.0252525 0.0819624i
\(227\) −19.9580 + 8.26686i −1.32466 + 0.548690i −0.929126 0.369763i \(-0.879439\pi\)
−0.395530 + 0.918453i \(0.629439\pi\)
\(228\) −2.97491 4.36958i −0.197018 0.289382i
\(229\) 19.3325 + 8.00780i 1.27753 + 0.529170i 0.915245 0.402897i \(-0.131997\pi\)
0.362285 + 0.932068i \(0.381997\pi\)
\(230\) 5.35898 4.43711i 0.353360 0.292574i
\(231\) −14.6028 + 14.6028i −0.960792 + 0.960792i
\(232\) 0.726719 + 1.31798i 0.0477114 + 0.0865293i
\(233\) 8.75627 8.75627i 0.573642 0.573642i −0.359502 0.933144i \(-0.617053\pi\)
0.933144 + 0.359502i \(0.117053\pi\)
\(234\) −15.0585 0.918877i −0.984406 0.0600689i
\(235\) −2.20669 + 0.914043i −0.143949 + 0.0596256i
\(236\) 3.99275 + 19.1993i 0.259906 + 1.24977i
\(237\) 10.0549 + 4.16487i 0.653134 + 0.270537i
\(238\) −5.45399 17.7021i −0.353530 1.14746i
\(239\) 15.7148 15.7148i 1.01651 1.01651i 0.0166470 0.999861i \(-0.494701\pi\)
0.999861 0.0166470i \(-0.00529915\pi\)
\(240\) 2.66261 + 6.12479i 0.171871 + 0.395353i
\(241\) 3.57821 3.57821i 0.230493 0.230493i −0.582405 0.812898i \(-0.697888\pi\)
0.812898 + 0.582405i \(0.197888\pi\)
\(242\) 9.81309 + 5.19051i 0.630810 + 0.333659i
\(243\) −8.40574 + 20.2933i −0.539229 + 1.30181i
\(244\) 4.35294 + 20.9313i 0.278668 + 1.33999i
\(245\) −4.11467 + 9.93370i −0.262877 + 0.634641i
\(246\) −10.2389 0.963536i −0.652806 0.0614328i
\(247\) 2.84978 + 2.66826i 0.181327 + 0.169777i
\(248\) 20.8446 2.32775i 1.32363 0.147812i
\(249\) 36.8538i 2.33552i
\(250\) −7.10199 + 5.88028i −0.449169 + 0.371902i
\(251\) −9.20091 + 3.81114i −0.580756 + 0.240557i −0.653668 0.756781i \(-0.726771\pi\)
0.0729119 + 0.997338i \(0.476771\pi\)
\(252\) 5.26203 27.7105i 0.331477 1.74560i
\(253\) −4.88544 11.7945i −0.307145 0.741513i
\(254\) 25.8332 7.95916i 1.62092 0.499402i
\(255\) 3.24417 3.24417i 0.203158 0.203158i
\(256\) −11.7001 10.9137i −0.731256 0.682103i
\(257\) 15.4585i 0.964276i −0.876095 0.482138i \(-0.839860\pi\)
0.876095 0.482138i \(-0.160140\pi\)
\(258\) −6.49552 21.0826i −0.404393 1.31255i
\(259\) −9.76821 + 23.5826i −0.606967 + 1.46535i
\(260\) −2.90830 3.98358i −0.180365 0.247051i
\(261\) 1.45454 0.602488i 0.0900335 0.0372931i
\(262\) 18.6110 + 1.75140i 1.14979 + 0.108202i
\(263\) 22.1324 + 22.1324i 1.36474 + 1.36474i 0.867761 + 0.496981i \(0.165558\pi\)
0.496981 + 0.867761i \(0.334442\pi\)
\(264\) 12.1787 1.36001i 0.749546 0.0837030i
\(265\) 1.97974 0.121615
\(266\) −5.62188 + 4.65478i −0.344699 + 0.285403i
\(267\) −9.46458 3.92036i −0.579223 0.239922i
\(268\) 8.92426 13.6107i 0.545136 0.831405i
\(269\) 21.4569 + 8.88775i 1.30825 + 0.541896i 0.924374 0.381488i \(-0.124588\pi\)
0.383878 + 0.923384i \(0.374588\pi\)
\(270\) −0.0931674 + 0.0287047i −0.00566999 + 0.00174691i
\(271\) −15.0473 15.0473i −0.914058 0.914058i 0.0825308 0.996589i \(-0.473700\pi\)
−0.996589 + 0.0825308i \(0.973700\pi\)
\(272\) −4.02914 + 10.2264i −0.244303 + 0.620068i
\(273\) 1.37932 + 41.9292i 0.0834804 + 2.53767i
\(274\) 5.63624 + 18.2936i 0.340498 + 1.10516i
\(275\) 3.07834 + 7.43176i 0.185631 + 0.448152i
\(276\) 29.3660 + 19.2547i 1.76762 + 1.15900i
\(277\) −12.0846 + 5.00560i −0.726092 + 0.300757i −0.714945 0.699181i \(-0.753548\pi\)
−0.0111473 + 0.999938i \(0.503548\pi\)
\(278\) 1.24872 1.03391i 0.0748930 0.0620097i
\(279\) 21.9403i 1.31353i
\(280\) 8.07511 4.45254i 0.482580 0.266090i
\(281\) 18.2366 1.08791 0.543953 0.839116i \(-0.316927\pi\)
0.543953 + 0.839116i \(0.316927\pi\)
\(282\) −7.68816 9.28548i −0.457823 0.552942i
\(283\) 5.24389 2.17209i 0.311717 0.129117i −0.221340 0.975197i \(-0.571043\pi\)
0.533057 + 0.846079i \(0.321043\pi\)
\(284\) 20.2833 13.8093i 1.20359 0.819433i
\(285\) −1.67020 0.691818i −0.0989339 0.0409798i
\(286\) −8.55669 + 2.94766i −0.505968 + 0.174299i
\(287\) 14.1997i 0.838182i
\(288\) −12.7042 + 10.8964i −0.748599 + 0.642077i
\(289\) −9.44914 −0.555832
\(290\) 0.454986 + 0.240659i 0.0267177 + 0.0141320i
\(291\) 0.782369 0.324068i 0.0458633 0.0189972i
\(292\) −1.76692 2.59527i −0.103401 0.151877i
\(293\) −27.8685 11.5435i −1.62809 0.674379i −0.633077 0.774089i \(-0.718208\pi\)
−0.995017 + 0.0997101i \(0.968208\pi\)
\(294\) −54.0292 5.08446i −3.15105 0.296532i
\(295\) 4.74219 + 4.74219i 0.276101 + 0.276101i
\(296\) 13.2639 7.31361i 0.770951 0.425095i
\(297\) 0.178882i 0.0103798i
\(298\) 24.6196 + 2.31684i 1.42617 + 0.134211i
\(299\) −24.2730 9.13129i −1.40374 0.528076i
\(300\) −18.5036 12.1325i −1.06831 0.700468i
\(301\) −28.1413 + 11.6565i −1.62204 + 0.671871i
\(302\) −29.4752 + 9.08126i −1.69611 + 0.522568i
\(303\) 12.8384i 0.737544i
\(304\) 4.33039 0.0752764i 0.248365 0.00431740i
\(305\) 5.16999 + 5.16999i 0.296033 + 0.296033i
\(306\) 10.1636 + 5.37593i 0.581017 + 0.307321i
\(307\) 13.0113 5.38945i 0.742593 0.307592i 0.0208779 0.999782i \(-0.493354\pi\)
0.721716 + 0.692190i \(0.243354\pi\)
\(308\) −3.44505 16.5657i −0.196300 0.943920i
\(309\) 26.0459 10.7886i 1.48170 0.613739i
\(310\) 5.52494 4.57453i 0.313796 0.259816i
\(311\) −14.0691 14.0691i −0.797786 0.797786i 0.184960 0.982746i \(-0.440784\pi\)
−0.982746 + 0.184960i \(0.940784\pi\)
\(312\) 14.8925 19.9479i 0.843123 1.12933i
\(313\) 0.452439 0.452439i 0.0255734 0.0255734i −0.694204 0.719778i \(-0.744244\pi\)
0.719778 + 0.694204i \(0.244244\pi\)
\(314\) −1.60638 + 17.0700i −0.0906534 + 0.963314i
\(315\) −3.69139 8.91181i −0.207986 0.502123i
\(316\) −7.37082 + 5.01823i −0.414641 + 0.282297i
\(317\) −5.13543 12.3980i −0.288435 0.696343i 0.711546 0.702640i \(-0.247996\pi\)
−0.999980 + 0.00629718i \(0.997996\pi\)
\(318\) 2.94207 + 9.54914i 0.164983 + 0.535489i
\(319\) 0.667823 0.667823i 0.0373909 0.0373909i
\(320\) −5.39271 0.927234i −0.301462 0.0518340i
\(321\) 0.906111 0.0505742
\(322\) 22.6699 42.8594i 1.26335 2.38846i
\(323\) −1.13860 2.74882i −0.0633533 0.152948i
\(324\) −10.2675 15.0809i −0.570414 0.837830i
\(325\) 15.2945 + 5.75367i 0.848388 + 0.319156i
\(326\) −4.51371 5.45149i −0.249991 0.301930i
\(327\) −50.2416 −2.77837
\(328\) 5.26002 6.58250i 0.290436 0.363458i
\(329\) −11.7699 + 11.7699i −0.648895 + 0.648895i
\(330\) 3.22801 2.67272i 0.177696 0.147128i
\(331\) 6.46992 15.6198i 0.355619 0.858540i −0.640286 0.768136i \(-0.721184\pi\)
0.995905 0.0904037i \(-0.0288157\pi\)
\(332\) 25.2511 + 16.5567i 1.38584 + 0.908665i
\(333\) −6.06337 14.6383i −0.332270 0.802172i
\(334\) 8.36488 + 27.1500i 0.457706 + 1.48558i
\(335\) 5.56608i 0.304107i
\(336\) 33.4768 + 32.3328i 1.82631 + 1.76390i
\(337\) 19.8195 1.07964 0.539819 0.841781i \(-0.318493\pi\)
0.539819 + 0.841781i \(0.318493\pi\)
\(338\) −7.50933 + 16.7812i −0.408454 + 0.912779i
\(339\) 0.851652 2.05607i 0.0462554 0.111670i
\(340\) 0.765357 + 3.68026i 0.0415073 + 0.199590i
\(341\) −5.03674 12.1598i −0.272755 0.658488i
\(342\) 0.424475 4.51061i 0.0229530 0.243906i
\(343\) 41.5643i 2.24426i
\(344\) 17.3633 + 5.02088i 0.936167 + 0.270708i
\(345\) 12.0092 0.646552
\(346\) −2.19072 + 23.2793i −0.117774 + 1.25150i
\(347\) −7.82618 18.8941i −0.420131 1.01429i −0.982308 0.187270i \(-0.940036\pi\)
0.562177 0.827017i \(-0.309964\pi\)
\(348\) −0.484651 + 2.55223i −0.0259800 + 0.136814i
\(349\) −9.16581 + 3.79660i −0.490634 + 0.203227i −0.614263 0.789101i \(-0.710547\pi\)
0.123629 + 0.992329i \(0.460547\pi\)
\(350\) −14.2844 + 27.0059i −0.763535 + 1.44353i
\(351\) 0.265263 + 0.248366i 0.0141587 + 0.0132568i
\(352\) −4.53946 + 8.95546i −0.241954 + 0.477327i
\(353\) −2.03374 + 2.03374i −0.108245 + 0.108245i −0.759155 0.650910i \(-0.774388\pi\)
0.650910 + 0.759155i \(0.274388\pi\)
\(354\) −15.8263 + 29.9209i −0.841158 + 1.59028i
\(355\) 3.21137 7.75294i 0.170442 0.411483i
\(356\) 6.93810 4.72362i 0.367718 0.250351i
\(357\) 12.2354 29.5389i 0.647566 1.56336i
\(358\) 12.6543 + 1.19084i 0.668799 + 0.0629378i
\(359\) 5.77186i 0.304627i 0.988332 + 0.152314i \(0.0486724\pi\)
−0.988332 + 0.152314i \(0.951328\pi\)
\(360\) −1.59001 + 5.49862i −0.0838011 + 0.289803i
\(361\) 12.6060 12.6060i 0.663476 0.663476i
\(362\) −9.05016 + 7.49332i −0.475666 + 0.393840i
\(363\) 7.33286 + 17.7031i 0.384876 + 0.929172i
\(364\) −29.3483 17.8917i −1.53827 0.937782i
\(365\) −0.991998 0.410899i −0.0519235 0.0215074i
\(366\) −17.2540 + 32.6201i −0.901880 + 1.70508i
\(367\) 5.52161 0.288226 0.144113 0.989561i \(-0.453967\pi\)
0.144113 + 0.989561i \(0.453967\pi\)
\(368\) −26.3855 + 11.4705i −1.37544 + 0.597940i
\(369\) −6.23251 6.23251i −0.324452 0.324452i
\(370\) 2.42196 4.57892i 0.125912 0.238047i
\(371\) 12.7463 5.27969i 0.661755 0.274108i
\(372\) 30.2754 + 19.8510i 1.56971 + 1.02923i
\(373\) 5.04449 + 12.1785i 0.261194 + 0.630577i 0.999013 0.0444210i \(-0.0141443\pi\)
−0.737819 + 0.674998i \(0.764144\pi\)
\(374\) 6.86703 + 0.646227i 0.355086 + 0.0334156i
\(375\) −15.9152 −0.821856
\(376\) 9.81606 1.09618i 0.506225 0.0565309i
\(377\) −0.0630800 1.91753i −0.00324878 0.0987580i
\(378\) −0.523295 + 0.433276i −0.0269154 + 0.0222853i
\(379\) 25.0950 + 10.3947i 1.28904 + 0.533939i 0.918700 0.394957i \(-0.129240\pi\)
0.370342 + 0.928895i \(0.379240\pi\)
\(380\) 1.22435 0.833568i 0.0628080 0.0427612i
\(381\) 43.1069 + 17.8555i 2.20843 + 0.914762i
\(382\) −3.22671 10.4730i −0.165093 0.535845i
\(383\) 18.8204 + 18.8204i 0.961679 + 0.961679i 0.999292 0.0376130i \(-0.0119754\pi\)
−0.0376130 + 0.999292i \(0.511975\pi\)
\(384\) −3.54160 27.3893i −0.180731 1.39770i
\(385\) −4.09169 4.09169i −0.208532 0.208532i
\(386\) −21.9990 11.6361i −1.11972 0.592261i
\(387\) 7.23549 17.4680i 0.367801 0.887949i
\(388\) −0.129439 + 0.681644i −0.00657129 + 0.0346052i
\(389\) −1.64741 3.97720i −0.0835269 0.201652i 0.876598 0.481224i \(-0.159808\pi\)
−0.960125 + 0.279572i \(0.909808\pi\)
\(390\) 0.518531 8.49766i 0.0262568 0.430296i
\(391\) 13.9758 + 13.9758i 0.706787 + 0.706787i
\(392\) 27.7565 34.7350i 1.40191 1.75438i
\(393\) 22.8155 + 22.8155i 1.15089 + 1.15089i
\(394\) −0.774602 + 8.23119i −0.0390239 + 0.414682i
\(395\) −1.16699 + 2.81737i −0.0587178 + 0.141757i
\(396\) 8.78309 + 5.75890i 0.441367 + 0.289396i
\(397\) −6.18853 14.9404i −0.310593 0.749838i −0.999683 0.0251627i \(-0.991990\pi\)
0.689090 0.724676i \(-0.258010\pi\)
\(398\) −2.99267 + 5.65790i −0.150009 + 0.283605i
\(399\) −12.5983 −0.630705
\(400\) 16.6256 7.22760i 0.831281 0.361380i
\(401\) 10.4619 10.4619i 0.522441 0.522441i −0.395867 0.918308i \(-0.629556\pi\)
0.918308 + 0.395867i \(0.129556\pi\)
\(402\) 26.8475 8.27168i 1.33903 0.412554i
\(403\) −25.0247 9.41408i −1.24657 0.468949i
\(404\) −8.79646 5.76766i −0.437640 0.286952i
\(405\) −5.76443 2.38771i −0.286437 0.118646i
\(406\) 3.57117 + 0.336068i 0.177234 + 0.0166788i
\(407\) −6.72089 6.72089i −0.333142 0.333142i
\(408\) −16.6140 + 9.16083i −0.822518 + 0.453528i
\(409\) 6.51944i 0.322366i −0.986925 0.161183i \(-0.948469\pi\)
0.986925 0.161183i \(-0.0515309\pi\)
\(410\) 0.269982 2.86893i 0.0133335 0.141686i
\(411\) −12.6443 + 30.5259i −0.623695 + 1.50573i
\(412\) −4.30918 + 22.6926i −0.212298 + 1.11799i
\(413\) 43.1787 + 17.8852i 2.12469 + 0.880074i
\(414\) 8.86152 + 28.7620i 0.435520 + 1.41358i
\(415\) 10.3264 0.506904
\(416\) 6.97721 + 19.1656i 0.342086 + 0.939669i
\(417\) 2.79831 0.137034
\(418\) −0.800230 2.59732i −0.0391405 0.127039i
\(419\) 0.805740 + 0.333748i 0.0393630 + 0.0163047i 0.402278 0.915518i \(-0.368219\pi\)
−0.362915 + 0.931822i \(0.618219\pi\)
\(420\) 15.6373 + 2.96941i 0.763022 + 0.144893i
\(421\) −6.16886 + 14.8930i −0.300652 + 0.725838i 0.699287 + 0.714841i \(0.253501\pi\)
−0.999940 + 0.0109977i \(0.996499\pi\)
\(422\) 0.332796 3.53640i 0.0162002 0.172149i
\(423\) 10.3320i 0.502361i
\(424\) −7.86452 2.27415i −0.381935 0.110443i
\(425\) −8.80622 8.80622i −0.427164 0.427164i
\(426\) 42.1681 + 3.96826i 2.04305 + 0.192263i
\(427\) 47.0739 + 19.4986i 2.27807 + 0.943606i
\(428\) −0.407073 + 0.620840i −0.0196766 + 0.0300094i
\(429\) −14.6210 5.50028i −0.705907 0.265556i
\(430\) 5.90734 1.82004i 0.284877 0.0877702i
\(431\) 1.57232 1.57232i 0.0757361 0.0757361i −0.668224 0.743960i \(-0.732945\pi\)
0.743960 + 0.668224i \(0.232945\pi\)
\(432\) 0.403081 0.00700686i 0.0193932 0.000337118i
\(433\) −27.0551 −1.30019 −0.650094 0.759854i \(-0.725270\pi\)
−0.650094 + 0.759854i \(0.725270\pi\)
\(434\) 23.3720 44.1867i 1.12189 2.12103i
\(435\) 0.339990 + 0.820808i 0.0163013 + 0.0393547i
\(436\) 22.5712 34.4241i 1.08096 1.64861i
\(437\) 2.98034 7.19518i 0.142569 0.344192i
\(438\) 0.507743 5.39546i 0.0242609 0.257805i
\(439\) 7.17594 + 7.17594i 0.342489 + 0.342489i 0.857302 0.514813i \(-0.172139\pi\)
−0.514813 + 0.857302i \(0.672139\pi\)
\(440\) 0.381075 + 3.41246i 0.0181670 + 0.162683i
\(441\) −32.8882 32.8882i −1.56610 1.56610i
\(442\) 10.4927 9.28580i 0.499086 0.441680i
\(443\) 9.17145 + 22.1418i 0.435749 + 1.05199i 0.977402 + 0.211388i \(0.0677985\pi\)
−0.541653 + 0.840602i \(0.682201\pi\)
\(444\) 25.6853 + 4.87747i 1.21897 + 0.231474i
\(445\) 1.09848 2.65197i 0.0520730 0.125715i
\(446\) −10.9511 5.79243i −0.518549 0.274280i
\(447\) 30.1816 + 30.1816i 1.42754 + 1.42754i
\(448\) −37.1930 + 8.41172i −1.75721 + 0.397416i
\(449\) 1.55890 + 1.55890i 0.0735689 + 0.0735689i 0.742934 0.669365i \(-0.233434\pi\)
−0.669365 + 0.742934i \(0.733434\pi\)
\(450\) −5.58369 18.1231i −0.263218 0.854330i
\(451\) −4.88496 2.02342i −0.230024 0.0952789i
\(452\) 1.02615 + 1.50722i 0.0482661 + 0.0708937i
\(453\) −49.1842 20.3728i −2.31087 0.957196i
\(454\) 23.5313 19.4834i 1.10438 0.914399i
\(455\) −11.7486 + 0.386485i −0.550781 + 0.0181187i
\(456\) 5.84015 + 4.66682i 0.273490 + 0.218544i
\(457\) −29.0570 −1.35923 −0.679614 0.733570i \(-0.737853\pi\)
−0.679614 + 0.733570i \(0.737853\pi\)
\(458\) −29.4628 2.77262i −1.37671 0.129556i
\(459\) −0.105983 0.255865i −0.00494685 0.0119428i
\(460\) −5.39515 + 8.22833i −0.251550 + 0.383648i
\(461\) 8.58483 3.55595i 0.399835 0.165617i −0.173699 0.984799i \(-0.555572\pi\)
0.573534 + 0.819182i \(0.305572\pi\)
\(462\) 13.6553 25.8166i 0.635304 1.20110i
\(463\) 16.3647 + 16.3647i 0.760534 + 0.760534i 0.976419 0.215885i \(-0.0692635\pi\)
−0.215885 + 0.976419i \(0.569263\pi\)
\(464\) −1.53098 1.47867i −0.0710741 0.0686453i
\(465\) 12.3811 0.574160
\(466\) −8.18816 + 15.4804i −0.379309 + 0.717116i
\(467\) −31.2231 12.9330i −1.44483 0.598469i −0.483869 0.875141i \(-0.660769\pi\)
−0.960965 + 0.276671i \(0.910769\pi\)
\(468\) 20.7345 5.02851i 0.958454 0.232443i
\(469\) −14.8439 35.8364i −0.685430 1.65477i
\(470\) 2.60179 2.15422i 0.120011 0.0993667i
\(471\) −20.9264 + 20.9264i −0.964235 + 0.964235i
\(472\) −13.3909 24.2857i −0.616367 1.11784i
\(473\) 11.3422i 0.521513i
\(474\) −15.3236 1.44204i −0.703838 0.0662352i
\(475\) −1.87793 + 4.53372i −0.0861652 + 0.208021i
\(476\) 14.7424 + 21.6537i 0.675716 + 0.992498i
\(477\) −3.27723 + 7.91194i −0.150054 + 0.362263i
\(478\) −14.6953 + 27.7826i −0.672146 + 1.27075i
\(479\) 10.5792 10.5792i 0.483375 0.483375i −0.422832 0.906208i \(-0.638964\pi\)
0.906208 + 0.422832i \(0.138964\pi\)
\(480\) −6.14895 7.16907i −0.280660 0.327222i
\(481\) −19.2978 + 0.634829i −0.879905 + 0.0289457i
\(482\) −3.34606 + 6.32601i −0.152409 + 0.288142i
\(483\) 77.3195 32.0268i 3.51816 1.45727i
\(484\) −15.4239 2.92890i −0.701088 0.133132i
\(485\) 0.0908036 + 0.219219i 0.00412318 + 0.00995423i
\(486\) 2.91040 30.9269i 0.132018 1.40287i
\(487\) −22.1275 −1.00269 −0.501346 0.865247i \(-0.667162\pi\)
−0.501346 + 0.865247i \(0.667162\pi\)
\(488\) −14.5989 26.4766i −0.660862 1.19854i
\(489\) 12.2165i 0.552449i
\(490\) 1.42466 15.1390i 0.0643597 0.683909i
\(491\) −10.8369 26.1627i −0.489064 1.18071i −0.955192 0.295988i \(-0.904351\pi\)
0.466127 0.884718i \(-0.345649\pi\)
\(492\) 14.2393 2.96124i 0.641956 0.133503i
\(493\) −0.559557 + 1.35089i −0.0252012 + 0.0608410i
\(494\) −4.96260 2.41955i −0.223278 0.108861i
\(495\) 3.59184 0.161441
\(496\) −27.2026 + 11.8257i −1.22143 + 0.530990i
\(497\) 58.4806i 2.62321i
\(498\) 15.3460 + 49.8087i 0.687670 + 2.23198i
\(499\) −6.86454 16.5725i −0.307299 0.741886i −0.999791 0.0204597i \(-0.993487\pi\)
0.692492 0.721426i \(-0.256513\pi\)
\(500\) 7.14993 10.9046i 0.319755 0.487669i
\(501\) −18.7656 + 45.3043i −0.838387 + 2.02405i
\(502\) 10.8483 8.98211i 0.484182 0.400891i
\(503\) 14.1124 14.1124i 0.629242 0.629242i −0.318636 0.947877i \(-0.603225\pi\)
0.947877 + 0.318636i \(0.103225\pi\)
\(504\) 4.42694 + 39.6425i 0.197192 + 1.76582i
\(505\) −3.59730 −0.160078
\(506\) 11.5140 + 13.9062i 0.511860 + 0.618206i
\(507\) −28.4565 + 14.0445i −1.26380 + 0.623738i
\(508\) −31.5999 + 21.5139i −1.40202 + 0.954527i
\(509\) 8.34879 + 20.1558i 0.370054 + 0.893388i 0.993740 + 0.111714i \(0.0356341\pi\)
−0.623687 + 0.781674i \(0.714366\pi\)
\(510\) −3.03368 + 5.73544i −0.134334 + 0.253969i
\(511\) −7.48266 −0.331013
\(512\) 20.3574 + 9.87810i 0.899678 + 0.436555i
\(513\) −0.0771641 + 0.0771641i −0.00340688 + 0.00340688i
\(514\) 6.43695 + 20.8925i 0.283922 + 0.921530i
\(515\) 3.02295 + 7.29804i 0.133207 + 0.321590i
\(516\) 17.5577 + 25.7889i 0.772933 + 1.13529i
\(517\) −2.37188 5.72623i −0.104315 0.251839i
\(518\) 3.38214 35.9398i 0.148603 1.57911i
\(519\) −28.5385 + 28.5385i −1.25270 + 1.25270i
\(520\) 5.58939 + 4.17288i 0.245111 + 0.182993i
\(521\) −12.6505 12.6505i −0.554227 0.554227i 0.373431 0.927658i \(-0.378181\pi\)
−0.927658 + 0.373431i \(0.878181\pi\)
\(522\) −1.71496 + 1.41995i −0.0750617 + 0.0621494i
\(523\) −4.54778 + 1.88375i −0.198860 + 0.0823707i −0.479891 0.877328i \(-0.659324\pi\)
0.281031 + 0.959699i \(0.409324\pi\)
\(524\) −25.8824 + 5.38259i −1.13068 + 0.235139i
\(525\) −48.7194 + 20.1802i −2.12629 + 0.880738i
\(526\) −39.1284 20.6965i −1.70608 0.902408i
\(527\) 14.4086 + 14.4086i 0.627650 + 0.627650i
\(528\) −15.8934 + 6.90930i −0.691673 + 0.300689i
\(529\) 28.7353i 1.24936i
\(530\) −2.67566 + 0.824367i −0.116223 + 0.0358082i
\(531\) −26.8021 + 11.1018i −1.16311 + 0.481776i
\(532\) 5.65983 8.63200i 0.245385 0.374245i
\(533\) −9.78293 + 4.43447i −0.423746 + 0.192078i
\(534\) 14.4240 + 1.35738i 0.624188 + 0.0587397i
\(535\) 0.253892i 0.0109767i
\(536\) −6.39382 + 22.1112i −0.276171 + 0.955059i
\(537\) 15.5131 + 15.5131i 0.669438 + 0.669438i
\(538\) −32.7004 3.07729i −1.40981 0.132671i
\(539\) −25.7773 10.6773i −1.11031 0.459905i
\(540\) 0.113965 0.0775901i 0.00490427 0.00333894i
\(541\) 1.16123 0.480999i 0.0499253 0.0206797i −0.357581 0.933882i \(-0.616398\pi\)
0.407506 + 0.913202i \(0.366398\pi\)
\(542\) 26.6024 + 14.0710i 1.14267 + 0.604402i
\(543\) −20.2809 −0.870337
\(544\) 1.18718 15.4990i 0.0508998 0.664513i
\(545\) 14.0777i 0.603021i
\(546\) −19.3236 56.0939i −0.826973 2.40060i
\(547\) 35.9252 + 14.8807i 1.53605 + 0.636253i 0.980727 0.195381i \(-0.0625944\pi\)
0.555324 + 0.831634i \(0.312594\pi\)
\(548\) −15.2350 22.3773i −0.650807 0.955911i
\(549\) −29.2199 + 12.1033i −1.24708 + 0.516555i
\(550\) −7.25503 8.76236i −0.309356 0.373628i
\(551\) 0.576154 0.0245450
\(552\) −47.7064 13.7951i −2.03052 0.587158i
\(553\) 21.2515i 0.903705i
\(554\) 14.2482 11.7972i 0.605350 0.501216i
\(555\) 8.26050 3.42161i 0.350639 0.145239i
\(556\) −1.25715 + 1.91732i −0.0533149 + 0.0813123i
\(557\) −4.64040 11.2029i −0.196620 0.474683i 0.794563 0.607182i \(-0.207700\pi\)
−0.991183 + 0.132498i \(0.957700\pi\)
\(558\) 9.13596 + 29.6528i 0.386756 + 1.25530i
\(559\) −16.8192 15.7478i −0.711374 0.666062i
\(560\) −9.05965 + 9.38019i −0.382840 + 0.396385i
\(561\) 8.41840 + 8.41840i 0.355425 + 0.355425i
\(562\) −24.6472 + 7.59375i −1.03968 + 0.320323i
\(563\) 25.1805 + 10.4301i 1.06123 + 0.439577i 0.843889 0.536518i \(-0.180261\pi\)
0.217344 + 0.976095i \(0.430261\pi\)
\(564\) 14.2572 + 9.34816i 0.600336 + 0.393629i
\(565\) 0.576110 + 0.238632i 0.0242371 + 0.0100393i
\(566\) −6.18277 + 5.11919i −0.259881 + 0.215176i
\(567\) −43.4812 −1.82604
\(568\) −21.6631 + 27.1096i −0.908962 + 1.13749i
\(569\) −19.1179 19.1179i −0.801463 0.801463i 0.181861 0.983324i \(-0.441788\pi\)
−0.983324 + 0.181861i \(0.941788\pi\)
\(570\) 2.54538 + 0.239535i 0.106614 + 0.0100330i
\(571\) 34.0120 14.0882i 1.42336 0.589574i 0.467656 0.883911i \(-0.345099\pi\)
0.955702 + 0.294337i \(0.0950987\pi\)
\(572\) 10.3371 7.54684i 0.432217 0.315549i
\(573\) 7.23875 17.4759i 0.302403 0.730066i
\(574\) −5.91278 19.1912i −0.246795 0.801026i
\(575\) 32.5987i 1.35946i
\(576\) 12.6326 20.0168i 0.526360 0.834032i
\(577\) 1.11287 1.11287i 0.0463293 0.0463293i −0.683563 0.729892i \(-0.739570\pi\)
0.729892 + 0.683563i \(0.239570\pi\)
\(578\) 12.7707 3.93463i 0.531191 0.163659i
\(579\) −16.4388 39.6868i −0.683173 1.64933i
\(580\) −0.715134 0.135799i −0.0296943 0.00563875i
\(581\) 66.4853 27.5391i 2.75828 1.14252i
\(582\) −0.922446 + 0.763764i −0.0382366 + 0.0316590i
\(583\) 5.13730i 0.212765i
\(584\) 3.46870 + 2.77181i 0.143536 + 0.114698i
\(585\) 4.98702 5.32629i 0.206188 0.220215i
\(586\) 42.4716 + 3.99682i 1.75448 + 0.165107i
\(587\) −10.0510 + 24.2652i −0.414848 + 1.00153i 0.568969 + 0.822359i \(0.307342\pi\)
−0.983818 + 0.179173i \(0.942658\pi\)
\(588\) 75.1389 15.6261i 3.09867 0.644409i
\(589\) 3.07264 7.41801i 0.126606 0.305654i
\(590\) −8.38383 4.43452i −0.345157 0.182566i
\(591\) −10.0908 + 10.0908i −0.415078 + 0.415078i
\(592\) −14.8811 + 15.4076i −0.611609 + 0.633249i
\(593\) 0.990617 0.990617i 0.0406798 0.0406798i −0.686474 0.727154i \(-0.740843\pi\)
0.727154 + 0.686474i \(0.240843\pi\)
\(594\) −0.0744869 0.241763i −0.00305623 0.00991967i
\(595\) 8.27678 + 3.42835i 0.339315 + 0.140549i
\(596\) −34.2386 + 7.12037i −1.40247 + 0.291662i
\(597\) −10.2070 + 4.22788i −0.417745 + 0.173036i
\(598\) 36.6078 + 2.23382i 1.49700 + 0.0913477i
\(599\) −12.7082 + 12.7082i −0.519242 + 0.519242i −0.917342 0.398100i \(-0.869670\pi\)
0.398100 + 0.917342i \(0.369670\pi\)
\(600\) 30.0600 + 8.69235i 1.22720 + 0.354864i
\(601\) 10.1980 10.1980i 0.415983 0.415983i −0.467833 0.883817i \(-0.654965\pi\)
0.883817 + 0.467833i \(0.154965\pi\)
\(602\) 33.1798 27.4721i 1.35231 1.11968i
\(603\) 22.2445 + 9.21399i 0.905868 + 0.375223i
\(604\) 36.0549 24.5470i 1.46705 0.998805i
\(605\) −4.96040 + 2.05466i −0.201669 + 0.0835340i
\(606\) −5.34591 17.3513i −0.217163 0.704849i
\(607\) 27.2432i 1.10577i −0.833259 0.552883i \(-0.813528\pi\)
0.833259 0.552883i \(-0.186472\pi\)
\(608\) −5.82127 + 1.90492i −0.236084 + 0.0772546i
\(609\) 4.37796 + 4.37796i 0.177404 + 0.177404i
\(610\) −9.14013 4.83456i −0.370073 0.195745i
\(611\) −11.7846 4.43325i −0.476752 0.179350i
\(612\) −15.9749 3.03353i −0.645748 0.122623i
\(613\) −1.02866 + 2.48341i −0.0415473 + 0.100304i −0.943291 0.331967i \(-0.892288\pi\)
0.901744 + 0.432271i \(0.142288\pi\)
\(614\) −15.3409 + 12.7019i −0.619107 + 0.512606i
\(615\) 3.51706 3.51706i 0.141822 0.141822i
\(616\) 11.5541 + 20.9544i 0.465526 + 0.844277i
\(617\) 0.0166708 0.000671140 0.000335570 1.00000i \(-0.499893\pi\)
0.000335570 1.00000i \(0.499893\pi\)
\(618\) −30.7092 + 25.4265i −1.23530 + 1.02280i
\(619\) −0.177010 0.0733199i −0.00711463 0.00294698i 0.379123 0.925346i \(-0.376226\pi\)
−0.386238 + 0.922399i \(0.626226\pi\)
\(620\) −5.56224 + 8.48316i −0.223385 + 0.340692i
\(621\) 0.277415 0.669740i 0.0111323 0.0268757i
\(622\) 24.8731 + 13.1563i 0.997320 + 0.527520i
\(623\) 20.0039i 0.801438i
\(624\) −11.8212 + 33.1613i −0.473228 + 1.32751i
\(625\) 18.2014i 0.728057i
\(626\) −0.423085 + 0.799877i −0.0169099 + 0.0319695i
\(627\) 1.79522 4.33405i 0.0716943 0.173085i
\(628\) −4.93690 23.7393i −0.197004 0.947302i
\(629\) 13.5952 + 5.63131i 0.542075 + 0.224535i
\(630\) 8.69988 + 10.5074i 0.346612 + 0.418625i
\(631\) 3.70486 0.147488 0.0737440 0.997277i \(-0.476505\pi\)
0.0737440 + 0.997277i \(0.476505\pi\)
\(632\) 7.87222 9.85146i 0.313140 0.391870i
\(633\) 4.33534 4.33534i 0.172314 0.172314i
\(634\) 12.1032 + 14.6178i 0.480680 + 0.580547i
\(635\) −5.00309 + 12.0785i −0.198542 + 0.479322i
\(636\) −7.95255 11.6808i −0.315339 0.463173i
\(637\) −51.6233 + 23.4002i −2.04539 + 0.927148i
\(638\) −0.624495 + 1.18066i −0.0247240 + 0.0467428i
\(639\) 25.6682 + 25.6682i 1.01542 + 1.01542i
\(640\) 7.67446 0.992354i 0.303360 0.0392262i
\(641\) 22.9808i 0.907685i −0.891082 0.453843i \(-0.850053\pi\)
0.891082 0.453843i \(-0.149947\pi\)
\(642\) −1.22463 + 0.377306i −0.0483322 + 0.0148911i
\(643\) −10.5208 + 4.35785i −0.414899 + 0.171857i −0.580361 0.814359i \(-0.697089\pi\)
0.165462 + 0.986216i \(0.447089\pi\)
\(644\) −12.7922 + 67.3651i −0.504082 + 2.65456i
\(645\) 9.85736 + 4.08305i 0.388133 + 0.160770i
\(646\) 2.68345 + 3.24097i 0.105579 + 0.127514i
\(647\) −33.8281 + 33.8281i −1.32992 + 1.32992i −0.424483 + 0.905436i \(0.639544\pi\)
−0.905436 + 0.424483i \(0.860456\pi\)
\(648\) 20.1564 + 16.1068i 0.791818 + 0.632736i
\(649\) −12.3057 + 12.3057i −0.483040 + 0.483040i
\(650\) −23.0667 1.40754i −0.904751 0.0552083i
\(651\) 79.7141 33.0187i 3.12424 1.29410i
\(652\) 8.37038 + 5.48829i 0.327810 + 0.214938i
\(653\) 26.2471 + 10.8719i 1.02713 + 0.425451i 0.831675 0.555263i \(-0.187382\pi\)
0.195453 + 0.980713i \(0.437382\pi\)
\(654\) 67.9026 20.9207i 2.65520 0.818063i
\(655\) −6.39290 + 6.39290i −0.249791 + 0.249791i
\(656\) −4.36807 + 11.0867i −0.170545 + 0.432862i
\(657\) 3.28427 3.28427i 0.128132 0.128132i
\(658\) 11.0063 20.8083i 0.429069 0.811190i
\(659\) 10.8417 26.1741i 0.422332 1.01960i −0.559326 0.828948i \(-0.688940\pi\)
0.981658 0.190651i \(-0.0610599\pi\)
\(660\) −3.24980 + 4.95638i −0.126498 + 0.192927i
\(661\) −3.39761 + 8.20256i −0.132152 + 0.319043i −0.976079 0.217414i \(-0.930238\pi\)
0.843928 + 0.536457i \(0.180238\pi\)
\(662\) −2.24014 + 23.8045i −0.0870656 + 0.925189i
\(663\) 24.1719 0.795170i 0.938760 0.0308818i
\(664\) −41.0217 11.8621i −1.59195 0.460338i
\(665\) 3.53005i 0.136889i
\(666\) 14.2902 + 17.2591i 0.553732 + 0.668778i
\(667\) −3.53602 + 1.46467i −0.136915 + 0.0567122i
\(668\) −22.6106 33.2107i −0.874832 1.28496i
\(669\) −8.18323 19.7561i −0.316382 0.763813i
\(670\) 2.31772 + 7.52267i 0.0895414 + 0.290626i
\(671\) −13.4158 + 13.4158i −0.517910 + 0.517910i
\(672\) −58.7081 29.7587i −2.26471 1.14797i
\(673\) 32.8253i 1.26532i 0.774429 + 0.632661i \(0.218037\pi\)
−0.774429 + 0.632661i \(0.781963\pi\)
\(674\) −26.7865 + 8.25288i −1.03178 + 0.317889i
\(675\) −0.174801 + 0.422006i −0.00672809 + 0.0162430i
\(676\) 3.16129 25.8071i 0.121588 0.992581i
\(677\) −29.4862 + 12.2136i −1.13325 + 0.469406i −0.868883 0.495017i \(-0.835162\pi\)
−0.264363 + 0.964423i \(0.585162\pi\)
\(678\) −0.294876 + 3.13345i −0.0113246 + 0.120339i
\(679\) 1.16925 + 1.16925i 0.0448719 + 0.0448719i
\(680\) −2.56686 4.65525i −0.0984346 0.178521i
\(681\) 52.7323 2.02071
\(682\) 11.8706 + 14.3369i 0.454549 + 0.548987i
\(683\) −22.7829 9.43698i −0.871763 0.361096i −0.0984662 0.995140i \(-0.531394\pi\)
−0.773297 + 0.634044i \(0.781394\pi\)
\(684\) 1.30454 + 6.27294i 0.0498803 + 0.239852i
\(685\) −8.55335 3.54291i −0.326807 0.135368i
\(686\) −17.3074 56.1750i −0.660800 2.14477i
\(687\) −36.1189 36.1189i −1.37802 1.37802i
\(688\) −25.5576 + 0.444275i −0.974374 + 0.0169378i
\(689\) 7.61805 + 7.13280i 0.290224 + 0.271738i
\(690\) −16.2307 + 5.00064i −0.617891 + 0.190371i
\(691\) 3.99662 + 9.64869i 0.152039 + 0.367054i 0.981487 0.191530i \(-0.0613450\pi\)
−0.829448 + 0.558584i \(0.811345\pi\)
\(692\) −6.73274 32.3747i −0.255941 1.23070i
\(693\) 23.1256 9.57892i 0.878467 0.363873i
\(694\) 18.4448 + 22.2769i 0.700154 + 0.845620i
\(695\) 0.784084i 0.0297420i
\(696\) −0.407736 3.65121i −0.0154552 0.138399i
\(697\) 8.18604 0.310068
\(698\) 10.8069 8.94784i 0.409046 0.338681i
\(699\) −27.9271 + 11.5678i −1.05630 + 0.437534i
\(700\) 8.06041 42.4471i 0.304655 1.60435i
\(701\) 2.60641 + 1.07961i 0.0984428 + 0.0407763i 0.431361 0.902179i \(-0.358033\pi\)
−0.332919 + 0.942956i \(0.608033\pi\)
\(702\) −0.461928 0.225216i −0.0174343 0.00850024i
\(703\) 5.79834i 0.218689i
\(704\) 2.40611 13.9937i 0.0906838 0.527408i
\(705\) 5.83046 0.219588
\(706\) 1.90179 3.59550i 0.0715750 0.135318i
\(707\) −23.1608 + 9.59350i −0.871050 + 0.360801i
\(708\) 8.93045 47.0288i 0.335627 1.76745i
\(709\) 15.7303 + 6.51571i 0.590764 + 0.244703i 0.657979 0.753036i \(-0.271411\pi\)
−0.0672152 + 0.997739i \(0.521411\pi\)
\(710\) −1.11190 + 11.8155i −0.0417290 + 0.443427i
\(711\) −9.32766 9.32766i −0.349815 0.349815i
\(712\) −7.41006 + 9.27310i −0.277704 + 0.347524i
\(713\) 53.3375i 1.99751i
\(714\) −4.23638 + 45.0173i −0.158543 + 1.68473i
\(715\) 1.54118 4.09679i 0.0576367 0.153211i
\(716\) −17.5984 + 3.65981i −0.657682 + 0.136773i
\(717\) −50.1206 + 20.7606i −1.87179 + 0.775320i
\(718\) −2.40341 7.80080i −0.0896945 0.291123i
\(719\) 7.89011i 0.294252i 0.989118 + 0.147126i \(0.0470022\pi\)
−0.989118 + 0.147126i \(0.952998\pi\)
\(720\) −0.140693 8.09358i −0.00524332 0.301630i
\(721\) 38.9257 + 38.9257i 1.44967 + 1.44967i
\(722\) −11.7882 + 22.2865i −0.438710 + 0.829418i
\(723\) −11.4123 + 4.72713i −0.424428 + 0.175804i
\(724\) 9.11125 13.8959i 0.338617 0.516436i
\(725\) 2.22807 0.922895i 0.0827483 0.0342755i
\(726\) −17.2821 20.8727i −0.641399 0.774659i
\(727\) 25.8773 + 25.8773i 0.959735 + 0.959735i 0.999220 0.0394856i \(-0.0125719\pi\)
−0.0394856 + 0.999220i \(0.512572\pi\)
\(728\) 47.1151 + 11.9604i 1.74620 + 0.443282i
\(729\) 18.5628 18.5628i 0.687511 0.687511i
\(730\) 1.51180 + 0.142269i 0.0559544 + 0.00526563i
\(731\) 6.71991 + 16.2233i 0.248545 + 0.600040i
\(732\) 9.73607 51.2713i 0.359856 1.89504i
\(733\) −5.72801 13.8286i −0.211569 0.510773i 0.782096 0.623158i \(-0.214151\pi\)
−0.993665 + 0.112386i \(0.964151\pi\)
\(734\) −7.46257 + 2.29921i −0.275449 + 0.0848652i
\(735\) 18.5591 18.5591i 0.684563 0.684563i
\(736\) 30.8842 26.4895i 1.13841 0.976417i
\(737\) 14.4436 0.532037
\(738\) 11.0186 + 5.82815i 0.405600 + 0.214537i
\(739\) 4.11332 + 9.93043i 0.151311 + 0.365297i 0.981300 0.192482i \(-0.0616537\pi\)
−0.829990 + 0.557779i \(0.811654\pi\)
\(740\) −1.36666 + 7.19702i −0.0502396 + 0.264568i
\(741\) −3.93437 8.67966i −0.144533 0.318855i
\(742\) −15.0284 + 12.4432i −0.551711 + 0.456804i
\(743\) 34.0245 1.24824 0.624118 0.781330i \(-0.285458\pi\)
0.624118 + 0.781330i \(0.285458\pi\)
\(744\) −49.1839 14.2223i −1.80317 0.521415i
\(745\) −8.45686 + 8.45686i −0.309835 + 0.309835i
\(746\) −11.8889 14.3589i −0.435282 0.525718i
\(747\) −17.0942 + 41.2691i −0.625444 + 1.50996i
\(748\) −9.55003 + 1.98605i −0.349184 + 0.0726172i
\(749\) 0.677094 + 1.63465i 0.0247405 + 0.0597288i
\(750\) 21.5097 6.62710i 0.785424 0.241988i
\(751\) 28.2172i 1.02966i −0.857292 0.514830i \(-0.827855\pi\)
0.857292 0.514830i \(-0.172145\pi\)
\(752\) −12.8102 + 5.56892i −0.467139 + 0.203078i
\(753\) 24.3104 0.885919
\(754\) 0.883718 + 2.56532i 0.0321831 + 0.0934235i
\(755\) 5.70844 13.7814i 0.207751 0.501556i
\(756\) 0.526827 0.803482i 0.0191605 0.0292224i
\(757\) 8.60430 + 20.7726i 0.312729 + 0.754994i 0.999602 + 0.0282165i \(0.00898279\pi\)
−0.686873 + 0.726777i \(0.741017\pi\)
\(758\) −38.2447 3.59905i −1.38911 0.130723i
\(759\) 31.1630i 1.13115i
\(760\) −1.30764 + 1.63641i −0.0474331 + 0.0593587i
\(761\) −6.99161 −0.253446 −0.126723 0.991938i \(-0.540446\pi\)
−0.126723 + 0.991938i \(0.540446\pi\)
\(762\) −65.6949 6.18226i −2.37987 0.223960i
\(763\) −37.5432 90.6373i −1.35915 3.28129i
\(764\) 8.72194 + 12.8109i 0.315549 + 0.463481i
\(765\) −5.13760 + 2.12806i −0.185750 + 0.0769402i
\(766\) −33.2731 17.5994i −1.20221 0.635891i
\(767\) 1.16235 + 35.3335i 0.0419699 + 1.27582i
\(768\) 16.1915 + 35.5425i 0.584259 + 1.28253i
\(769\) 38.7943 38.7943i 1.39896 1.39896i