Properties

Label 416.2.bd.a.83.8
Level $416$
Weight $2$
Character 416.83
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 83.8
Character \(\chi\) \(=\) 416.83
Dual form 416.2.bd.a.411.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.28670 + 0.586855i) q^{2} +(-0.191326 - 0.0792497i) q^{3} +(1.31120 - 1.51021i) q^{4} +(-1.64053 + 3.96058i) q^{5} +(0.292687 - 0.0103097i) q^{6} +2.32652i q^{7} +(-0.800850 + 2.71268i) q^{8} +(-2.09100 - 2.09100i) q^{9} +O(q^{10})\) \(q+(-1.28670 + 0.586855i) q^{2} +(-0.191326 - 0.0792497i) q^{3} +(1.31120 - 1.51021i) q^{4} +(-1.64053 + 3.96058i) q^{5} +(0.292687 - 0.0103097i) q^{6} +2.32652i q^{7} +(-0.800850 + 2.71268i) q^{8} +(-2.09100 - 2.09100i) q^{9} +(-0.213419 - 6.05884i) q^{10} +(-4.50478 - 1.86594i) q^{11} +(-0.370551 + 0.185030i) q^{12} +(3.60278 - 0.141384i) q^{13} +(-1.36533 - 2.99353i) q^{14} +(0.627750 - 0.627750i) q^{15} +(-0.561496 - 3.96039i) q^{16} +2.56133 q^{17} +(3.91760 + 1.46338i) q^{18} +(-0.0705605 - 0.170348i) q^{19} +(3.83027 + 7.67067i) q^{20} +(0.184376 - 0.445123i) q^{21} +(6.89135 - 0.242743i) q^{22} +(-4.61958 - 4.61958i) q^{23} +(0.368202 - 0.455539i) q^{24} +(-9.45935 - 9.45935i) q^{25} +(-4.55273 + 2.29623i) q^{26} +(0.472100 + 1.13975i) q^{27} +(3.51354 + 3.05054i) q^{28} +(-1.87131 + 4.51774i) q^{29} +(-0.439329 + 1.17613i) q^{30} +(-0.159899 - 0.159899i) q^{31} +(3.04665 + 4.76633i) q^{32} +(0.714005 + 0.714005i) q^{33} +(-3.29566 + 1.50313i) q^{34} +(-9.21436 - 3.81671i) q^{35} +(-5.89957 + 0.416133i) q^{36} +(-2.92642 - 1.21216i) q^{37} +(0.190760 + 0.177778i) q^{38} +(-0.700509 - 0.258469i) q^{39} +(-9.42998 - 7.62206i) q^{40} -4.82421 q^{41} +(0.0239857 + 0.680942i) q^{42} +(-0.0449925 - 0.108621i) q^{43} +(-8.72465 + 4.35656i) q^{44} +(11.7119 - 4.85122i) q^{45} +(8.65504 + 3.23300i) q^{46} +(-4.53070 - 4.53070i) q^{47} +(-0.206432 + 0.802224i) q^{48} +1.58732 q^{49} +(17.7226 + 6.62009i) q^{50} +(-0.490048 - 0.202984i) q^{51} +(4.51045 - 5.62635i) q^{52} +(2.15934 + 5.21310i) q^{53} +(-1.27632 - 1.18946i) q^{54} +(14.7804 - 14.7804i) q^{55} +(-6.31110 - 1.86319i) q^{56} +0.0381839i q^{57} +(-0.243441 - 6.91117i) q^{58} +(3.31700 - 8.00795i) q^{59} +(-0.124930 - 1.77114i) q^{60} +(-5.92923 + 14.3144i) q^{61} +(0.299579 + 0.111904i) q^{62} +(4.86474 - 4.86474i) q^{63} +(-6.71728 - 4.34490i) q^{64} +(-5.35049 + 14.5010i) q^{65} +(-1.33773 - 0.499694i) q^{66} +(-12.9206 + 5.35190i) q^{67} +(3.35842 - 3.86815i) q^{68} +(0.517744 + 1.24994i) q^{69} +(14.0960 - 0.496522i) q^{70} -7.05985 q^{71} +(7.34678 - 3.99763i) q^{72} +1.70448i q^{73} +(4.47680 - 0.157692i) q^{74} +(1.06017 + 2.55947i) q^{75} +(-0.349781 - 0.116799i) q^{76} +(4.34115 - 10.4805i) q^{77} +(1.05303 - 0.0785249i) q^{78} +2.98362 q^{79} +(16.6066 + 4.27328i) q^{80} +8.61586i q^{81} +(6.20732 - 2.83111i) q^{82} +(3.02767 + 7.30944i) q^{83} +(-0.430477 - 0.862093i) q^{84} +(-4.20193 + 10.1443i) q^{85} +(0.121637 + 0.113359i) q^{86} +(0.716059 - 0.716059i) q^{87} +(8.66936 - 10.7257i) q^{88} -2.26277 q^{89} +(-12.2227 + 13.1153i) q^{90} +(0.328933 + 8.38193i) q^{91} +(-13.0338 + 0.919351i) q^{92} +(0.0179208 + 0.0432646i) q^{93} +(8.48853 + 3.17080i) q^{94} +0.790434 q^{95} +(-0.205173 - 1.15337i) q^{96} +(-4.35308 + 4.35308i) q^{97} +(-2.04240 + 0.931525i) q^{98} +(5.51780 + 13.3212i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24} - 4 q^{26} - 8 q^{27} + 56 q^{28} - 8 q^{29} - 16 q^{30} - 44 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} - 28 q^{39} - 8 q^{40} - 8 q^{41} - 48 q^{42} - 32 q^{43} + 12 q^{44} - 36 q^{45} - 48 q^{46} - 8 q^{47} - 8 q^{48} - 168 q^{49} + 76 q^{50} - 4 q^{52} - 8 q^{53} - 28 q^{54} - 40 q^{55} + 56 q^{56} + 32 q^{58} + 52 q^{59} - 36 q^{60} - 8 q^{61} + 72 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} + 20 q^{70} + 56 q^{71} + 8 q^{72} - 8 q^{74} - 68 q^{76} + 56 q^{77} - 48 q^{78} - 16 q^{79} + 28 q^{80} - 88 q^{82} + 36 q^{83} + 100 q^{84} - 24 q^{85} + 96 q^{86} - 8 q^{87} + 64 q^{88} - 8 q^{89} - 64 q^{90} + 72 q^{91} - 8 q^{92} - 40 q^{93} - 56 q^{94} + 36 q^{96} - 8 q^{97} + 52 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.28670 + 0.586855i −0.909836 + 0.414969i
\(3\) −0.191326 0.0792497i −0.110462 0.0457548i 0.326768 0.945105i \(-0.394040\pi\)
−0.437230 + 0.899350i \(0.644040\pi\)
\(4\) 1.31120 1.51021i 0.655601 0.755107i
\(5\) −1.64053 + 3.96058i −0.733666 + 1.77123i −0.103692 + 0.994609i \(0.533066\pi\)
−0.629974 + 0.776617i \(0.716934\pi\)
\(6\) 0.292687 0.0103097i 0.119489 0.00420892i
\(7\) 2.32652i 0.879341i 0.898159 + 0.439670i \(0.144905\pi\)
−0.898159 + 0.439670i \(0.855095\pi\)
\(8\) −0.800850 + 2.71268i −0.283143 + 0.959078i
\(9\) −2.09100 2.09100i −0.696998 0.696998i
\(10\) −0.213419 6.05884i −0.0674889 1.91597i
\(11\) −4.50478 1.86594i −1.35824 0.562603i −0.419668 0.907678i \(-0.637853\pi\)
−0.938575 + 0.345075i \(0.887853\pi\)
\(12\) −0.370551 + 0.185030i −0.106969 + 0.0534137i
\(13\) 3.60278 0.141384i 0.999231 0.0392129i
\(14\) −1.36533 2.99353i −0.364899 0.800056i
\(15\) 0.627750 0.627750i 0.162084 0.162084i
\(16\) −0.561496 3.96039i −0.140374 0.990099i
\(17\) 2.56133 0.621213 0.310607 0.950539i \(-0.399468\pi\)
0.310607 + 0.950539i \(0.399468\pi\)
\(18\) 3.91760 + 1.46338i 0.923387 + 0.344921i
\(19\) −0.0705605 0.170348i −0.0161877 0.0390805i 0.915579 0.402138i \(-0.131733\pi\)
−0.931767 + 0.363058i \(0.881733\pi\)
\(20\) 3.83027 + 7.67067i 0.856473 + 1.71521i
\(21\) 0.184376 0.445123i 0.0402341 0.0971337i
\(22\) 6.89135 0.242743i 1.46924 0.0517530i
\(23\) −4.61958 4.61958i −0.963249 0.963249i 0.0360995 0.999348i \(-0.488507\pi\)
−0.999348 + 0.0360995i \(0.988507\pi\)
\(24\) 0.368202 0.455539i 0.0751590 0.0929864i
\(25\) −9.45935 9.45935i −1.89187 1.89187i
\(26\) −4.55273 + 2.29623i −0.892864 + 0.450327i
\(27\) 0.472100 + 1.13975i 0.0908556 + 0.219345i
\(28\) 3.51354 + 3.05054i 0.663997 + 0.576497i
\(29\) −1.87131 + 4.51774i −0.347493 + 0.838923i 0.649421 + 0.760429i \(0.275011\pi\)
−0.996915 + 0.0784940i \(0.974989\pi\)
\(30\) −0.439329 + 1.17613i −0.0802101 + 0.214730i
\(31\) −0.159899 0.159899i −0.0287186 0.0287186i 0.692602 0.721320i \(-0.256464\pi\)
−0.721320 + 0.692602i \(0.756464\pi\)
\(32\) 3.04665 + 4.76633i 0.538578 + 0.842576i
\(33\) 0.714005 + 0.714005i 0.124292 + 0.124292i
\(34\) −3.29566 + 1.50313i −0.565202 + 0.257784i
\(35\) −9.21436 3.81671i −1.55751 0.645142i
\(36\) −5.89957 + 0.416133i −0.983262 + 0.0693555i
\(37\) −2.92642 1.21216i −0.481101 0.199278i 0.128934 0.991653i \(-0.458844\pi\)
−0.610035 + 0.792375i \(0.708844\pi\)
\(38\) 0.190760 + 0.177778i 0.0309453 + 0.0288395i
\(39\) −0.700509 0.258469i −0.112171 0.0413881i
\(40\) −9.42998 7.62206i −1.49101 1.20515i
\(41\) −4.82421 −0.753415 −0.376708 0.926332i \(-0.622944\pi\)
−0.376708 + 0.926332i \(0.622944\pi\)
\(42\) 0.0239857 + 0.680942i 0.00370108 + 0.105072i
\(43\) −0.0449925 0.108621i −0.00686129 0.0165646i 0.920412 0.390950i \(-0.127854\pi\)
−0.927273 + 0.374386i \(0.877854\pi\)
\(44\) −8.72465 + 4.35656i −1.31529 + 0.656776i
\(45\) 11.7119 4.85122i 1.74591 0.723178i
\(46\) 8.65504 + 3.23300i 1.27612 + 0.476679i
\(47\) −4.53070 4.53070i −0.660871 0.660871i 0.294715 0.955585i \(-0.404775\pi\)
−0.955585 + 0.294715i \(0.904775\pi\)
\(48\) −0.206432 + 0.802224i −0.0297958 + 0.115791i
\(49\) 1.58732 0.226760
\(50\) 17.7226 + 6.62009i 2.50636 + 0.936222i
\(51\) −0.490048 0.202984i −0.0686204 0.0284235i
\(52\) 4.51045 5.62635i 0.625487 0.780235i
\(53\) 2.15934 + 5.21310i 0.296608 + 0.716075i 0.999986 + 0.00525901i \(0.00167400\pi\)
−0.703378 + 0.710816i \(0.748326\pi\)
\(54\) −1.27632 1.18946i −0.173685 0.161865i
\(55\) 14.7804 14.7804i 1.99299 1.99299i
\(56\) −6.31110 1.86319i −0.843356 0.248979i
\(57\) 0.0381839i 0.00505758i
\(58\) −0.243441 6.91117i −0.0319654 0.907481i
\(59\) 3.31700 8.00795i 0.431837 1.04255i −0.546858 0.837225i \(-0.684176\pi\)
0.978695 0.205321i \(-0.0658237\pi\)
\(60\) −0.124930 1.77114i −0.0161284 0.228654i
\(61\) −5.92923 + 14.3144i −0.759160 + 1.83277i −0.262157 + 0.965025i \(0.584434\pi\)
−0.497002 + 0.867749i \(0.665566\pi\)
\(62\) 0.299579 + 0.111904i 0.0380466 + 0.0142119i
\(63\) 4.86474 4.86474i 0.612899 0.612899i
\(64\) −6.71728 4.34490i −0.839660 0.543112i
\(65\) −5.35049 + 14.5010i −0.663647 + 1.79863i
\(66\) −1.33773 0.499694i −0.164663 0.0615081i
\(67\) −12.9206 + 5.35190i −1.57851 + 0.653839i −0.988176 0.153322i \(-0.951003\pi\)
−0.590331 + 0.807161i \(0.701003\pi\)
\(68\) 3.35842 3.86815i 0.407268 0.469083i
\(69\) 0.517744 + 1.24994i 0.0623290 + 0.150476i
\(70\) 14.0960 0.496522i 1.68479 0.0593457i
\(71\) −7.05985 −0.837850 −0.418925 0.908021i \(-0.637593\pi\)
−0.418925 + 0.908021i \(0.637593\pi\)
\(72\) 7.34678 3.99763i 0.865826 0.471125i
\(73\) 1.70448i 0.199494i 0.995013 + 0.0997471i \(0.0318034\pi\)
−0.995013 + 0.0997471i \(0.968197\pi\)
\(74\) 4.47680 0.157692i 0.520417 0.0183313i
\(75\) 1.06017 + 2.55947i 0.122417 + 0.295542i
\(76\) −0.349781 0.116799i −0.0401227 0.0133978i
\(77\) 4.34115 10.4805i 0.494719 1.19436i
\(78\) 1.05303 0.0785249i 0.119232 0.00889120i
\(79\) 2.98362 0.335684 0.167842 0.985814i \(-0.446320\pi\)
0.167842 + 0.985814i \(0.446320\pi\)
\(80\) 16.6066 + 4.27328i 1.85668 + 0.477768i
\(81\) 8.61586i 0.957318i
\(82\) 6.20732 2.83111i 0.685484 0.312644i
\(83\) 3.02767 + 7.30944i 0.332330 + 0.802316i 0.998406 + 0.0564322i \(0.0179725\pi\)
−0.666076 + 0.745884i \(0.732028\pi\)
\(84\) −0.430477 0.862093i −0.0469688 0.0940621i
\(85\) −4.20193 + 10.1443i −0.455763 + 1.10031i
\(86\) 0.121637 + 0.113359i 0.0131165 + 0.0122239i
\(87\) 0.716059 0.716059i 0.0767696 0.0767696i
\(88\) 8.66936 10.7257i 0.924157 1.14336i
\(89\) −2.26277 −0.239853 −0.119927 0.992783i \(-0.538266\pi\)
−0.119927 + 0.992783i \(0.538266\pi\)
\(90\) −12.2227 + 13.1153i −1.28839 + 1.38247i
\(91\) 0.328933 + 8.38193i 0.0344815 + 0.878665i
\(92\) −13.0338 + 0.919351i −1.35886 + 0.0958490i
\(93\) 0.0179208 + 0.0432646i 0.00185830 + 0.00448633i
\(94\) 8.48853 + 3.17080i 0.875525 + 0.327043i
\(95\) 0.790434 0.0810968
\(96\) −0.205173 1.15337i −0.0209404 0.117715i
\(97\) −4.35308 + 4.35308i −0.441988 + 0.441988i −0.892680 0.450691i \(-0.851177\pi\)
0.450691 + 0.892680i \(0.351177\pi\)
\(98\) −2.04240 + 0.931525i −0.206314 + 0.0940983i
\(99\) 5.51780 + 13.3212i 0.554560 + 1.33883i
\(100\) −26.6888 + 1.88252i −2.66888 + 0.188252i
\(101\) 0.560805 + 1.35390i 0.0558022 + 0.134718i 0.949322 0.314306i \(-0.101772\pi\)
−0.893520 + 0.449024i \(0.851772\pi\)
\(102\) 0.749668 0.0264065i 0.0742282 0.00261464i
\(103\) 9.41156 9.41156i 0.927348 0.927348i −0.0701858 0.997534i \(-0.522359\pi\)
0.997534 + 0.0701858i \(0.0223592\pi\)
\(104\) −2.50175 + 9.88642i −0.245317 + 0.969443i
\(105\) 1.46047 + 1.46047i 0.142527 + 0.142527i
\(106\) −5.83776 5.44049i −0.567013 0.528427i
\(107\) 4.51391 1.86972i 0.436376 0.180753i −0.153670 0.988122i \(-0.549109\pi\)
0.590047 + 0.807369i \(0.299109\pi\)
\(108\) 2.34028 + 0.781470i 0.225194 + 0.0751970i
\(109\) −4.33327 + 1.79490i −0.415052 + 0.171920i −0.580430 0.814310i \(-0.697116\pi\)
0.165378 + 0.986230i \(0.447116\pi\)
\(110\) −10.3440 + 27.6920i −0.986265 + 2.64033i
\(111\) 0.463836 + 0.463836i 0.0440254 + 0.0440254i
\(112\) 9.21393 1.30633i 0.870634 0.123437i
\(113\) 8.95770i 0.842669i 0.906905 + 0.421335i \(0.138438\pi\)
−0.906905 + 0.421335i \(0.861562\pi\)
\(114\) −0.0224084 0.0491313i −0.00209874 0.00460156i
\(115\) 25.8748 10.7177i 2.41283 0.999428i
\(116\) 4.36909 + 8.74975i 0.405660 + 0.812393i
\(117\) −7.82903 7.23776i −0.723794 0.669131i
\(118\) 0.431513 + 12.2504i 0.0397240 + 1.12774i
\(119\) 5.95897i 0.546258i
\(120\) 1.20015 + 2.20562i 0.109558 + 0.201345i
\(121\) 9.03315 + 9.03315i 0.821195 + 0.821195i
\(122\) −0.771342 21.8980i −0.0698340 1.98255i
\(123\) 0.922996 + 0.382317i 0.0832237 + 0.0344724i
\(124\) −0.451140 + 0.0318217i −0.0405136 + 0.00285767i
\(125\) 33.1799 13.7436i 2.96770 1.22926i
\(126\) −3.40457 + 9.11436i −0.303303 + 0.811972i
\(127\) −7.24395 −0.642796 −0.321398 0.946944i \(-0.604153\pi\)
−0.321398 + 0.946944i \(0.604153\pi\)
\(128\) 11.1930 + 1.64852i 0.989327 + 0.145710i
\(129\) 0.0243477i 0.00214370i
\(130\) −1.62552 21.7985i −0.142568 1.91185i
\(131\) 18.2859 + 7.57426i 1.59765 + 0.661767i 0.991080 0.133267i \(-0.0425467\pi\)
0.606566 + 0.795033i \(0.292547\pi\)
\(132\) 2.01451 0.142096i 0.175340 0.0123678i
\(133\) 0.396318 0.164160i 0.0343651 0.0142345i
\(134\) 13.4842 14.4688i 1.16486 1.24992i
\(135\) −5.28856 −0.455167
\(136\) −2.05124 + 6.94806i −0.175892 + 0.595792i
\(137\) 3.00133i 0.256421i −0.991747 0.128210i \(-0.959077\pi\)
0.991747 0.128210i \(-0.0409233\pi\)
\(138\) −1.39972 1.30447i −0.119152 0.111043i
\(139\) −10.0852 + 4.17744i −0.855419 + 0.354326i −0.766914 0.641750i \(-0.778209\pi\)
−0.0885046 + 0.996076i \(0.528209\pi\)
\(140\) −17.8460 + 8.91118i −1.50826 + 0.753132i
\(141\) 0.507783 + 1.22590i 0.0427630 + 0.103239i
\(142\) 9.08392 4.14311i 0.762306 0.347682i
\(143\) −16.4935 6.08567i −1.37926 0.508909i
\(144\) −7.10708 + 9.45525i −0.592257 + 0.787938i
\(145\) −14.8229 14.8229i −1.23098 1.23098i
\(146\) −1.00028 2.19316i −0.0827840 0.181507i
\(147\) −0.303695 0.125794i −0.0250483 0.0103754i
\(148\) −5.66776 + 2.83013i −0.465887 + 0.232635i
\(149\) 11.9295 + 4.94138i 0.977307 + 0.404814i 0.813427 0.581667i \(-0.197599\pi\)
0.163879 + 0.986480i \(0.447599\pi\)
\(150\) −2.86615 2.67111i −0.234020 0.218095i
\(151\) −17.8933 −1.45614 −0.728069 0.685504i \(-0.759582\pi\)
−0.728069 + 0.685504i \(0.759582\pi\)
\(152\) 0.518608 0.0549849i 0.0420647 0.00445987i
\(153\) −5.35572 5.35572i −0.432985 0.432985i
\(154\) 0.564746 + 16.0328i 0.0455085 + 1.29196i
\(155\) 0.895609 0.370973i 0.0719370 0.0297973i
\(156\) −1.30885 + 0.719014i −0.104792 + 0.0575672i
\(157\) 2.09186 5.05019i 0.166948 0.403049i −0.818158 0.574993i \(-0.805005\pi\)
0.985107 + 0.171944i \(0.0550048\pi\)
\(158\) −3.83903 + 1.75095i −0.305417 + 0.139298i
\(159\) 1.16853i 0.0926703i
\(160\) −23.8756 + 4.24723i −1.88753 + 0.335773i
\(161\) 10.7475 10.7475i 0.847024 0.847024i
\(162\) −5.05626 11.0860i −0.397258 0.871002i
\(163\) −3.91829 9.45958i −0.306904 0.740932i −0.999802 0.0198962i \(-0.993666\pi\)
0.692898 0.721036i \(-0.256334\pi\)
\(164\) −6.32552 + 7.28560i −0.493940 + 0.568909i
\(165\) −3.99922 + 1.65653i −0.311339 + 0.128961i
\(166\) −8.18529 7.62827i −0.635302 0.592069i
\(167\) 12.7318i 0.985215i 0.870251 + 0.492608i \(0.163956\pi\)
−0.870251 + 0.492608i \(0.836044\pi\)
\(168\) 1.05982 + 0.856629i 0.0817668 + 0.0660904i
\(169\) 12.9600 1.01875i 0.996925 0.0783655i
\(170\) −0.546635 15.5187i −0.0419250 1.19023i
\(171\) −0.208655 + 0.503739i −0.0159563 + 0.0385219i
\(172\) −0.223036 0.0744765i −0.0170063 0.00567878i
\(173\) −4.83781 + 11.6795i −0.367812 + 0.887976i 0.626297 + 0.779585i \(0.284570\pi\)
−0.994108 + 0.108391i \(0.965430\pi\)
\(174\) −0.501131 + 1.34158i −0.0379907 + 0.101705i
\(175\) 22.0073 22.0073i 1.66360 1.66360i
\(176\) −4.86045 + 18.8884i −0.366370 + 1.42377i
\(177\) −1.26925 + 1.26925i −0.0954030 + 0.0954030i
\(178\) 2.91151 1.32792i 0.218227 0.0995317i
\(179\) −5.90646 2.44654i −0.441470 0.182863i 0.150866 0.988554i \(-0.451794\pi\)
−0.592335 + 0.805692i \(0.701794\pi\)
\(180\) 8.03027 24.0484i 0.598541 1.79246i
\(181\) −9.02909 + 3.73997i −0.671127 + 0.277990i −0.692112 0.721790i \(-0.743320\pi\)
0.0209854 + 0.999780i \(0.493320\pi\)
\(182\) −5.34221 10.5920i −0.395991 0.785131i
\(183\) 2.26883 2.26883i 0.167717 0.167717i
\(184\) 16.2310 8.83186i 1.19657 0.651093i
\(185\) 9.60174 9.60174i 0.705934 0.705934i
\(186\) −0.0484488 0.0451517i −0.00355244 0.00331069i
\(187\) −11.5382 4.77929i −0.843758 0.349496i
\(188\) −12.7830 + 0.901664i −0.932296 + 0.0657606i
\(189\) −2.65165 + 1.09835i −0.192879 + 0.0798930i
\(190\) −1.01705 + 0.463870i −0.0737848 + 0.0336527i
\(191\) 8.66872i 0.627247i −0.949547 0.313623i \(-0.898457\pi\)
0.949547 0.313623i \(-0.101543\pi\)
\(192\) 0.940856 + 1.36363i 0.0679005 + 0.0984118i
\(193\) −4.48756 4.48756i −0.323022 0.323022i 0.526904 0.849925i \(-0.323353\pi\)
−0.849925 + 0.526904i \(0.823353\pi\)
\(194\) 3.04649 8.15574i 0.218725 0.585548i
\(195\) 2.17289 2.35040i 0.155604 0.168315i
\(196\) 2.08130 2.39719i 0.148664 0.171228i
\(197\) 7.19629 17.3734i 0.512715 1.23780i −0.429584 0.903027i \(-0.641340\pi\)
0.942298 0.334775i \(-0.108660\pi\)
\(198\) −14.9174 13.9022i −1.06013 0.987986i
\(199\) −14.8598 + 14.8598i −1.05338 + 1.05338i −0.0548906 + 0.998492i \(0.517481\pi\)
−0.998492 + 0.0548906i \(0.982519\pi\)
\(200\) 33.2357 18.0847i 2.35012 1.27878i
\(201\) 2.89619 0.204281
\(202\) −1.51613 1.41296i −0.106675 0.0994154i
\(203\) −10.5106 4.35363i −0.737699 0.305565i
\(204\) −0.949102 + 0.473924i −0.0664504 + 0.0331813i
\(205\) 7.91425 19.1067i 0.552755 1.33447i
\(206\) −6.58665 + 17.6331i −0.458913 + 1.22856i
\(207\) 19.3190i 1.34277i
\(208\) −2.58288 14.1890i −0.179091 0.983833i
\(209\) 0.899043i 0.0621881i
\(210\) −2.73628 1.02211i −0.188821 0.0705320i
\(211\) −5.67194 + 13.6933i −0.390472 + 0.942683i 0.599365 + 0.800476i \(0.295420\pi\)
−0.989837 + 0.142207i \(0.954580\pi\)
\(212\) 10.7042 + 3.57437i 0.735170 + 0.245489i
\(213\) 1.35073 + 0.559491i 0.0925505 + 0.0383357i
\(214\) −4.71080 + 5.05479i −0.322024 + 0.345538i
\(215\) 0.504016 0.0343736
\(216\) −3.46986 + 0.367888i −0.236094 + 0.0250316i
\(217\) 0.372007 0.372007i 0.0252535 0.0252535i
\(218\) 4.52228 4.85250i 0.306288 0.328653i
\(219\) 0.135080 0.326111i 0.00912783 0.0220365i
\(220\) −2.94148 41.7018i −0.198315 2.81153i
\(221\) 9.22789 0.362131i 0.620735 0.0243596i
\(222\) −0.869023 0.324614i −0.0583250 0.0217867i
\(223\) 10.5465 + 10.5465i 0.706243 + 0.706243i 0.965743 0.259500i \(-0.0835578\pi\)
−0.259500 + 0.965743i \(0.583558\pi\)
\(224\) −11.0889 + 7.08809i −0.740911 + 0.473593i
\(225\) 39.5589i 2.63726i
\(226\) −5.25687 11.5259i −0.349682 0.766690i
\(227\) −17.1891 + 7.11995i −1.14088 + 0.472567i −0.871465 0.490457i \(-0.836830\pi\)
−0.269413 + 0.963025i \(0.586830\pi\)
\(228\) 0.0576658 + 0.0500668i 0.00381901 + 0.00331575i
\(229\) −0.0656877 0.0272087i −0.00434076 0.00179800i 0.380512 0.924776i \(-0.375748\pi\)
−0.384853 + 0.922978i \(0.625748\pi\)
\(230\) −27.0034 + 28.9752i −1.78055 + 1.91057i
\(231\) −1.66115 + 1.66115i −0.109295 + 0.109295i
\(232\) −10.7565 8.69429i −0.706202 0.570808i
\(233\) −4.56426 + 4.56426i −0.299014 + 0.299014i −0.840628 0.541613i \(-0.817814\pi\)
0.541613 + 0.840628i \(0.317814\pi\)
\(234\) 14.3211 + 4.71833i 0.936202 + 0.308447i
\(235\) 25.3770 10.5115i 1.65541 0.685693i
\(236\) −7.74446 15.5094i −0.504121 1.00958i
\(237\) −0.570844 0.236451i −0.0370803 0.0153592i
\(238\) −3.49705 7.66742i −0.226680 0.497005i
\(239\) 15.8475 15.8475i 1.02509 1.02509i 0.0254124 0.999677i \(-0.491910\pi\)
0.999677 0.0254124i \(-0.00808990\pi\)
\(240\) −2.83862 2.13366i −0.183232 0.137727i
\(241\) 7.85180 7.85180i 0.505779 0.505779i −0.407449 0.913228i \(-0.633582\pi\)
0.913228 + 0.407449i \(0.133582\pi\)
\(242\) −16.9241 6.32182i −1.08792 0.406382i
\(243\) 2.09910 5.06768i 0.134658 0.325092i
\(244\) 13.8434 + 27.7235i 0.886235 + 1.77482i
\(245\) −2.60404 + 6.28670i −0.166366 + 0.401643i
\(246\) −1.41199 + 0.0497362i −0.0900249 + 0.00317107i
\(247\) −0.278298 0.603750i −0.0177077 0.0384157i
\(248\) 0.561808 0.305699i 0.0356749 0.0194119i
\(249\) 1.63843i 0.103831i
\(250\) −34.6272 + 37.1557i −2.19001 + 2.34993i
\(251\) −21.9212 + 9.08008i −1.38366 + 0.573129i −0.945457 0.325748i \(-0.894384\pi\)
−0.438200 + 0.898878i \(0.644384\pi\)
\(252\) −0.968141 13.7255i −0.0609871 0.864622i
\(253\) 12.1903 + 29.4301i 0.766399 + 1.85025i
\(254\) 9.32080 4.25115i 0.584839 0.266741i
\(255\) 1.60787 1.60787i 0.100689 0.100689i
\(256\) −15.3694 + 4.44749i −0.960590 + 0.277968i
\(257\) 9.77918i 0.610008i −0.952351 0.305004i \(-0.901342\pi\)
0.952351 0.305004i \(-0.0986578\pi\)
\(258\) −0.0142886 0.0313283i −0.000889568 0.00195041i
\(259\) 2.82012 6.80837i 0.175234 0.423051i
\(260\) 14.8841 + 27.0942i 0.923073 + 1.68031i
\(261\) 13.3595 5.53367i 0.826930 0.342526i
\(262\) −27.9735 + 0.985347i −1.72821 + 0.0608749i
\(263\) −15.7939 15.7939i −0.973893 0.973893i 0.0257743 0.999668i \(-0.491795\pi\)
−0.999668 + 0.0257743i \(0.991795\pi\)
\(264\) −2.50868 + 1.36506i −0.154399 + 0.0840135i
\(265\) −24.1894 −1.48594
\(266\) −0.413605 + 0.443806i −0.0253597 + 0.0272115i
\(267\) 0.432926 + 0.179324i 0.0264947 + 0.0109744i
\(268\) −8.85905 + 26.5304i −0.541153 + 1.62060i
\(269\) −12.2947 5.09265i −0.749624 0.310504i −0.0250356 0.999687i \(-0.507970\pi\)
−0.724588 + 0.689182i \(0.757970\pi\)
\(270\) 6.80480 3.10362i 0.414127 0.188880i
\(271\) 7.54371 + 7.54371i 0.458248 + 0.458248i 0.898080 0.439832i \(-0.144962\pi\)
−0.439832 + 0.898080i \(0.644962\pi\)
\(272\) −1.43817 10.1439i −0.0872021 0.615062i
\(273\) 0.601332 1.62975i 0.0363943 0.0986367i
\(274\) 1.76134 + 3.86182i 0.106407 + 0.233301i
\(275\) 24.9617 + 60.2629i 1.50525 + 3.63399i
\(276\) 2.56655 + 0.857026i 0.154488 + 0.0515869i
\(277\) 7.84978 3.25149i 0.471648 0.195363i −0.134183 0.990957i \(-0.542841\pi\)
0.605831 + 0.795594i \(0.292841\pi\)
\(278\) 10.5251 11.2937i 0.631256 0.677351i
\(279\) 0.668694i 0.0400337i
\(280\) 17.7328 21.9390i 1.05974 1.31111i
\(281\) −21.5160 −1.28353 −0.641767 0.766899i \(-0.721799\pi\)
−0.641767 + 0.766899i \(0.721799\pi\)
\(282\) −1.37279 1.27937i −0.0817484 0.0761853i
\(283\) −11.0164 + 4.56316i −0.654860 + 0.271252i −0.685274 0.728286i \(-0.740317\pi\)
0.0304139 + 0.999537i \(0.490317\pi\)
\(284\) −9.25689 + 10.6619i −0.549295 + 0.632667i
\(285\) −0.151230 0.0626417i −0.00895811 0.00371057i
\(286\) 24.7937 1.84888i 1.46608 0.109326i
\(287\) 11.2236i 0.662509i
\(288\) 3.59583 16.3369i 0.211886 0.962662i
\(289\) −10.4396 −0.614094
\(290\) 27.7716 + 10.3738i 1.63081 + 0.609170i
\(291\) 1.17784 0.487876i 0.0690460 0.0285998i
\(292\) 2.57413 + 2.23492i 0.150640 + 0.130789i
\(293\) 18.8819 + 7.82115i 1.10309 + 0.456916i 0.858554 0.512723i \(-0.171363\pi\)
0.244540 + 0.969639i \(0.421363\pi\)
\(294\) 0.464588 0.0163648i 0.0270953 0.000954414i
\(295\) 26.2745 + 26.2745i 1.52976 + 1.52976i
\(296\) 5.63184 6.96769i 0.327344 0.404989i
\(297\) 6.01523i 0.349039i
\(298\) −18.2496 + 0.642831i −1.05717 + 0.0372382i
\(299\) −17.2965 15.9902i −1.00028 0.924736i
\(300\) 5.25544 + 1.75490i 0.303423 + 0.101319i
\(301\) 0.252710 0.104676i 0.0145659 0.00603341i
\(302\) 23.0234 10.5008i 1.32485 0.604252i
\(303\) 0.303480i 0.0174345i
\(304\) −0.635026 + 0.375097i −0.0364213 + 0.0215133i
\(305\) −46.9664 46.9664i −2.68929 2.68929i
\(306\) 10.0343 + 3.74819i 0.573620 + 0.214270i
\(307\) 21.2471 8.80082i 1.21263 0.502289i 0.317573 0.948234i \(-0.397132\pi\)
0.895061 + 0.445944i \(0.147132\pi\)
\(308\) −10.1356 20.2981i −0.577530 1.15659i
\(309\) −2.54654 + 1.05481i −0.144867 + 0.0600060i
\(310\) −0.934674 + 1.00292i −0.0530859 + 0.0569623i
\(311\) 11.8743 + 11.8743i 0.673327 + 0.673327i 0.958482 0.285154i \(-0.0920448\pi\)
−0.285154 + 0.958482i \(0.592045\pi\)
\(312\) 1.26215 1.69326i 0.0714549 0.0958621i
\(313\) −3.88264 + 3.88264i −0.219460 + 0.219460i −0.808271 0.588811i \(-0.799596\pi\)
0.588811 + 0.808271i \(0.299596\pi\)
\(314\) 0.272133 + 7.72571i 0.0153573 + 0.435987i
\(315\) 11.2865 + 27.2479i 0.635920 + 1.53525i
\(316\) 3.91213 4.50591i 0.220075 0.253477i
\(317\) −4.73155 11.4230i −0.265750 0.641578i 0.733524 0.679664i \(-0.237874\pi\)
−0.999274 + 0.0380851i \(0.987874\pi\)
\(318\) 0.685756 + 1.50355i 0.0384553 + 0.0843147i
\(319\) 16.8597 16.8597i 0.943960 0.943960i
\(320\) 28.2282 19.4764i 1.57800 1.08876i
\(321\) −1.01180 −0.0564733
\(322\) −7.52162 + 20.1361i −0.419164 + 1.12214i
\(323\) −0.180729 0.436317i −0.0100560 0.0242773i
\(324\) 13.0118 + 11.2971i 0.722878 + 0.627619i
\(325\) −35.4173 32.7425i −1.96460 1.81623i
\(326\) 10.5931 + 9.87220i 0.586696 + 0.546770i
\(327\) 0.971312 0.0537136
\(328\) 3.86347 13.0866i 0.213324 0.722584i
\(329\) 10.5408 10.5408i 0.581131 0.581131i
\(330\) 4.17366 4.47843i 0.229752 0.246529i
\(331\) −10.7883 + 26.0453i −0.592979 + 1.43158i 0.287633 + 0.957741i \(0.407132\pi\)
−0.880612 + 0.473837i \(0.842868\pi\)
\(332\) 15.0087 + 5.01173i 0.823710 + 0.275054i
\(333\) 3.58451 + 8.65376i 0.196430 + 0.474223i
\(334\) −7.47171 16.3820i −0.408834 0.896384i
\(335\) 59.9532i 3.27559i
\(336\) −1.86639 0.480266i −0.101820 0.0262007i
\(337\) 14.1585 0.771261 0.385631 0.922653i \(-0.373984\pi\)
0.385631 + 0.922653i \(0.373984\pi\)
\(338\) −16.0778 + 8.91648i −0.874518 + 0.484993i
\(339\) 0.709895 1.71384i 0.0385562 0.0930829i
\(340\) 9.81056 + 19.6471i 0.532052 + 1.06551i
\(341\) 0.421947 + 1.01867i 0.0228497 + 0.0551640i
\(342\) −0.0271443 0.770612i −0.00146780 0.0416699i
\(343\) 19.9785i 1.07874i
\(344\) 0.330688 0.0350608i 0.0178295 0.00189035i
\(345\) −5.79988 −0.312255
\(346\) −0.629357 17.8671i −0.0338345 0.960542i
\(347\) −10.4077 25.1264i −0.558714 1.34885i −0.910785 0.412881i \(-0.864523\pi\)
0.352071 0.935973i \(-0.385477\pi\)
\(348\) −0.142504 2.02030i −0.00763903 0.108299i
\(349\) −21.4212 + 8.87296i −1.14665 + 0.474959i −0.873410 0.486986i \(-0.838096\pi\)
−0.273243 + 0.961945i \(0.588096\pi\)
\(350\) −15.4018 + 41.2320i −0.823259 + 2.20394i
\(351\) 1.86201 + 4.03952i 0.0993869 + 0.215613i
\(352\) −4.83082 27.1562i −0.257484 1.44743i
\(353\) −6.05890 + 6.05890i −0.322483 + 0.322483i −0.849719 0.527236i \(-0.823228\pi\)
0.527236 + 0.849719i \(0.323228\pi\)
\(354\) 0.888284 2.37802i 0.0472118 0.126390i
\(355\) 11.5819 27.9611i 0.614702 1.48402i
\(356\) −2.96695 + 3.41727i −0.157248 + 0.181115i
\(357\) 0.472247 1.14010i 0.0249940 0.0603407i
\(358\) 9.03562 0.318274i 0.477547 0.0168213i
\(359\) 32.4711i 1.71376i 0.515518 + 0.856879i \(0.327599\pi\)
−0.515518 + 0.856879i \(0.672401\pi\)
\(360\) 3.78036 + 35.6557i 0.199242 + 1.87922i
\(361\) 13.4110 13.4110i 0.705842 0.705842i
\(362\) 9.42292 10.1110i 0.495258 0.531422i
\(363\) −1.01240 2.44415i −0.0531372 0.128285i
\(364\) 13.0898 + 10.4936i 0.686092 + 0.550016i
\(365\) −6.75073 2.79624i −0.353349 0.146362i
\(366\) −1.58783 + 4.25078i −0.0829973 + 0.222192i
\(367\) 10.1818 0.531486 0.265743 0.964044i \(-0.414383\pi\)
0.265743 + 0.964044i \(0.414383\pi\)
\(368\) −15.7015 + 20.8892i −0.818496 + 1.08893i
\(369\) 10.0874 + 10.0874i 0.525129 + 0.525129i
\(370\) −6.71975 + 17.9894i −0.349343 + 0.935225i
\(371\) −12.1284 + 5.02374i −0.629674 + 0.260819i
\(372\) 0.0888366 + 0.0296644i 0.00460596 + 0.00153803i
\(373\) 12.5195 + 30.2247i 0.648235 + 1.56498i 0.815305 + 0.579032i \(0.196569\pi\)
−0.167070 + 0.985945i \(0.553431\pi\)
\(374\) 17.6510 0.621745i 0.912711 0.0321496i
\(375\) −7.43734 −0.384063
\(376\) 15.9188 8.66194i 0.820947 0.446705i
\(377\) −6.10317 + 16.5410i −0.314329 + 0.851904i
\(378\) 2.76731 2.96938i 0.142335 0.152728i
\(379\) −6.17240 2.55669i −0.317055 0.131328i 0.218480 0.975841i \(-0.429890\pi\)
−0.535535 + 0.844513i \(0.679890\pi\)
\(380\) 1.03642 1.19372i 0.0531672 0.0612368i
\(381\) 1.38595 + 0.574081i 0.0710045 + 0.0294110i
\(382\) 5.08728 + 11.1541i 0.260288 + 0.570691i
\(383\) 23.7782 + 23.7782i 1.21501 + 1.21501i 0.969359 + 0.245650i \(0.0790013\pi\)
0.245650 + 0.969359i \(0.420999\pi\)
\(384\) −2.01086 1.20244i −0.102616 0.0613619i
\(385\) 34.3869 + 34.3869i 1.75252 + 1.75252i
\(386\) 8.40770 + 3.14060i 0.427940 + 0.159853i
\(387\) −0.133048 + 0.321206i −0.00676321 + 0.0163278i
\(388\) 0.866315 + 12.2819i 0.0439805 + 0.623517i
\(389\) −1.39984 3.37951i −0.0709747 0.171348i 0.884411 0.466709i \(-0.154560\pi\)
−0.955386 + 0.295360i \(0.904560\pi\)
\(390\) −1.41652 + 4.29943i −0.0717282 + 0.217710i
\(391\) −11.8323 11.8323i −0.598383 0.598383i
\(392\) −1.27120 + 4.30589i −0.0642054 + 0.217480i
\(393\) −2.89830 2.89830i −0.146200 0.146200i
\(394\) 0.936176 + 26.5775i 0.0471639 + 1.33896i
\(395\) −4.89471 + 11.8169i −0.246280 + 0.594572i
\(396\) 27.3528 + 9.13367i 1.37453 + 0.458984i
\(397\) −2.42766 5.86090i −0.121841 0.294150i 0.851177 0.524878i \(-0.175889\pi\)
−0.973018 + 0.230728i \(0.925889\pi\)
\(398\) 10.3996 27.8407i 0.521284 1.39553i
\(399\) −0.0888354 −0.00444733
\(400\) −32.1514 + 42.7741i −1.60757 + 2.13871i
\(401\) 8.87139 8.87139i 0.443016 0.443016i −0.450008 0.893024i \(-0.648579\pi\)
0.893024 + 0.450008i \(0.148579\pi\)
\(402\) −3.72653 + 1.69964i −0.185862 + 0.0847705i
\(403\) −0.598686 0.553472i −0.0298227 0.0275704i
\(404\) 2.78001 + 0.928305i 0.138311 + 0.0461849i
\(405\) −34.1238 14.1346i −1.69563 0.702352i
\(406\) 16.0789 0.566370i 0.797985 0.0281085i
\(407\) 10.9211 + 10.9211i 0.541337 + 0.541337i
\(408\) 0.943087 1.16678i 0.0466898 0.0577644i
\(409\) 35.0222i 1.73173i −0.500273 0.865867i \(-0.666767\pi\)
0.500273 0.865867i \(-0.333233\pi\)
\(410\) 1.02958 + 29.2291i 0.0508471 + 1.44352i
\(411\) −0.237854 + 0.574231i −0.0117325 + 0.0283247i
\(412\) −1.87301 26.5539i −0.0922767 1.30822i
\(413\) 18.6306 + 7.71706i 0.916753 + 0.379732i
\(414\) −11.3375 24.8578i −0.557206 1.22170i
\(415\) −33.9166 −1.66490
\(416\) 11.6503 + 16.7413i 0.571203 + 0.820809i
\(417\) 2.26063 0.110703
\(418\) −0.527608 1.15680i −0.0258061 0.0565809i
\(419\) −14.1285 5.85222i −0.690222 0.285899i 0.00987052 0.999951i \(-0.496858\pi\)
−0.700093 + 0.714052i \(0.746858\pi\)
\(420\) 4.12060 0.290651i 0.201065 0.0141823i
\(421\) −13.0624 + 31.5354i −0.636621 + 1.53694i 0.194532 + 0.980896i \(0.437681\pi\)
−0.831153 + 0.556044i \(0.812319\pi\)
\(422\) −0.737871 20.9478i −0.0359190 1.01972i
\(423\) 18.9474i 0.921252i
\(424\) −15.8708 + 1.68268i −0.770754 + 0.0817183i
\(425\) −24.2285 24.2285i −1.17525 1.17525i
\(426\) −2.06633 + 0.0727850i −0.100114 + 0.00352644i
\(427\) −33.3028 13.7945i −1.61163 0.667560i
\(428\) 3.09497 9.26856i 0.149601 0.448013i
\(429\) 2.67335 + 2.47145i 0.129071 + 0.119323i
\(430\) −0.648518 + 0.295784i −0.0312743 + 0.0142640i
\(431\) 3.07644 3.07644i 0.148187 0.148187i −0.629121 0.777308i \(-0.716585\pi\)
0.777308 + 0.629121i \(0.216585\pi\)
\(432\) 4.24877 2.50966i 0.204419 0.120746i
\(433\) 29.6773 1.42620 0.713099 0.701064i \(-0.247291\pi\)
0.713099 + 0.701064i \(0.247291\pi\)
\(434\) −0.260348 + 0.696975i −0.0124971 + 0.0334559i
\(435\) 1.66130 + 4.01072i 0.0796530 + 0.192299i
\(436\) −2.97111 + 8.89765i −0.142290 + 0.426120i
\(437\) −0.460977 + 1.11290i −0.0220515 + 0.0532370i
\(438\) 0.0175727 + 0.498879i 0.000839656 + 0.0238374i
\(439\) −9.15150 9.15150i −0.436777 0.436777i 0.454149 0.890926i \(-0.349944\pi\)
−0.890926 + 0.454149i \(0.849944\pi\)
\(440\) 28.2577 + 51.9315i 1.34713 + 2.47574i
\(441\) −3.31907 3.31907i −0.158051 0.158051i
\(442\) −11.6610 + 5.88139i −0.554659 + 0.279749i
\(443\) 5.83248 + 14.0809i 0.277110 + 0.669002i 0.999753 0.0222192i \(-0.00707317\pi\)
−0.722644 + 0.691221i \(0.757073\pi\)
\(444\) 1.30868 0.0923089i 0.0621070 0.00438079i
\(445\) 3.71214 8.96189i 0.175972 0.424834i
\(446\) −19.7594 7.38090i −0.935634 0.349496i
\(447\) −1.89083 1.89083i −0.0894330 0.0894330i
\(448\) 10.1085 15.6279i 0.477581 0.738347i
\(449\) −3.53778 3.53778i −0.166958 0.166958i 0.618683 0.785641i \(-0.287667\pi\)
−0.785641 + 0.618683i \(0.787667\pi\)
\(450\) −23.2153 50.9005i −1.09438 2.39947i
\(451\) 21.7320 + 9.00170i 1.02332 + 0.423874i
\(452\) 13.5280 + 11.7454i 0.636306 + 0.552455i
\(453\) 3.42345 + 1.41804i 0.160848 + 0.0666254i
\(454\) 17.9388 19.2487i 0.841911 0.903388i
\(455\) −33.7369 12.4480i −1.58161 0.583572i
\(456\) −0.103581 0.0305795i −0.00485061 0.00143202i
\(457\) 30.9796 1.44916 0.724582 0.689188i \(-0.242033\pi\)
0.724582 + 0.689188i \(0.242033\pi\)
\(458\) 0.100488 0.00353962i 0.00469550 0.000165396i
\(459\) 1.20920 + 2.91927i 0.0564407 + 0.136260i
\(460\) 17.7411 53.1295i 0.827181 2.47717i
\(461\) 2.30493 0.954733i 0.107351 0.0444663i −0.328361 0.944552i \(-0.606496\pi\)
0.435713 + 0.900086i \(0.356496\pi\)
\(462\) 1.16255 3.11225i 0.0540866 0.144795i
\(463\) 8.19990 + 8.19990i 0.381082 + 0.381082i 0.871492 0.490410i \(-0.163153\pi\)
−0.490410 + 0.871492i \(0.663153\pi\)
\(464\) 18.9428 + 4.87443i 0.879395 + 0.226290i
\(465\) −0.200753 −0.00930968
\(466\) 3.19428 8.55139i 0.147972 0.396136i
\(467\) 24.9018 + 10.3146i 1.15232 + 0.477305i 0.875309 0.483563i \(-0.160658\pi\)
0.277006 + 0.960868i \(0.410658\pi\)
\(468\) −21.1960 + 2.33334i −0.979786 + 0.107859i
\(469\) −12.4513 30.0601i −0.574948 1.38805i
\(470\) −26.4839 + 28.4177i −1.22161 + 1.31081i
\(471\) −0.800453 + 0.800453i −0.0368829 + 0.0368829i
\(472\) 19.0666 + 15.4111i 0.877611 + 0.709355i
\(473\) 0.573270i 0.0263590i
\(474\) 0.873268 0.0307603i 0.0401105 0.00141287i
\(475\) −0.943926 + 2.27884i −0.0433103 + 0.104560i
\(476\) 8.99933 + 7.81342i 0.412483 + 0.358127i
\(477\) 6.38541 15.4157i 0.292368 0.705838i
\(478\) −11.0908 + 29.6912i −0.507282 + 1.35804i
\(479\) −12.5195 + 12.5195i −0.572029 + 0.572029i −0.932695 0.360666i \(-0.882549\pi\)
0.360666 + 0.932695i \(0.382549\pi\)
\(480\) 4.90460 + 1.07953i 0.223863 + 0.0492734i
\(481\) −10.7146 3.95341i −0.488545 0.180260i
\(482\) −5.49506 + 14.7108i −0.250293 + 0.670058i
\(483\) −2.90802 + 1.20454i −0.132319 + 0.0548085i
\(484\) 25.4863 1.79770i 1.15847 0.0817139i
\(485\) −10.0994 24.3821i −0.458590 1.10713i
\(486\) 0.273075 + 7.75247i 0.0123870 + 0.351659i
\(487\) 22.0115 0.997435 0.498717 0.866765i \(-0.333805\pi\)
0.498717 + 0.866765i \(0.333805\pi\)
\(488\) −34.0821 27.5478i −1.54282 1.24703i
\(489\) 2.12039i 0.0958871i
\(490\) −0.338763 9.61730i −0.0153038 0.434465i
\(491\) −8.71333 21.0358i −0.393227 0.949334i −0.989232 0.146354i \(-0.953246\pi\)
0.596005 0.802981i \(-0.296754\pi\)
\(492\) 1.78762 0.892626i 0.0805920 0.0402427i
\(493\) −4.79303 + 11.5714i −0.215867 + 0.521150i
\(494\) 0.712401 + 0.613526i 0.0320524 + 0.0276038i
\(495\) −61.8116 −2.77823
\(496\) −0.543479 + 0.723043i −0.0244029 + 0.0324656i
\(497\) 16.4249i 0.736756i
\(498\) 0.961519 + 2.10817i 0.0430867 + 0.0944692i
\(499\) −15.2983 36.9332i −0.684844 1.65336i −0.754920 0.655817i \(-0.772324\pi\)
0.0700758 0.997542i \(-0.477676\pi\)
\(500\) 22.7498 68.1294i 1.01740 3.04684i
\(501\) 1.00899 2.43592i 0.0450784 0.108829i
\(502\) 22.8774 24.5479i 1.02107 1.09563i
\(503\) 3.35083 3.35083i 0.149406 0.149406i −0.628447 0.777853i \(-0.716309\pi\)
0.777853 + 0.628447i \(0.216309\pi\)
\(504\) 9.30056 + 17.0924i 0.414280 + 0.761356i
\(505\) −6.28226 −0.279557
\(506\) −32.9565 30.7138i −1.46509 1.36539i
\(507\) −2.56032 0.832165i −0.113708 0.0369577i
\(508\) −9.49828 + 10.9399i −0.421418 + 0.485380i
\(509\) −0.974136 2.35177i −0.0431778 0.104241i 0.900819 0.434194i \(-0.142967\pi\)
−0.943997 + 0.329954i \(0.892967\pi\)
\(510\) −1.12526 + 3.01244i −0.0498276 + 0.133393i
\(511\) −3.96550 −0.175423
\(512\) 17.1659 14.7422i 0.758631 0.651521i
\(513\) 0.160843 0.160843i 0.00710137 0.00710137i
\(514\) 5.73896 + 12.5829i 0.253135 + 0.555007i
\(515\) 21.8353 + 52.7151i 0.962179 + 2.32291i
\(516\) 0.0367703 + 0.0319248i 0.00161872 + 0.00140541i
\(517\) 11.9558 + 28.8639i 0.525815 + 1.26943i
\(518\) 0.366873 + 10.4153i 0.0161195 + 0.457624i
\(519\) 1.85119 1.85119i 0.0812584 0.0812584i
\(520\) −35.0518 26.1273i −1.53712 1.14576i
\(521\) 7.76097 + 7.76097i 0.340014 + 0.340014i 0.856373 0.516358i \(-0.172713\pi\)
−0.516358 + 0.856373i \(0.672713\pi\)
\(522\) −13.9422 + 14.9603i −0.610233 + 0.654792i
\(523\) 26.1513 10.8322i 1.14352 0.473659i 0.271161 0.962534i \(-0.412592\pi\)
0.872354 + 0.488875i \(0.162592\pi\)
\(524\) 35.4153 17.6842i 1.54712 0.772539i
\(525\) −5.95464 + 2.46649i −0.259882 + 0.107647i
\(526\) 29.5908 + 11.0533i 1.29022 + 0.481947i
\(527\) −0.409552 0.409552i −0.0178404 0.0178404i
\(528\) 2.42683 3.22865i 0.105614 0.140509i
\(529\) 19.6810i 0.855696i
\(530\) 31.1245 14.1957i 1.35196 0.616620i
\(531\) −23.6804 + 9.80875i −1.02764 + 0.425663i
\(532\) 0.271736 0.813772i 0.0117812 0.0352815i
\(533\) −17.3806 + 0.682067i −0.752836 + 0.0295436i
\(534\) −0.662284 + 0.0233285i −0.0286598 + 0.00100952i
\(535\) 20.9450i 0.905533i
\(536\) −4.17052 39.3357i −0.180139 1.69904i
\(537\) 0.936171 + 0.936171i 0.0403988 + 0.0403988i
\(538\) 18.8083 0.662510i 0.810884 0.0285628i
\(539\) −7.15052 2.96184i −0.307995 0.127576i
\(540\) −6.93438 + 7.98686i −0.298408 + 0.343700i
\(541\) 35.9223 14.8795i 1.54442 0.639720i 0.562124 0.827053i \(-0.309984\pi\)
0.982296 + 0.187333i \(0.0599843\pi\)
\(542\) −14.1336 5.27944i −0.607089 0.226771i
\(543\) 2.02389 0.0868534
\(544\) 7.80348 + 12.2081i 0.334571 + 0.523419i
\(545\) 20.1069i 0.861283i
\(546\) 0.182690 + 2.44989i 0.00781839 + 0.104846i
\(547\) 4.11077 + 1.70274i 0.175764 + 0.0728037i 0.468830 0.883288i \(-0.344676\pi\)
−0.293066 + 0.956092i \(0.594676\pi\)
\(548\) −4.53265 3.93535i −0.193625 0.168110i
\(549\) 42.3294 17.5334i 1.80657 0.748307i
\(550\) −67.4838 62.8915i −2.87752 2.68170i
\(551\) 0.901628 0.0384107
\(552\) −3.80534 + 0.403457i −0.161966 + 0.0171723i
\(553\) 6.94145i 0.295180i
\(554\) −8.19218 + 8.79038i −0.348052 + 0.373467i
\(555\) −2.59800 + 1.07613i −0.110279 + 0.0456790i
\(556\) −6.91496 + 20.7083i −0.293259 + 0.878229i
\(557\) −13.4720 32.5243i −0.570827 1.37810i −0.900852 0.434127i \(-0.857057\pi\)
0.330024 0.943972i \(-0.392943\pi\)
\(558\) −0.392426 0.860410i −0.0166127 0.0364241i
\(559\) −0.177455 0.384978i −0.00750556 0.0162828i
\(560\) −9.94187 + 38.6356i −0.420120 + 1.63265i
\(561\) 1.82880 + 1.82880i 0.0772121 + 0.0772121i
\(562\) 27.6846 12.6267i 1.16781 0.532627i
\(563\) 1.00613 + 0.416753i 0.0424033 + 0.0175640i 0.403784 0.914854i \(-0.367695\pi\)
−0.361381 + 0.932418i \(0.617695\pi\)
\(564\) 2.51717 + 0.840538i 0.105992 + 0.0353930i
\(565\) −35.4777 14.6953i −1.49256 0.618238i
\(566\) 11.4970 12.3365i 0.483254 0.518541i
\(567\) −20.0450 −0.841809
\(568\) 5.65388 19.1511i 0.237231 0.803563i
\(569\) −1.24621 1.24621i −0.0522439 0.0522439i 0.680502 0.732746i \(-0.261762\pi\)
−0.732746 + 0.680502i \(0.761762\pi\)
\(570\) 0.231350 0.00814915i 0.00969018 0.000341330i
\(571\) −11.6347 + 4.81925i −0.486897 + 0.201679i −0.612607 0.790388i \(-0.709879\pi\)
0.125710 + 0.992067i \(0.459879\pi\)
\(572\) −30.8170 + 16.9292i −1.28853 + 0.707847i
\(573\) −0.686994 + 1.65855i −0.0286996 + 0.0692869i
\(574\) 6.58663 + 14.4414i 0.274921 + 0.602774i
\(575\) 87.3964i 3.64468i
\(576\) 4.96063 + 23.1310i 0.206693 + 0.963790i
\(577\) −18.7925 + 18.7925i −0.782343 + 0.782343i −0.980226 0.197882i \(-0.936594\pi\)
0.197882 + 0.980226i \(0.436594\pi\)
\(578\) 13.4327 6.12653i 0.558725 0.254830i
\(579\) 0.502948 + 1.21422i 0.0209018 + 0.0504614i
\(580\) −41.8217 + 2.94994i −1.73655 + 0.122490i
\(581\) −17.0055 + 7.04393i −0.705509 + 0.292231i
\(582\) −1.22921 + 1.31897i −0.0509525 + 0.0546731i
\(583\) 27.5131i 1.13948i
\(584\) −4.62371 1.36503i −0.191331 0.0564854i
\(585\) 41.5095 19.1338i 1.71620 0.791084i
\(586\) −28.8853 + 1.01746i −1.19324 + 0.0420311i
\(587\) 14.6802 35.4410i 0.605915 1.46281i −0.261490 0.965206i \(-0.584214\pi\)
0.867405 0.497602i \(-0.165786\pi\)
\(588\) −0.588182 + 0.293702i −0.0242562 + 0.0121121i
\(589\) −0.0159559 + 0.0385209i −0.000657451 + 0.00158723i
\(590\) −49.2268 18.3881i −2.02663 0.757027i
\(591\) −2.75367 + 2.75367i −0.113271 + 0.113271i
\(592\) −3.15747 + 12.2704i −0.129771 + 0.504311i
\(593\) −7.05458 + 7.05458i −0.289697 + 0.289697i −0.836960 0.547263i \(-0.815670\pi\)
0.547263 + 0.836960i \(0.315670\pi\)
\(594\) 3.53007 + 7.73981i 0.144840 + 0.317568i
\(595\) −23.6010 9.77585i −0.967546 0.400771i
\(596\) 23.1046 11.5370i 0.946401 0.472575i
\(597\) 4.02070 1.66543i 0.164556 0.0681614i
\(598\) 31.6393 + 10.4241i 1.29383 + 0.426273i
\(599\) −6.76802 + 6.76802i −0.276534 + 0.276534i −0.831724 0.555190i \(-0.812646\pi\)
0.555190 + 0.831724i \(0.312646\pi\)
\(600\) −7.79205 + 0.826144i −0.318109 + 0.0337272i
\(601\) 12.0563 12.0563i 0.491786 0.491786i −0.417083 0.908869i \(-0.636947\pi\)
0.908869 + 0.417083i \(0.136947\pi\)
\(602\) −0.263733 + 0.282991i −0.0107489 + 0.0115338i
\(603\) 38.2078 + 15.8262i 1.55594 + 0.644492i
\(604\) −23.4618 + 27.0228i −0.954646 + 1.09954i
\(605\) −50.5956 + 20.9574i −2.05701 + 0.852040i
\(606\) 0.178099 + 0.390488i 0.00723477 + 0.0158625i
\(607\) 26.5243i 1.07659i −0.842757 0.538295i \(-0.819069\pi\)
0.842757 0.538295i \(-0.180931\pi\)
\(608\) 0.596962 0.855306i 0.0242100 0.0346873i
\(609\) 1.66592 + 1.66592i 0.0675066 + 0.0675066i
\(610\) 87.9942 + 32.8693i 3.56278 + 1.33084i
\(611\) −16.9637 15.6825i −0.686277 0.634448i
\(612\) −15.1107 + 1.06585i −0.610815 + 0.0430846i
\(613\) 1.54983 3.74161i 0.0625969 0.151122i −0.889486 0.456963i \(-0.848937\pi\)
0.952083 + 0.305840i \(0.0989373\pi\)
\(614\) −22.1738 + 23.7930i −0.894863 + 0.960206i
\(615\) −3.02840 + 3.02840i −0.122117 + 0.122117i
\(616\) 24.9535 + 20.1694i 1.00541 + 0.812649i
\(617\) 13.0429 0.525088 0.262544 0.964920i \(-0.415439\pi\)
0.262544 + 0.964920i \(0.415439\pi\)
\(618\) 2.65761 2.85167i 0.106905 0.114711i
\(619\) −0.573103 0.237387i −0.0230349 0.00954139i 0.371136 0.928578i \(-0.378968\pi\)
−0.394171 + 0.919037i \(0.628968\pi\)
\(620\) 0.614075 1.83898i 0.0246619 0.0738553i
\(621\) 3.08426 7.44606i 0.123767 0.298800i
\(622\) −22.2471 8.31016i −0.892027 0.333207i
\(623\) 5.26437i 0.210913i
\(624\) −0.630305 + 2.91942i −0.0252324 + 0.116870i
\(625\) 87.0708i 3.48283i
\(626\) 2.71725 7.27435i 0.108603 0.290741i
\(627\) 0.0712489 0.172010i 0.00284541 0.00686942i
\(628\) −4.88402 9.78098i −0.194894 0.390304i
\(629\) −7.49552 3.10475i −0.298866 0.123794i
\(630\) −30.5129 28.4364i −1.21566 1.13293i
\(631\) 49.9364 1.98794 0.993968 0.109672i \(-0.0349801\pi\)
0.993968 + 0.109672i \(0.0349801\pi\)
\(632\) −2.38943 + 8.09361i −0.0950465 + 0.321947i
\(633\) 2.17038 2.17038i 0.0862647 0.0862647i
\(634\) 12.7917 + 11.9212i 0.508024 + 0.473453i
\(635\) 11.8839 28.6902i 0.471598 1.13854i
\(636\) −1.76473 1.53218i −0.0699760 0.0607547i
\(637\) 5.71875 0.224422i 0.226585 0.00889191i
\(638\) −11.7992 + 31.5875i −0.467134 + 1.25056i
\(639\) 14.7621 + 14.7621i 0.583980 + 0.583980i
\(640\) −24.8915 + 41.6262i −0.983921 + 1.64542i
\(641\) 36.5661i 1.44427i −0.691750 0.722137i \(-0.743160\pi\)
0.691750 0.722137i \(-0.256840\pi\)
\(642\) 1.30189 0.593781i 0.0513814 0.0234347i
\(643\) −2.28956 + 0.948369i −0.0902916 + 0.0374000i −0.427372 0.904076i \(-0.640561\pi\)
0.337080 + 0.941476i \(0.390561\pi\)
\(644\) −2.13889 30.3233i −0.0842839 1.19490i
\(645\) −0.0964312 0.0399431i −0.00379697 0.00157276i
\(646\) 0.488599 + 0.455349i 0.0192237 + 0.0179155i
\(647\) −0.404738 + 0.404738i −0.0159119 + 0.0159119i −0.715018 0.699106i \(-0.753582\pi\)
0.699106 + 0.715018i \(0.253582\pi\)
\(648\) −23.3721 6.90001i −0.918143 0.271058i
\(649\) −29.8847 + 29.8847i −1.17308 + 1.17308i
\(650\) 64.7866 + 21.3450i 2.54114 + 0.837221i
\(651\) −0.100656 + 0.0416930i −0.00394501 + 0.00163408i
\(652\) −19.4237 6.48598i −0.760690 0.254010i
\(653\) −0.913311 0.378306i −0.0357406 0.0148043i 0.364742 0.931109i \(-0.381157\pi\)
−0.400482 + 0.916305i \(0.631157\pi\)
\(654\) −1.24979 + 0.570019i −0.0488706 + 0.0222895i
\(655\) −59.9970 + 59.9970i −2.34428 + 2.34428i
\(656\) 2.70877 + 19.1058i 0.105760 + 0.745956i
\(657\) 3.56406 3.56406i 0.139047 0.139047i
\(658\) −7.37691 + 19.7487i −0.287582 + 0.769885i
\(659\) 3.46976 8.37673i 0.135162 0.326311i −0.841778 0.539824i \(-0.818491\pi\)
0.976940 + 0.213513i \(0.0684906\pi\)
\(660\) −2.74207 + 8.21173i −0.106735 + 0.319641i
\(661\) −7.21681 + 17.4229i −0.280701 + 0.677673i −0.999852 0.0171809i \(-0.994531\pi\)
0.719151 + 0.694854i \(0.244531\pi\)
\(662\) −1.40347 39.8437i −0.0545473 1.54857i
\(663\) −1.79423 0.662023i −0.0696822 0.0257108i
\(664\) −22.2529 + 2.35934i −0.863580 + 0.0915601i
\(665\) 1.83896i 0.0713117i
\(666\) −9.69069 9.03122i −0.375507 0.349953i
\(667\) 29.5147 12.2254i 1.14281 0.473369i
\(668\) 19.2277 + 16.6940i 0.743943 + 0.645908i
\(669\) −1.18201 2.85361i −0.0456990 0.110327i
\(670\) 35.1838 + 77.1419i 1.35927 + 2.98025i
\(671\) 53.4198 53.4198i 2.06225 2.06225i
\(672\) 2.68333 0.477339i 0.103512 0.0184137i
\(673\) 9.51163i 0.366646i 0.983053 + 0.183323i \(0.0586855\pi\)
−0.983053 + 0.183323i \(0.941315\pi\)
\(674\) −18.2177 + 8.30897i −0.701721 + 0.320050i
\(675\) 6.31553 15.2470i 0.243085 0.586859i
\(676\) 15.4547 20.9082i 0.594411 0.804162i
\(677\) −30.3571 + 12.5743i −1.16672 + 0.483271i −0.880107 0.474775i \(-0.842529\pi\)
−0.286613 + 0.958047i \(0.592529\pi\)
\(678\) 0.0923513 + 2.62180i 0.00354673 + 0.100690i
\(679\) −10.1275 10.1275i −0.388658 0.388658i
\(680\) −24.1533 19.5226i −0.926235 0.748657i
\(681\) 3.85296 0.147646
\(682\) −1.14073 1.06310i −0.0436808 0.0407083i
\(683\) −0.697843 0.289056i −0.0267022 0.0110604i 0.369292 0.929313i \(-0.379600\pi\)
−0.395995 + 0.918253i \(0.629600\pi\)
\(684\) 0.487164 + 0.975618i 0.0186272 + 0.0373037i
\(685\) 11.8870 + 4.92376i 0.454179 + 0.188127i
\(686\) −11.7245 25.7064i −0.447644 0.981476i
\(687\) 0.0104115 + 0.0104115i 0.000397222 + 0.000397222i
\(688\) −0.404921 + 0.239179i −0.0154375 + 0.00911860i
\(689\) 8.51667 + 18.4764i 0.324459 + 0.703893i
\(690\) 7.46272 3.40369i 0.284101 0.129576i
\(691\) −16.0480 38.7432i −0.610493 1.47386i −0.862460 0.506125i \(-0.831078\pi\)
0.251967 0.967736i \(-0.418922\pi\)
\(692\) 11.2952 + 22.6203i 0.429379 + 0.859895i
\(693\) −30.9919 + 12.8373i −1.17728 + 0.487647i
\(694\) 28.1371 + 26.2223i 1.06807 + 0.995386i
\(695\) 46.7966i 1.77510i
\(696\) 1.36898 + 2.51589i 0.0518912 + 0.0953647i
\(697\) −12.3564 −0.468032
\(698\) 22.3556 23.9880i 0.846172 0.907960i
\(699\) 1.23498 0.511544i 0.0467111 0.0193484i
\(700\) −4.37972 62.0919i −0.165538 2.34685i
\(701\) −25.7316 10.6584i −0.971870 0.402562i −0.160462 0.987042i \(-0.551298\pi\)
−0.811408 + 0.584480i \(0.801298\pi\)
\(702\) −4.76646 4.10492i −0.179899 0.154930i
\(703\) 0.584041i 0.0220275i
\(704\) 22.1526 + 32.1069i 0.834906 + 1.21007i
\(705\) −5.68830 −0.214234
\(706\) 4.24030 11.3517i 0.159586 0.427227i
\(707\) −3.14988 + 1.30472i −0.118463 + 0.0490691i
\(708\) 0.252597 + 3.58110i 0.00949317 + 0.134586i
\(709\) −18.4030 7.62278i −0.691140 0.286280i 0.00933488 0.999956i \(-0.497029\pi\)
−0.700475 + 0.713677i \(0.747029\pi\)
\(710\) 1.50670 + 42.7745i 0.0565455 + 1.60530i
\(711\) −6.23874 6.23874i −0.233971 0.233971i
\(712\) 1.81214 6.13818i 0.0679128 0.230038i
\(713\) 1.47733i 0.0553263i
\(714\) 0.0614353 + 1.74412i 0.00229916 + 0.0652719i
\(715\) 51.1609 55.3403i 1.91331 2.06961i
\(716\) −11.4394 + 5.71212i −0.427509 + 0.213472i
\(717\) −4.28794 + 1.77612i −0.160136 + 0.0663306i
\(718\) −19.0558 41.7806i −0.711156 1.55924i
\(719\) 18.7320i 0.698586i 0.937014 + 0.349293i \(0.113578\pi\)
−0.937014 + 0.349293i \(0.886422\pi\)
\(720\) −25.7889 43.6598i −0.961097 1.62710i
\(721\) 21.8961 + 21.8961i 0.815455 + 0.815455i
\(722\) −9.38564 + 25.1262i −0.349297 + 0.935102i
\(723\) −2.12451 + 0.879999i −0.0790112 + 0.0327275i
\(724\) −6.19080 + 18.5397i −0.230079 + 0.689023i
\(725\) 60.4362 25.0335i 2.24454 0.929720i
\(726\) 2.73702 + 2.55076i 0.101580 + 0.0946675i
\(727\) −6.01336 6.01336i −0.223023 0.223023i 0.586747 0.809770i \(-0.300408\pi\)
−0.809770 + 0.586747i \(0.800408\pi\)
\(728\) −23.0009 5.82037i −0.852471 0.215717i
\(729\) 17.4738 17.4738i 0.647177 0.647177i
\(730\) 10.3272 0.363768i 0.382226 0.0134636i
\(731\) −0.115241 0.278215i −0.00426232 0.0102902i
\(732\) −0.451524 6.40131i −0.0166888 0.236599i
\(733\) −16.3016 39.3554i −0.602112 1.45363i −0.871403 0.490567i \(-0.836790\pi\)
0.269292 0.963059i \(-0.413210\pi\)
\(734\) −13.1009 + 5.97524i −0.483565 + 0.220550i
\(735\) 0.996439 0.996439i 0.0367542 0.0367542i
\(736\) 7.94417 36.0927i 0.292826 1.33039i
\(737\) 68.1910 2.51185
\(738\) −18.8993 7.05964i −0.695694 0.259869i
\(739\) 13.8904 + 33.5343i 0.510966 + 1.23358i 0.943322 + 0.331878i \(0.107682\pi\)
−0.432357 + 0.901703i \(0.642318\pi\)
\(740\) −1.91086 27.0905i −0.0702447 0.995867i
\(741\) 0.00539860 + 0.137568i 0.000198322 + 0.00505369i
\(742\) 12.6574 13.5816i 0.464668 0.498598i
\(743\) 4.47141 0.164040 0.0820200 0.996631i \(-0.473863\pi\)
0.0820200 + 0.996631i \(0.473863\pi\)
\(744\) −0.131715 + 0.0139649i −0.00482890 + 0.000511979i
\(745\) −39.1415 + 39.1415i −1.43403 + 1.43403i
\(746\) −33.8464 31.5431i −1.23920 1.15487i
\(747\) 8.95317 21.6149i 0.327579 0.790846i
\(748\) −22.3467 + 11.1586i −0.817076 + 0.407998i
\(749\) 4.34994 + 10.5017i 0.158943 + 0.383724i
\(750\) 9.56964 4.36464i 0.349434 0.159374i
\(751\) 40.1082i 1.46357i 0.681536 + 0.731784i \(0.261312\pi\)
−0.681536 + 0.731784i \(0.738688\pi\)
\(752\) −15.3994 + 20.4873i −0.561558 + 0.747096i
\(753\) 4.91369 0.179065
\(754\) −1.85419 24.8650i −0.0675258 0.905529i
\(755\) 29.3545 70.8680i 1.06832 2.57915i
\(756\) −1.81810 + 5.44471i −0.0661238 + 0.198022i
\(757\) −8.33284 20.1172i −0.302862 0.731174i −0.999900 0.0141396i \(-0.995499\pi\)
0.697038 0.717034i \(-0.254501\pi\)
\(758\) 9.44244 0.332604i 0.342965 0.0120807i
\(759\) 6.59681i 0.239449i
\(760\) −0.633019 + 2.14420i −0.0229620 + 0.0777781i
\(761\) −0.534563 −0.0193779 −0.00968895 0.999953i \(-0.503084\pi\)
−0.00968895 + 0.999953i \(0.503084\pi\)
\(762\) −2.12021 + 0.0746830i −0.0768071 + 0.00270548i
\(763\) −4.17586 10.0814i −0.151176 0.364972i
\(764\) −13.0916 11.3665i −0.473639 0.411224i
\(765\) 29.9980 12.4256i 1.08458 0.449248i
\(766\) −44.5498 16.6411i −1.60965 0.601267i
\(767\) 10.8182 29.3198i 0.390623 1.05868i
\(768\) 3.29303 + 0.367105i 0.118827 + 0.0132468i
\(769\)