Properties

Label 416.2.bd.a.83.2
Level $416$
Weight $2$
Character 416.83
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 83.2
Character \(\chi\) \(=\) 416.83
Dual form 416.2.bd.a.411.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41215 - 0.0764043i) q^{2} +(2.23541 + 0.925935i) q^{3} +(1.98832 + 0.215788i) q^{4} +(0.344928 - 0.832729i) q^{5} +(-3.08598 - 1.47835i) q^{6} +1.15405i q^{7} +(-2.79132 - 0.456642i) q^{8} +(2.01836 + 2.01836i) q^{9} +O(q^{10})\) \(q+(-1.41215 - 0.0764043i) q^{2} +(2.23541 + 0.925935i) q^{3} +(1.98832 + 0.215788i) q^{4} +(0.344928 - 0.832729i) q^{5} +(-3.08598 - 1.47835i) q^{6} +1.15405i q^{7} +(-2.79132 - 0.456642i) q^{8} +(2.01836 + 2.01836i) q^{9} +(-0.550713 + 1.14958i) q^{10} +(0.739707 + 0.306397i) q^{11} +(4.24491 + 2.32343i) q^{12} +(2.43191 + 2.66192i) q^{13} +(0.0881743 - 1.62969i) q^{14} +(1.54211 - 1.54211i) q^{15} +(3.90687 + 0.858114i) q^{16} +2.50924 q^{17} +(-2.69602 - 3.00444i) q^{18} +(0.0724507 + 0.174911i) q^{19} +(0.865521 - 1.58130i) q^{20} +(-1.06858 + 2.57977i) q^{21} +(-1.02117 - 0.489194i) q^{22} +(-2.04351 - 2.04351i) q^{23} +(-5.81692 - 3.60536i) q^{24} +(2.96107 + 2.96107i) q^{25} +(-3.23084 - 3.94483i) q^{26} +(-0.134820 - 0.325485i) q^{27} +(-0.249030 + 2.29462i) q^{28} +(0.0118475 - 0.0286024i) q^{29} +(-2.29551 + 2.05986i) q^{30} +(-1.77310 - 1.77310i) q^{31} +(-5.45152 - 1.51029i) q^{32} +(1.36984 + 1.36984i) q^{33} +(-3.54342 - 0.191717i) q^{34} +(0.961010 + 0.398063i) q^{35} +(3.57762 + 4.44870i) q^{36} +(-6.94820 - 2.87804i) q^{37} +(-0.0889471 - 0.252536i) q^{38} +(2.97155 + 8.20226i) q^{39} +(-1.34306 + 2.16691i) q^{40} +3.61632 q^{41} +(1.70609 - 3.56137i) q^{42} +(2.96855 + 7.16672i) q^{43} +(1.40466 + 0.768836i) q^{44} +(2.37694 - 0.984560i) q^{45} +(2.72960 + 3.04187i) q^{46} +(-4.85990 - 4.85990i) q^{47} +(7.93888 + 5.53574i) q^{48} +5.66817 q^{49} +(-3.95523 - 4.40771i) q^{50} +(5.60917 + 2.32339i) q^{51} +(4.26102 + 5.81753i) q^{52} +(-0.104594 - 0.252513i) q^{53} +(0.165518 + 0.469934i) q^{54} +(0.510291 - 0.510291i) q^{55} +(0.526987 - 3.22132i) q^{56} +0.458083i q^{57} +(-0.0189158 + 0.0394856i) q^{58} +(2.43293 - 5.87361i) q^{59} +(3.39898 - 2.73344i) q^{60} +(0.846815 - 2.04439i) q^{61} +(2.36840 + 2.63935i) q^{62} +(-2.32929 + 2.32929i) q^{63} +(7.58296 + 2.54927i) q^{64} +(3.05549 - 1.10696i) q^{65} +(-1.82976 - 2.03908i) q^{66} +(-5.88874 + 2.43919i) q^{67} +(4.98918 + 0.541465i) q^{68} +(-2.67591 - 6.46023i) q^{69} +(-1.32667 - 0.635550i) q^{70} -1.39449 q^{71} +(-4.71223 - 6.55557i) q^{72} +0.899564i q^{73} +(9.59200 + 4.59509i) q^{74} +(3.87744 + 9.36096i) q^{75} +(0.106312 + 0.363415i) q^{76} +(-0.353597 + 0.853659i) q^{77} +(-3.56958 - 11.8098i) q^{78} -13.2971 q^{79} +(2.06216 - 2.95738i) q^{80} -9.41561i q^{81} +(-5.10678 - 0.276302i) q^{82} +(2.03448 + 4.91167i) q^{83} +(-2.68136 + 4.89883i) q^{84} +(0.865506 - 2.08952i) q^{85} +(-3.64447 - 10.3473i) q^{86} +(0.0529680 - 0.0529680i) q^{87} +(-1.92485 - 1.19303i) q^{88} -16.4199 q^{89} +(-3.43181 + 1.20874i) q^{90} +(-3.07198 + 2.80655i) q^{91} +(-3.62219 - 4.50412i) q^{92} +(-2.32182 - 5.60537i) q^{93} +(6.49158 + 7.23422i) q^{94} +0.170644 q^{95} +(-10.7879 - 8.42386i) q^{96} +(5.50506 - 5.50506i) q^{97} +(-8.00430 - 0.433072i) q^{98} +(0.874577 + 2.11142i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24} - 4 q^{26} - 8 q^{27} + 56 q^{28} - 8 q^{29} - 16 q^{30} - 44 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} - 28 q^{39} - 8 q^{40} - 8 q^{41} - 48 q^{42} - 32 q^{43} + 12 q^{44} - 36 q^{45} - 48 q^{46} - 8 q^{47} - 8 q^{48} - 168 q^{49} + 76 q^{50} - 4 q^{52} - 8 q^{53} - 28 q^{54} - 40 q^{55} + 56 q^{56} + 32 q^{58} + 52 q^{59} - 36 q^{60} - 8 q^{61} + 72 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} + 20 q^{70} + 56 q^{71} + 8 q^{72} - 8 q^{74} - 68 q^{76} + 56 q^{77} - 48 q^{78} - 16 q^{79} + 28 q^{80} - 88 q^{82} + 36 q^{83} + 100 q^{84} - 24 q^{85} + 96 q^{86} - 8 q^{87} + 64 q^{88} - 8 q^{89} - 64 q^{90} + 72 q^{91} - 8 q^{92} - 40 q^{93} - 56 q^{94} + 36 q^{96} - 8 q^{97} + 52 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41215 0.0764043i −0.998540 0.0540260i
\(3\) 2.23541 + 0.925935i 1.29061 + 0.534589i 0.919168 0.393866i \(-0.128863\pi\)
0.371444 + 0.928455i \(0.378863\pi\)
\(4\) 1.98832 + 0.215788i 0.994162 + 0.107894i
\(5\) 0.344928 0.832729i 0.154256 0.372408i −0.827793 0.561034i \(-0.810404\pi\)
0.982049 + 0.188627i \(0.0604036\pi\)
\(6\) −3.08598 1.47835i −1.25985 0.603535i
\(7\) 1.15405i 0.436190i 0.975928 + 0.218095i \(0.0699842\pi\)
−0.975928 + 0.218095i \(0.930016\pi\)
\(8\) −2.79132 0.456642i −0.986881 0.161447i
\(9\) 2.01836 + 2.01836i 0.672787 + 0.672787i
\(10\) −0.550713 + 1.14958i −0.174151 + 0.363530i
\(11\) 0.739707 + 0.306397i 0.223030 + 0.0923821i 0.491401 0.870934i \(-0.336485\pi\)
−0.268370 + 0.963316i \(0.586485\pi\)
\(12\) 4.24491 + 2.32343i 1.22540 + 0.670718i
\(13\) 2.43191 + 2.66192i 0.674491 + 0.738283i
\(14\) 0.0881743 1.62969i 0.0235656 0.435553i
\(15\) 1.54211 1.54211i 0.398170 0.398170i
\(16\) 3.90687 + 0.858114i 0.976718 + 0.214529i
\(17\) 2.50924 0.608580 0.304290 0.952579i \(-0.401581\pi\)
0.304290 + 0.952579i \(0.401581\pi\)
\(18\) −2.69602 3.00444i −0.635457 0.708153i
\(19\) 0.0724507 + 0.174911i 0.0166213 + 0.0401274i 0.931972 0.362529i \(-0.118087\pi\)
−0.915351 + 0.402657i \(0.868087\pi\)
\(20\) 0.865521 1.58130i 0.193536 0.353590i
\(21\) −1.06858 + 2.57977i −0.233182 + 0.562952i
\(22\) −1.02117 0.489194i −0.217713 0.104297i
\(23\) −2.04351 2.04351i −0.426101 0.426101i 0.461197 0.887298i \(-0.347420\pi\)
−0.887298 + 0.461197i \(0.847420\pi\)
\(24\) −5.81692 3.60536i −1.18737 0.735942i
\(25\) 2.96107 + 2.96107i 0.592214 + 0.592214i
\(26\) −3.23084 3.94483i −0.633620 0.773644i
\(27\) −0.134820 0.325485i −0.0259462 0.0626397i
\(28\) −0.249030 + 2.29462i −0.0470623 + 0.433643i
\(29\) 0.0118475 0.0286024i 0.00220003 0.00531133i −0.922776 0.385338i \(-0.874085\pi\)
0.924976 + 0.380026i \(0.124085\pi\)
\(30\) −2.29551 + 2.05986i −0.419100 + 0.376077i
\(31\) −1.77310 1.77310i −0.318458 0.318458i 0.529717 0.848175i \(-0.322298\pi\)
−0.848175 + 0.529717i \(0.822298\pi\)
\(32\) −5.45152 1.51029i −0.963701 0.266983i
\(33\) 1.36984 + 1.36984i 0.238459 + 0.238459i
\(34\) −3.54342 0.191717i −0.607691 0.0328791i
\(35\) 0.961010 + 0.398063i 0.162440 + 0.0672850i
\(36\) 3.57762 + 4.44870i 0.596270 + 0.741450i
\(37\) −6.94820 2.87804i −1.14228 0.473147i −0.270340 0.962765i \(-0.587136\pi\)
−0.871937 + 0.489618i \(0.837136\pi\)
\(38\) −0.0889471 0.252536i −0.0144291 0.0409668i
\(39\) 2.97155 + 8.20226i 0.475829 + 1.31341i
\(40\) −1.34306 + 2.16691i −0.212357 + 0.342618i
\(41\) 3.61632 0.564775 0.282387 0.959300i \(-0.408874\pi\)
0.282387 + 0.959300i \(0.408874\pi\)
\(42\) 1.70609 3.56137i 0.263256 0.549532i
\(43\) 2.96855 + 7.16672i 0.452700 + 1.09291i 0.971292 + 0.237892i \(0.0764565\pi\)
−0.518592 + 0.855022i \(0.673543\pi\)
\(44\) 1.40466 + 0.768836i 0.211761 + 0.115906i
\(45\) 2.37694 0.984560i 0.354333 0.146769i
\(46\) 2.72960 + 3.04187i 0.402458 + 0.448499i
\(47\) −4.85990 4.85990i −0.708890 0.708890i 0.257412 0.966302i \(-0.417130\pi\)
−0.966302 + 0.257412i \(0.917130\pi\)
\(48\) 7.93888 + 5.53574i 1.14588 + 0.799016i
\(49\) 5.66817 0.809739
\(50\) −3.95523 4.40771i −0.559354 0.623344i
\(51\) 5.60917 + 2.32339i 0.785441 + 0.325340i
\(52\) 4.26102 + 5.81753i 0.590898 + 0.806747i
\(53\) −0.104594 0.252513i −0.0143671 0.0346854i 0.916533 0.399959i \(-0.130976\pi\)
−0.930900 + 0.365273i \(0.880976\pi\)
\(54\) 0.165518 + 0.469934i 0.0225241 + 0.0639500i
\(55\) 0.510291 0.510291i 0.0688076 0.0688076i
\(56\) 0.526987 3.22132i 0.0704216 0.430467i
\(57\) 0.458083i 0.0606745i
\(58\) −0.0189158 + 0.0394856i −0.00248376 + 0.00518472i
\(59\) 2.43293 5.87361i 0.316740 0.764678i −0.682683 0.730715i \(-0.739187\pi\)
0.999423 0.0339637i \(-0.0108130\pi\)
\(60\) 3.39898 2.73344i 0.438806 0.352886i
\(61\) 0.846815 2.04439i 0.108424 0.261757i −0.860351 0.509703i \(-0.829755\pi\)
0.968774 + 0.247945i \(0.0797553\pi\)
\(62\) 2.36840 + 2.63935i 0.300788 + 0.335198i
\(63\) −2.32929 + 2.32929i −0.293463 + 0.293463i
\(64\) 7.58296 + 2.54927i 0.947870 + 0.318658i
\(65\) 3.05549 1.10696i 0.378987 0.137301i
\(66\) −1.82976 2.03908i −0.225228 0.250994i
\(67\) −5.88874 + 2.43919i −0.719424 + 0.297995i −0.712198 0.701979i \(-0.752300\pi\)
−0.00722588 + 0.999974i \(0.502300\pi\)
\(68\) 4.98918 + 0.541465i 0.605027 + 0.0656622i
\(69\) −2.67591 6.46023i −0.322142 0.777720i
\(70\) −1.32667 0.635550i −0.158568 0.0759627i
\(71\) −1.39449 −0.165496 −0.0827479 0.996571i \(-0.526370\pi\)
−0.0827479 + 0.996571i \(0.526370\pi\)
\(72\) −4.71223 6.55557i −0.555342 0.772581i
\(73\) 0.899564i 0.105286i 0.998613 + 0.0526430i \(0.0167645\pi\)
−0.998613 + 0.0526430i \(0.983235\pi\)
\(74\) 9.59200 + 4.59509i 1.11505 + 0.534168i
\(75\) 3.87744 + 9.36096i 0.447728 + 1.08091i
\(76\) 0.106312 + 0.363415i 0.0121948 + 0.0416865i
\(77\) −0.353597 + 0.853659i −0.0402961 + 0.0972834i
\(78\) −3.56958 11.8098i −0.404176 1.33720i
\(79\) −13.2971 −1.49604 −0.748022 0.663674i \(-0.768996\pi\)
−0.748022 + 0.663674i \(0.768996\pi\)
\(80\) 2.06216 2.95738i 0.230557 0.330645i
\(81\) 9.41561i 1.04618i
\(82\) −5.10678 0.276302i −0.563950 0.0305125i
\(83\) 2.03448 + 4.91167i 0.223313 + 0.539126i 0.995336 0.0964690i \(-0.0307549\pi\)
−0.772023 + 0.635595i \(0.780755\pi\)
\(84\) −2.68136 + 4.89883i −0.292560 + 0.534506i
\(85\) 0.865506 2.08952i 0.0938773 0.226640i
\(86\) −3.64447 10.3473i −0.392993 1.11578i
\(87\) 0.0529680 0.0529680i 0.00567876 0.00567876i
\(88\) −1.92485 1.19303i −0.205189 0.127178i
\(89\) −16.4199 −1.74050 −0.870252 0.492606i \(-0.836044\pi\)
−0.870252 + 0.492606i \(0.836044\pi\)
\(90\) −3.43181 + 1.20874i −0.361745 + 0.127412i
\(91\) −3.07198 + 2.80655i −0.322031 + 0.294206i
\(92\) −3.62219 4.50412i −0.377640 0.469587i
\(93\) −2.32182 5.60537i −0.240761 0.581250i
\(94\) 6.49158 + 7.23422i 0.669556 + 0.746153i
\(95\) 0.170644 0.0175077
\(96\) −10.7879 8.42386i −1.10104 0.859756i
\(97\) 5.50506 5.50506i 0.558954 0.558954i −0.370056 0.929010i \(-0.620661\pi\)
0.929010 + 0.370056i \(0.120661\pi\)
\(98\) −8.00430 0.433072i −0.808556 0.0437469i
\(99\) 0.874577 + 2.11142i 0.0878983 + 0.212205i
\(100\) 5.24861 + 6.52654i 0.524861 + 0.652654i
\(101\) −5.95906 14.3864i −0.592949 1.43150i −0.880642 0.473782i \(-0.842888\pi\)
0.287693 0.957723i \(-0.407112\pi\)
\(102\) −7.74346 3.70954i −0.766717 0.367299i
\(103\) −10.5301 + 10.5301i −1.03756 + 1.03756i −0.0382983 + 0.999266i \(0.512194\pi\)
−0.999266 + 0.0382983i \(0.987806\pi\)
\(104\) −5.57271 8.54078i −0.546449 0.837492i
\(105\) 1.77967 + 1.77967i 0.173678 + 0.173678i
\(106\) 0.128410 + 0.364578i 0.0124723 + 0.0354109i
\(107\) −4.87267 + 2.01833i −0.471059 + 0.195119i −0.605568 0.795793i \(-0.707054\pi\)
0.134509 + 0.990912i \(0.457054\pi\)
\(108\) −0.197831 0.676263i −0.0190363 0.0650735i
\(109\) 10.1441 4.20184i 0.971632 0.402463i 0.160313 0.987066i \(-0.448750\pi\)
0.811319 + 0.584603i \(0.198750\pi\)
\(110\) −0.759595 + 0.681618i −0.0724245 + 0.0649897i
\(111\) −12.8672 12.8672i −1.22130 1.22130i
\(112\) −0.990306 + 4.50872i −0.0935752 + 0.426034i
\(113\) 9.65800i 0.908549i −0.890862 0.454274i \(-0.849899\pi\)
0.890862 0.454274i \(-0.150101\pi\)
\(114\) 0.0349995 0.646880i 0.00327800 0.0605859i
\(115\) −2.40655 + 0.996826i −0.224412 + 0.0929545i
\(116\) 0.0297288 0.0543143i 0.00276025 0.00504296i
\(117\) −0.464228 + 10.2812i −0.0429179 + 0.950497i
\(118\) −3.88442 + 8.10852i −0.357590 + 0.746449i
\(119\) 2.89579i 0.265456i
\(120\) −5.00870 + 3.60033i −0.457230 + 0.328663i
\(121\) −7.32489 7.32489i −0.665899 0.665899i
\(122\) −1.35203 + 2.82228i −0.122407 + 0.255518i
\(123\) 8.08395 + 3.34848i 0.728905 + 0.301922i
\(124\) −3.14288 3.90811i −0.282239 0.350958i
\(125\) 7.65077 3.16905i 0.684306 0.283449i
\(126\) 3.46727 3.11133i 0.308889 0.277180i
\(127\) −8.84360 −0.784743 −0.392371 0.919807i \(-0.628345\pi\)
−0.392371 + 0.919807i \(0.628345\pi\)
\(128\) −10.5135 4.17931i −0.929269 0.369403i
\(129\) 18.7692i 1.65254i
\(130\) −4.39938 + 1.32973i −0.385851 + 0.116625i
\(131\) −16.4921 6.83127i −1.44092 0.596851i −0.480902 0.876774i \(-0.659691\pi\)
−0.960022 + 0.279924i \(0.909691\pi\)
\(132\) 2.42810 + 3.01929i 0.211339 + 0.262795i
\(133\) −0.201856 + 0.0836116i −0.0175032 + 0.00725005i
\(134\) 8.50213 2.99458i 0.734472 0.258692i
\(135\) −0.317544 −0.0273299
\(136\) −7.00410 1.14582i −0.600596 0.0982535i
\(137\) 1.66307i 0.142085i 0.997473 + 0.0710426i \(0.0226326\pi\)
−0.997473 + 0.0710426i \(0.977367\pi\)
\(138\) 3.28520 + 9.32725i 0.279655 + 0.793988i
\(139\) 11.0115 4.56110i 0.933980 0.386867i 0.136793 0.990600i \(-0.456320\pi\)
0.797187 + 0.603733i \(0.206320\pi\)
\(140\) 1.82490 + 0.998854i 0.154232 + 0.0844186i
\(141\) −6.36390 15.3638i −0.535937 1.29387i
\(142\) 1.96923 + 0.106545i 0.165254 + 0.00894107i
\(143\) 0.983302 + 2.71417i 0.0822278 + 0.226970i
\(144\) 6.15350 + 9.61747i 0.512791 + 0.801456i
\(145\) −0.0197315 0.0197315i −0.00163861 0.00163861i
\(146\) 0.0687305 1.27032i 0.00568818 0.105132i
\(147\) 12.6707 + 5.24836i 1.04506 + 0.432877i
\(148\) −13.1942 7.22182i −1.08456 0.593630i
\(149\) 13.4417 + 5.56771i 1.10118 + 0.456125i 0.857893 0.513829i \(-0.171773\pi\)
0.243290 + 0.969954i \(0.421773\pi\)
\(150\) −4.76030 13.5153i −0.388677 1.10352i
\(151\) 11.2165 0.912789 0.456395 0.889777i \(-0.349141\pi\)
0.456395 + 0.889777i \(0.349141\pi\)
\(152\) −0.122361 0.521318i −0.00992481 0.0422845i
\(153\) 5.06455 + 5.06455i 0.409445 + 0.409445i
\(154\) 0.564554 1.17848i 0.0454931 0.0949643i
\(155\) −2.08810 + 0.864919i −0.167720 + 0.0694720i
\(156\) 4.13846 + 16.9500i 0.331342 + 1.35708i
\(157\) 4.54481 10.9722i 0.362716 0.875673i −0.632185 0.774817i \(-0.717842\pi\)
0.994901 0.100856i \(-0.0321581\pi\)
\(158\) 18.7775 + 1.01596i 1.49386 + 0.0808252i
\(159\) 0.661317i 0.0524459i
\(160\) −3.13804 + 4.01870i −0.248084 + 0.317706i
\(161\) 2.35831 2.35831i 0.185861 0.185861i
\(162\) −0.719393 + 13.2962i −0.0565209 + 1.04465i
\(163\) −6.59364 15.9184i −0.516453 1.24683i −0.940068 0.340987i \(-0.889239\pi\)
0.423615 0.905842i \(-0.360761\pi\)
\(164\) 7.19042 + 0.780360i 0.561478 + 0.0609359i
\(165\) 1.61320 0.668211i 0.125588 0.0520201i
\(166\) −2.49772 7.09145i −0.193860 0.550403i
\(167\) 20.0072i 1.54820i 0.633061 + 0.774102i \(0.281798\pi\)
−0.633061 + 0.774102i \(0.718202\pi\)
\(168\) 4.16077 6.71301i 0.321010 0.517920i
\(169\) −1.17159 + 12.9471i −0.0901226 + 0.995931i
\(170\) −1.38187 + 2.88458i −0.105985 + 0.221237i
\(171\) −0.206803 + 0.499266i −0.0158146 + 0.0381798i
\(172\) 4.35595 + 14.8903i 0.332138 + 1.13538i
\(173\) 5.72993 13.8333i 0.435639 1.05172i −0.541800 0.840507i \(-0.682257\pi\)
0.977439 0.211218i \(-0.0677429\pi\)
\(174\) −0.0788456 + 0.0707516i −0.00597727 + 0.00536367i
\(175\) −3.41722 + 3.41722i −0.258318 + 0.258318i
\(176\) 2.62702 + 1.83181i 0.198019 + 0.138078i
\(177\) 10.8772 10.8772i 0.817577 0.817577i
\(178\) 23.1873 + 1.25455i 1.73796 + 0.0940325i
\(179\) 3.93283 + 1.62903i 0.293953 + 0.121759i 0.524786 0.851234i \(-0.324145\pi\)
−0.230833 + 0.972993i \(0.574145\pi\)
\(180\) 4.93858 1.44471i 0.368100 0.107682i
\(181\) −7.85386 + 3.25318i −0.583773 + 0.241807i −0.654969 0.755656i \(-0.727318\pi\)
0.0711961 + 0.997462i \(0.477318\pi\)
\(182\) 4.55253 3.72855i 0.337456 0.276378i
\(183\) 3.78595 3.78595i 0.279865 0.279865i
\(184\) 4.77094 + 6.63724i 0.351718 + 0.489304i
\(185\) −4.79325 + 4.79325i −0.352407 + 0.352407i
\(186\) 2.85048 + 8.09301i 0.209007 + 0.593408i
\(187\) 1.85610 + 0.768823i 0.135732 + 0.0562219i
\(188\) −8.61435 10.7118i −0.628266 0.781236i
\(189\) 0.375626 0.155589i 0.0273228 0.0113175i
\(190\) −0.240975 0.0130379i −0.0174821 0.000945871i
\(191\) 12.6823i 0.917658i −0.888525 0.458829i \(-0.848269\pi\)
0.888525 0.458829i \(-0.151731\pi\)
\(192\) 14.5905 + 12.7200i 1.05298 + 0.917985i
\(193\) 8.05832 + 8.05832i 0.580050 + 0.580050i 0.934917 0.354867i \(-0.115474\pi\)
−0.354867 + 0.934917i \(0.615474\pi\)
\(194\) −8.19457 + 7.35335i −0.588336 + 0.527940i
\(195\) 7.85523 + 0.354688i 0.562524 + 0.0253998i
\(196\) 11.2702 + 1.22312i 0.805012 + 0.0873661i
\(197\) −2.71958 + 6.56565i −0.193762 + 0.467783i −0.990664 0.136325i \(-0.956471\pi\)
0.796902 + 0.604109i \(0.206471\pi\)
\(198\) −1.07371 3.04845i −0.0763054 0.216644i
\(199\) −6.83389 + 6.83389i −0.484442 + 0.484442i −0.906547 0.422105i \(-0.861291\pi\)
0.422105 + 0.906547i \(0.361291\pi\)
\(200\) −6.91316 9.61745i −0.488834 0.680057i
\(201\) −15.4223 −1.08780
\(202\) 7.31589 + 20.7711i 0.514744 + 1.46145i
\(203\) 0.0330086 + 0.0136726i 0.00231675 + 0.000959629i
\(204\) 10.6515 + 5.83005i 0.745753 + 0.408185i
\(205\) 1.24737 3.01142i 0.0871200 0.210326i
\(206\) 15.6747 14.0656i 1.09210 0.979994i
\(207\) 8.24908i 0.573351i
\(208\) 7.21694 + 12.4866i 0.500405 + 0.865791i
\(209\) 0.151582i 0.0104851i
\(210\) −2.37718 2.64913i −0.164041 0.182807i
\(211\) 5.41126 13.0639i 0.372527 0.899359i −0.620794 0.783974i \(-0.713190\pi\)
0.993321 0.115385i \(-0.0368103\pi\)
\(212\) −0.153478 0.524649i −0.0105409 0.0360330i
\(213\) −3.11726 1.29121i −0.213591 0.0884723i
\(214\) 7.03514 2.47788i 0.480912 0.169385i
\(215\) 6.99187 0.476841
\(216\) 0.227697 + 0.970099i 0.0154928 + 0.0660069i
\(217\) 2.04624 2.04624i 0.138908 0.138908i
\(218\) −14.6461 + 5.15856i −0.991956 + 0.349382i
\(219\) −0.832938 + 2.01089i −0.0562847 + 0.135883i
\(220\) 1.12474 0.904509i 0.0758299 0.0609820i
\(221\) 6.10225 + 6.67938i 0.410482 + 0.449304i
\(222\) 17.1872 + 19.1535i 1.15353 + 1.28550i
\(223\) −3.49139 3.49139i −0.233801 0.233801i 0.580476 0.814277i \(-0.302866\pi\)
−0.814277 + 0.580476i \(0.802866\pi\)
\(224\) 1.74294 6.29132i 0.116455 0.420356i
\(225\) 11.9530i 0.796869i
\(226\) −0.737913 + 13.6385i −0.0490852 + 0.907222i
\(227\) 6.00222 2.48620i 0.398381 0.165015i −0.174493 0.984658i \(-0.555829\pi\)
0.572874 + 0.819644i \(0.305829\pi\)
\(228\) −0.0988488 + 0.910817i −0.00654642 + 0.0603203i
\(229\) 4.84857 + 2.00834i 0.320403 + 0.132715i 0.537088 0.843526i \(-0.319524\pi\)
−0.216685 + 0.976242i \(0.569524\pi\)
\(230\) 3.47457 1.22380i 0.229106 0.0806947i
\(231\) −1.58087 + 1.58087i −0.104013 + 0.104013i
\(232\) −0.0461313 + 0.0744285i −0.00302866 + 0.00488647i
\(233\) −20.4774 + 20.4774i −1.34152 + 1.34152i −0.446965 + 0.894552i \(0.647495\pi\)
−0.894552 + 0.446965i \(0.852505\pi\)
\(234\) 1.44109 14.4831i 0.0942068 0.946790i
\(235\) −5.72329 + 2.37067i −0.373347 + 0.154645i
\(236\) 6.10491 11.1536i 0.397395 0.726040i
\(237\) −29.7245 12.3123i −1.93081 0.799769i
\(238\) 0.221250 4.08928i 0.0143415 0.265069i
\(239\) −14.2617 + 14.2617i −0.922511 + 0.922511i −0.997206 0.0746955i \(-0.976202\pi\)
0.0746955 + 0.997206i \(0.476202\pi\)
\(240\) 7.34811 4.70151i 0.474319 0.303481i
\(241\) −0.761200 + 0.761200i −0.0490332 + 0.0490332i −0.731198 0.682165i \(-0.761039\pi\)
0.682165 + 0.731198i \(0.261039\pi\)
\(242\) 9.78417 + 10.9035i 0.628950 + 0.700902i
\(243\) 8.31379 20.0713i 0.533330 1.28757i
\(244\) 2.12490 3.88218i 0.136033 0.248531i
\(245\) 1.95511 4.72005i 0.124907 0.301553i
\(246\) −11.1599 5.34620i −0.711529 0.340861i
\(247\) −0.289406 + 0.618227i −0.0184144 + 0.0393368i
\(248\) 4.13962 + 5.75896i 0.262866 + 0.365694i
\(249\) 12.8634i 0.815183i
\(250\) −11.0461 + 3.89062i −0.698620 + 0.246064i
\(251\) 15.4135 6.38447i 0.972890 0.402984i 0.161103 0.986938i \(-0.448495\pi\)
0.811787 + 0.583953i \(0.198495\pi\)
\(252\) −5.13402 + 4.12875i −0.323413 + 0.260087i
\(253\) −0.885474 2.13772i −0.0556692 0.134397i
\(254\) 12.4885 + 0.675689i 0.783596 + 0.0423965i
\(255\) 3.86951 3.86951i 0.242318 0.242318i
\(256\) 14.5273 + 6.70508i 0.907955 + 0.419068i
\(257\) 19.1035i 1.19164i 0.803116 + 0.595822i \(0.203174\pi\)
−0.803116 + 0.595822i \(0.796826\pi\)
\(258\) 1.43405 26.5049i 0.0892799 1.65012i
\(259\) 3.32140 8.01857i 0.206382 0.498250i
\(260\) 6.31417 1.54165i 0.391588 0.0956091i
\(261\) 0.0816426 0.0338175i 0.00505355 0.00209325i
\(262\) 22.7674 + 10.9068i 1.40657 + 0.673826i
\(263\) 13.0752 + 13.0752i 0.806250 + 0.806250i 0.984064 0.177814i \(-0.0569025\pi\)
−0.177814 + 0.984064i \(0.556902\pi\)
\(264\) −3.19814 4.44920i −0.196832 0.273829i
\(265\) −0.246353 −0.0151333
\(266\) 0.291439 0.102649i 0.0178693 0.00629383i
\(267\) −36.7051 15.2038i −2.24632 0.930455i
\(268\) −12.2351 + 3.57919i −0.747376 + 0.218634i
\(269\) −5.56032 2.30316i −0.339019 0.140426i 0.206678 0.978409i \(-0.433735\pi\)
−0.545696 + 0.837983i \(0.683735\pi\)
\(270\) 0.448420 + 0.0242617i 0.0272900 + 0.00147652i
\(271\) 14.2980 + 14.2980i 0.868540 + 0.868540i 0.992311 0.123771i \(-0.0394989\pi\)
−0.123771 + 0.992311i \(0.539499\pi\)
\(272\) 9.80327 + 2.15321i 0.594411 + 0.130558i
\(273\) −9.46581 + 3.42932i −0.572897 + 0.207552i
\(274\) 0.127065 2.34849i 0.00767629 0.141878i
\(275\) 1.28306 + 3.09759i 0.0773716 + 0.186792i
\(276\) −3.92654 13.4225i −0.236350 0.807937i
\(277\) 24.5685 10.1766i 1.47618 0.611452i 0.507917 0.861406i \(-0.330416\pi\)
0.968258 + 0.249954i \(0.0804155\pi\)
\(278\) −15.8983 + 5.59962i −0.953517 + 0.335843i
\(279\) 7.15751i 0.428509i
\(280\) −2.50072 1.54996i −0.149446 0.0926278i
\(281\) −16.8816 −1.00707 −0.503537 0.863974i \(-0.667968\pi\)
−0.503537 + 0.863974i \(0.667968\pi\)
\(282\) 7.81291 + 22.1822i 0.465252 + 1.32093i
\(283\) −19.3706 + 8.02356i −1.15146 + 0.476951i −0.875024 0.484080i \(-0.839154\pi\)
−0.276439 + 0.961032i \(0.589154\pi\)
\(284\) −2.77270 0.300915i −0.164530 0.0178560i
\(285\) 0.381459 + 0.158005i 0.0225957 + 0.00935943i
\(286\) −1.18119 3.90794i −0.0698454 0.231081i
\(287\) 4.17341i 0.246349i
\(288\) −7.95483 14.0514i −0.468743 0.827989i
\(289\) −10.7037 −0.629630
\(290\) 0.0263563 + 0.0293714i 0.00154769 + 0.00172475i
\(291\) 17.4034 7.20871i 1.02020 0.422582i
\(292\) −0.194115 + 1.78863i −0.0113597 + 0.104671i
\(293\) 9.40482 + 3.89560i 0.549435 + 0.227584i 0.640091 0.768299i \(-0.278896\pi\)
−0.0906562 + 0.995882i \(0.528896\pi\)
\(294\) −17.4919 8.37955i −1.02015 0.488705i
\(295\) −4.05194 4.05194i −0.235913 0.235913i
\(296\) 18.0804 + 11.2064i 1.05090 + 0.651357i
\(297\) 0.282072i 0.0163675i
\(298\) −18.5562 8.88944i −1.07493 0.514951i
\(299\) 0.470012 10.4093i 0.0271815 0.601984i
\(300\) 5.68962 + 19.4493i 0.328490 + 1.12291i
\(301\) −8.27075 + 3.42586i −0.476718 + 0.197463i
\(302\) −15.8394 0.856992i −0.911456 0.0493143i
\(303\) 37.6772i 2.16450i
\(304\) 0.132961 + 0.745527i 0.00762586 + 0.0427589i
\(305\) −1.41033 1.41033i −0.0807555 0.0807555i
\(306\) −6.76495 7.53886i −0.386726 0.430968i
\(307\) −6.10788 + 2.52997i −0.348595 + 0.144393i −0.550109 0.835093i \(-0.685414\pi\)
0.201514 + 0.979486i \(0.435414\pi\)
\(308\) −0.887275 + 1.62105i −0.0505572 + 0.0923678i
\(309\) −33.2893 + 13.7889i −1.89376 + 0.784423i
\(310\) 3.01479 1.06185i 0.171229 0.0603093i
\(311\) −19.1932 19.1932i −1.08835 1.08835i −0.995699 0.0926502i \(-0.970466\pi\)
−0.0926502 0.995699i \(-0.529534\pi\)
\(312\) −4.54907 24.2521i −0.257540 1.37300i
\(313\) −0.135692 + 0.135692i −0.00766979 + 0.00766979i −0.710931 0.703261i \(-0.751726\pi\)
0.703261 + 0.710931i \(0.251726\pi\)
\(314\) −7.25627 + 15.1471i −0.409495 + 0.854798i
\(315\) 1.13623 + 2.74310i 0.0640193 + 0.154556i
\(316\) −26.4390 2.86937i −1.48731 0.161414i
\(317\) 10.8643 + 26.2286i 0.610198 + 1.47315i 0.862784 + 0.505573i \(0.168719\pi\)
−0.252586 + 0.967574i \(0.581281\pi\)
\(318\) −0.0505275 + 0.933878i −0.00283344 + 0.0523693i
\(319\) 0.0175274 0.0175274i 0.000981344 0.000981344i
\(320\) 4.73842 5.43523i 0.264886 0.303839i
\(321\) −12.7612 −0.712263
\(322\) −3.51047 + 3.15010i −0.195631 + 0.175548i
\(323\) 0.181796 + 0.438895i 0.0101154 + 0.0244207i
\(324\) 2.03178 18.7213i 0.112877 1.04007i
\(325\) −0.681054 + 15.0832i −0.0377781 + 0.836665i
\(326\) 8.09495 + 22.9830i 0.448338 + 1.27291i
\(327\) 26.5669 1.46915
\(328\) −10.0943 1.65136i −0.557366 0.0911813i
\(329\) 5.60857 5.60857i 0.309210 0.309210i
\(330\) −2.32914 + 0.820357i −0.128215 + 0.0451592i
\(331\) 9.48962 22.9100i 0.521597 1.25925i −0.415314 0.909678i \(-0.636328\pi\)
0.936911 0.349568i \(-0.113672\pi\)
\(332\) 2.98533 + 10.2050i 0.163841 + 0.560073i
\(333\) −8.21506 19.8329i −0.450183 1.08684i
\(334\) 1.52864 28.2531i 0.0836432 1.54594i
\(335\) 5.74507i 0.313886i
\(336\) −6.38852 + 9.16186i −0.348522 + 0.499821i
\(337\) −2.93788 −0.160037 −0.0800183 0.996793i \(-0.525498\pi\)
−0.0800183 + 0.996793i \(0.525498\pi\)
\(338\) 2.64368 18.1937i 0.143797 0.989607i
\(339\) 8.94269 21.5896i 0.485700 1.17258i
\(340\) 2.17180 3.96787i 0.117782 0.215188i
\(341\) −0.768302 1.85484i −0.0416059 0.100445i
\(342\) 0.330182 0.689237i 0.0178542 0.0372697i
\(343\) 14.6197i 0.789389i
\(344\) −5.01356 21.3602i −0.270313 1.15166i
\(345\) −6.30261 −0.339321
\(346\) −9.14843 + 19.0968i −0.491823 + 1.02665i
\(347\) 13.2968 + 32.1014i 0.713811 + 1.72329i 0.690250 + 0.723571i \(0.257501\pi\)
0.0235615 + 0.999722i \(0.492499\pi\)
\(348\) 0.116747 0.0938877i 0.00625832 0.00503291i
\(349\) 13.5377 5.60752i 0.724659 0.300164i 0.0103039 0.999947i \(-0.496720\pi\)
0.714355 + 0.699783i \(0.246720\pi\)
\(350\) 5.08672 4.56453i 0.271896 0.243985i
\(351\) 0.538543 1.15043i 0.0287453 0.0614056i
\(352\) −3.56978 2.78750i −0.190270 0.148574i
\(353\) 3.47632 3.47632i 0.185026 0.185026i −0.608516 0.793542i \(-0.708235\pi\)
0.793542 + 0.608516i \(0.208235\pi\)
\(354\) −16.1912 + 14.5291i −0.860554 + 0.772213i
\(355\) −0.480999 + 1.16123i −0.0255288 + 0.0616319i
\(356\) −32.6481 3.54322i −1.73034 0.187790i
\(357\) −2.68131 + 6.47326i −0.141910 + 0.342601i
\(358\) −5.42927 2.60092i −0.286946 0.137463i
\(359\) 5.74379i 0.303146i −0.988446 0.151573i \(-0.951566\pi\)
0.988446 0.151573i \(-0.0484338\pi\)
\(360\) −7.08439 + 1.66281i −0.373380 + 0.0876380i
\(361\) 13.4097 13.4097i 0.705773 0.705773i
\(362\) 11.3394 3.99390i 0.595984 0.209915i
\(363\) −9.59172 23.1565i −0.503435 1.21540i
\(364\) −6.71372 + 4.91743i −0.351894 + 0.257743i
\(365\) 0.749093 + 0.310284i 0.0392093 + 0.0162410i
\(366\) −5.63558 + 5.05706i −0.294577 + 0.264337i
\(367\) 7.53460 0.393303 0.196652 0.980473i \(-0.436993\pi\)
0.196652 + 0.980473i \(0.436993\pi\)
\(368\) −6.23016 9.73729i −0.324769 0.507591i
\(369\) 7.29905 + 7.29905i 0.379973 + 0.379973i
\(370\) 7.13501 6.40256i 0.370931 0.332853i
\(371\) 0.291413 0.120707i 0.0151294 0.00626680i
\(372\) −3.40696 11.6463i −0.176643 0.603833i
\(373\) 11.8176 + 28.5303i 0.611894 + 1.47724i 0.860918 + 0.508745i \(0.169890\pi\)
−0.249024 + 0.968497i \(0.580110\pi\)
\(374\) −2.56235 1.22751i −0.132496 0.0634728i
\(375\) 20.0369 1.03470
\(376\) 11.3463 + 15.7848i 0.585142 + 0.814038i
\(377\) 0.104949 0.0380215i 0.00540516 0.00195821i
\(378\) −0.542328 + 0.191016i −0.0278943 + 0.00982480i
\(379\) −1.35929 0.563035i −0.0698219 0.0289212i 0.347499 0.937680i \(-0.387031\pi\)
−0.417321 + 0.908759i \(0.637031\pi\)
\(380\) 0.339296 + 0.0368230i 0.0174055 + 0.00188898i
\(381\) −19.7690 8.18860i −1.01280 0.419515i
\(382\) −0.968980 + 17.9093i −0.0495774 + 0.916317i
\(383\) 9.52469 + 9.52469i 0.486689 + 0.486689i 0.907260 0.420571i \(-0.138170\pi\)
−0.420571 + 0.907260i \(0.638170\pi\)
\(384\) −19.6321 19.0773i −1.00185 0.973533i
\(385\) 0.588901 + 0.588901i 0.0300132 + 0.0300132i
\(386\) −10.7638 11.9952i −0.547866 0.610541i
\(387\) −8.47342 + 20.4566i −0.430728 + 1.03987i
\(388\) 12.1338 9.75792i 0.615999 0.495383i
\(389\) 9.24248 + 22.3133i 0.468613 + 1.13133i 0.964769 + 0.263098i \(0.0847441\pi\)
−0.496157 + 0.868233i \(0.665256\pi\)
\(390\) −11.0656 1.10105i −0.560331 0.0557536i
\(391\) −5.12765 5.12765i −0.259317 0.259317i
\(392\) −15.8217 2.58832i −0.799116 0.130730i
\(393\) −30.5413 30.5413i −1.54061 1.54061i
\(394\) 4.34210 9.06389i 0.218752 0.456632i
\(395\) −4.58655 + 11.0729i −0.230774 + 0.557138i
\(396\) 1.28333 + 4.38691i 0.0644895 + 0.220450i
\(397\) 6.83669 + 16.5052i 0.343124 + 0.828374i 0.997396 + 0.0721149i \(0.0229748\pi\)
−0.654273 + 0.756259i \(0.727025\pi\)
\(398\) 10.1726 9.12833i 0.509906 0.457562i
\(399\) −0.528650 −0.0264656
\(400\) 9.02759 + 14.1095i 0.451379 + 0.705473i
\(401\) −28.1013 + 28.1013i −1.40331 + 1.40331i −0.614021 + 0.789290i \(0.710449\pi\)
−0.789290 + 0.614021i \(0.789551\pi\)
\(402\) 21.7785 + 1.17833i 1.08621 + 0.0587696i
\(403\) 0.407817 9.03186i 0.0203148 0.449909i
\(404\) −8.74412 29.8908i −0.435036 1.48712i
\(405\) −7.84065 3.24770i −0.389605 0.161380i
\(406\) −0.0455684 0.0218297i −0.00226152 0.00108339i
\(407\) −4.25781 4.25781i −0.211052 0.211052i
\(408\) −14.5960 9.04672i −0.722612 0.447879i
\(409\) 14.0615i 0.695296i −0.937625 0.347648i \(-0.886980\pi\)
0.937625 0.347648i \(-0.113020\pi\)
\(410\) −1.99156 + 4.15726i −0.0983559 + 0.205312i
\(411\) −1.53989 + 3.71763i −0.0759572 + 0.183377i
\(412\) −23.2096 + 18.6650i −1.14345 + 0.919561i
\(413\) 6.77843 + 2.80772i 0.333545 + 0.138159i
\(414\) −0.630265 + 11.6489i −0.0309758 + 0.572513i
\(415\) 4.79184 0.235222
\(416\) −9.23736 18.1844i −0.452899 0.891562i
\(417\) 28.8384 1.41222
\(418\) 0.0115815 0.214056i 0.000566470 0.0104698i
\(419\) 19.0430 + 7.88788i 0.930313 + 0.385348i 0.795797 0.605563i \(-0.207052\pi\)
0.134516 + 0.990911i \(0.457052\pi\)
\(420\) 3.15452 + 3.92259i 0.153925 + 0.191403i
\(421\) 5.91937 14.2906i 0.288492 0.696482i −0.711488 0.702698i \(-0.751979\pi\)
0.999981 + 0.00621572i \(0.00197854\pi\)
\(422\) −8.63965 + 18.0348i −0.420571 + 0.877919i
\(423\) 19.6181i 0.953864i
\(424\) 0.176649 + 0.752608i 0.00857882 + 0.0365499i
\(425\) 7.43004 + 7.43004i 0.360410 + 0.360410i
\(426\) 4.30337 + 2.06155i 0.208499 + 0.0998825i
\(427\) 2.35933 + 0.977266i 0.114176 + 0.0472932i
\(428\) −10.1240 + 2.96162i −0.489361 + 0.143155i
\(429\) −0.315067 + 6.97774i −0.0152116 + 0.336889i
\(430\) −9.87355 0.534209i −0.476145 0.0257618i
\(431\) 23.4545 23.4545i 1.12976 1.12976i 0.139546 0.990216i \(-0.455436\pi\)
0.990216 0.139546i \(-0.0445642\pi\)
\(432\) −0.247422 1.38732i −0.0119041 0.0667475i
\(433\) 27.3029 1.31209 0.656047 0.754720i \(-0.272227\pi\)
0.656047 + 0.754720i \(0.272227\pi\)
\(434\) −3.04594 + 2.73326i −0.146210 + 0.131200i
\(435\) −0.0258378 0.0623781i −0.00123883 0.00299080i
\(436\) 21.0765 6.16563i 1.00938 0.295280i
\(437\) 0.209379 0.505486i 0.0100160 0.0241807i
\(438\) 1.32987 2.77604i 0.0635438 0.132644i
\(439\) −5.07865 5.07865i −0.242391 0.242391i 0.575448 0.817839i \(-0.304828\pi\)
−0.817839 + 0.575448i \(0.804828\pi\)
\(440\) −1.65741 + 1.19137i −0.0790137 + 0.0567961i
\(441\) 11.4404 + 11.4404i 0.544782 + 0.544782i
\(442\) −8.10695 9.89852i −0.385608 0.470825i
\(443\) −0.504588 1.21818i −0.0239737 0.0578776i 0.911439 0.411434i \(-0.134972\pi\)
−0.935413 + 0.353557i \(0.884972\pi\)
\(444\) −22.8075 28.3607i −1.08240 1.34594i
\(445\) −5.66367 + 13.6733i −0.268484 + 0.648177i
\(446\) 4.66361 + 5.19712i 0.220828 + 0.246091i
\(447\) 24.8922 + 24.8922i 1.17736 + 1.17736i
\(448\) −2.94198 + 8.75111i −0.138995 + 0.413451i
\(449\) 27.7117 + 27.7117i 1.30780 + 1.30780i 0.923003 + 0.384793i \(0.125727\pi\)
0.384793 + 0.923003i \(0.374273\pi\)
\(450\) 0.913263 16.8795i 0.0430516 0.795705i
\(451\) 2.67502 + 1.10803i 0.125962 + 0.0521751i
\(452\) 2.08408 19.2032i 0.0980271 0.903245i
\(453\) 25.0735 + 10.3858i 1.17806 + 0.487967i
\(454\) −8.66597 + 3.05229i −0.406714 + 0.143251i
\(455\) 1.27748 + 3.52618i 0.0598893 + 0.165310i
\(456\) 0.209180 1.27866i 0.00979573 0.0598785i
\(457\) 37.8177 1.76904 0.884519 0.466505i \(-0.154487\pi\)
0.884519 + 0.466505i \(0.154487\pi\)
\(458\) −6.69346 3.20653i −0.312765 0.149831i
\(459\) −0.338297 0.816721i −0.0157903 0.0381213i
\(460\) −5.00011 + 1.46271i −0.233131 + 0.0681991i
\(461\) 7.47061 3.09443i 0.347941 0.144122i −0.201867 0.979413i \(-0.564701\pi\)
0.549808 + 0.835291i \(0.314701\pi\)
\(462\) 2.35320 2.11163i 0.109481 0.0982420i
\(463\) 2.17099 + 2.17099i 0.100894 + 0.100894i 0.755752 0.654858i \(-0.227271\pi\)
−0.654858 + 0.755752i \(0.727271\pi\)
\(464\) 0.0708308 0.101579i 0.00328824 0.00471571i
\(465\) −5.46861 −0.253601
\(466\) 30.4816 27.3525i 1.41203 1.26708i
\(467\) 23.2918 + 9.64779i 1.07782 + 0.446447i 0.849743 0.527197i \(-0.176757\pi\)
0.228075 + 0.973644i \(0.426757\pi\)
\(468\) −3.14160 + 20.3422i −0.145220 + 0.940317i
\(469\) −2.81495 6.79589i −0.129982 0.313805i
\(470\) 8.26327 2.91045i 0.381156 0.134249i
\(471\) 20.3190 20.3190i 0.936251 0.936251i
\(472\) −9.47322 + 15.2842i −0.436040 + 0.703510i
\(473\) 6.21083i 0.285574i
\(474\) 41.0347 + 19.6578i 1.88478 + 0.902915i
\(475\) −0.303394 + 0.732457i −0.0139206 + 0.0336074i
\(476\) −0.624877 + 5.75776i −0.0286412 + 0.263907i
\(477\) 0.298554 0.720773i 0.0136698 0.0330019i
\(478\) 21.2292 19.0499i 0.971003 0.871324i
\(479\) −19.5362 + 19.5362i −0.892630 + 0.892630i −0.994770 0.102140i \(-0.967431\pi\)
0.102140 + 0.994770i \(0.467431\pi\)
\(480\) −10.7358 + 6.07780i −0.490022 + 0.277412i
\(481\) −9.23633 25.4947i −0.421140 1.16246i
\(482\) 1.13309 1.01677i 0.0516107 0.0463125i
\(483\) 7.45542 3.08814i 0.339233 0.140515i
\(484\) −12.9836 16.1449i −0.590165 0.733858i
\(485\) −2.68537 6.48307i −0.121937 0.294381i
\(486\) −13.2738 + 27.7084i −0.602113 + 1.25688i
\(487\) −22.1299 −1.00280 −0.501400 0.865215i \(-0.667182\pi\)
−0.501400 + 0.865215i \(0.667182\pi\)
\(488\) −3.29729 + 5.31986i −0.149261 + 0.240819i
\(489\) 41.6895i 1.88526i
\(490\) −3.12153 + 6.51603i −0.141017 + 0.294364i
\(491\) 9.95219 + 24.0267i 0.449136 + 1.08431i 0.972646 + 0.232291i \(0.0746221\pi\)
−0.523511 + 0.852019i \(0.675378\pi\)
\(492\) 15.3510 + 8.40229i 0.692074 + 0.378804i
\(493\) 0.0297282 0.0717703i 0.00133889 0.00323237i
\(494\) 0.455919 0.850916i 0.0205128 0.0382845i
\(495\) 2.05990 0.0925858
\(496\) −5.40574 8.44879i −0.242725 0.379362i
\(497\) 1.60931i 0.0721876i
\(498\) 0.982817 18.1650i 0.0440411 0.813993i
\(499\) 1.94745 + 4.70156i 0.0871798 + 0.210471i 0.961456 0.274957i \(-0.0886637\pi\)
−0.874277 + 0.485428i \(0.838664\pi\)
\(500\) 15.8961 4.65016i 0.710893 0.207961i
\(501\) −18.5254 + 44.7242i −0.827653 + 1.99813i
\(502\) −22.2539 + 7.83816i −0.993241 + 0.349834i
\(503\) −30.6073 + 30.6073i −1.36471 + 1.36471i −0.496908 + 0.867803i \(0.665531\pi\)
−0.867803 + 0.496908i \(0.834469\pi\)
\(504\) 7.56545 5.43815i 0.336992 0.242234i
\(505\) −14.0355 −0.624569
\(506\) 1.08709 + 3.08643i 0.0483270 + 0.137209i
\(507\) −14.6072 + 27.8572i −0.648727 + 1.23718i
\(508\) −17.5839 1.90835i −0.780162 0.0846691i
\(509\) −11.4306 27.5958i −0.506651 1.22316i −0.945800 0.324750i \(-0.894720\pi\)
0.439149 0.898414i \(-0.355280\pi\)
\(510\) −5.75997 + 5.16868i −0.255056 + 0.228873i
\(511\) −1.03814 −0.0459247
\(512\) −20.0024 10.5785i −0.883988 0.467509i
\(513\) 0.0471633 0.0471633i 0.00208231 0.00208231i
\(514\) 1.45959 26.9770i 0.0643798 1.18990i
\(515\) 5.13661 + 12.4009i 0.226346 + 0.546448i
\(516\) −4.05018 + 37.3193i −0.178299 + 1.64289i
\(517\) −2.10585 5.08396i −0.0926150 0.223592i
\(518\) −5.30296 + 11.0696i −0.232999 + 0.486372i
\(519\) 25.6174 25.6174i 1.12448 1.12448i
\(520\) −9.03433 + 1.69461i −0.396182 + 0.0743135i
\(521\) −1.53099 1.53099i −0.0670740 0.0670740i 0.672774 0.739848i \(-0.265103\pi\)
−0.739848 + 0.672774i \(0.765103\pi\)
\(522\) −0.117875 + 0.0415174i −0.00515926 + 0.00181717i
\(523\) −21.3702 + 8.85181i −0.934452 + 0.387063i −0.797366 0.603497i \(-0.793774\pi\)
−0.137086 + 0.990559i \(0.543774\pi\)
\(524\) −31.3176 17.1416i −1.36812 0.748834i
\(525\) −10.8030 + 4.47475i −0.471482 + 0.195294i
\(526\) −17.4651 19.4631i −0.761514 0.848631i
\(527\) −4.44913 4.44913i −0.193807 0.193807i
\(528\) 4.17632 + 6.52728i 0.181751 + 0.284063i
\(529\) 14.6481i 0.636876i
\(530\) 0.347886 + 0.0188224i 0.0151112 + 0.000817592i
\(531\) 16.7656 6.94454i 0.727565 0.301367i
\(532\) −0.419398 + 0.122689i −0.0181832 + 0.00531924i
\(533\) 8.79458 + 9.62635i 0.380936 + 0.416963i
\(534\) 50.6714 + 24.2744i 2.19277 + 1.05046i
\(535\) 4.75379i 0.205524i
\(536\) 17.5512 4.11954i 0.758096 0.177937i
\(537\) 7.28309 + 7.28309i 0.314288 + 0.314288i
\(538\) 7.67602 + 3.67723i 0.330937 + 0.158537i
\(539\) 4.19279 + 1.73671i 0.180596 + 0.0748054i
\(540\) −0.631381 0.0685224i −0.0271703 0.00294873i
\(541\) −36.9284 + 15.2962i −1.58767 + 0.657636i −0.989606 0.143808i \(-0.954065\pi\)
−0.598069 + 0.801445i \(0.704065\pi\)
\(542\) −19.0984 21.2833i −0.820348 0.914195i
\(543\) −20.5688 −0.882692
\(544\) −13.6792 3.78967i −0.586489 0.162481i
\(545\) 9.89664i 0.423926i
\(546\) 13.6291 4.11948i 0.583273 0.176297i
\(547\) −38.8333 16.0853i −1.66039 0.687757i −0.662285 0.749252i \(-0.730413\pi\)
−0.998107 + 0.0614950i \(0.980413\pi\)
\(548\) −0.358870 + 3.30671i −0.0153302 + 0.141256i
\(549\) 5.83550 2.41714i 0.249053 0.103161i
\(550\) −1.57521 4.47229i −0.0671670 0.190699i
\(551\) 0.00586125 0.000249697
\(552\) 4.51933 + 19.2545i 0.192355 + 0.819526i
\(553\) 15.3455i 0.652559i
\(554\) −35.4718 + 12.4937i −1.50705 + 0.530807i
\(555\) −15.1531 + 6.27662i −0.643214 + 0.266428i
\(556\) 22.8786 6.69280i 0.970268 0.283838i
\(557\) −5.59310 13.5029i −0.236987 0.572138i 0.759981 0.649945i \(-0.225208\pi\)
−0.996968 + 0.0778073i \(0.975208\pi\)
\(558\) −0.546864 + 10.1075i −0.0231506 + 0.427883i
\(559\) −11.8579 + 25.3309i −0.501537 + 1.07138i
\(560\) 3.41296 + 2.37984i 0.144224 + 0.100567i
\(561\) 3.43726 + 3.43726i 0.145121 + 0.145121i
\(562\) 23.8394 + 1.28983i 1.00560 + 0.0544081i
\(563\) 5.89009 + 2.43975i 0.248238 + 0.102823i 0.503333 0.864093i \(-0.332107\pi\)
−0.255095 + 0.966916i \(0.582107\pi\)
\(564\) −9.33817 31.9215i −0.393208 1.34414i
\(565\) −8.04250 3.33131i −0.338350 0.140149i
\(566\) 27.9672 9.85046i 1.17555 0.414046i
\(567\) 10.8661 0.456333
\(568\) 3.89248 + 0.636783i 0.163325 + 0.0267188i
\(569\) −8.64118 8.64118i −0.362257 0.362257i 0.502386 0.864643i \(-0.332456\pi\)
−0.864643 + 0.502386i \(0.832456\pi\)
\(570\) −0.526604 0.252272i −0.0220570 0.0105665i
\(571\) −0.579560 + 0.240062i −0.0242538 + 0.0100463i −0.394777 0.918777i \(-0.629178\pi\)
0.370524 + 0.928823i \(0.379178\pi\)
\(572\) 1.36944 + 5.60883i 0.0572590 + 0.234517i
\(573\) 11.7430 28.3500i 0.490570 1.18434i
\(574\) 0.318867 5.89348i 0.0133092 0.245989i
\(575\) 12.1019i 0.504686i
\(576\) 10.1598 + 20.4505i 0.423325 + 0.852104i
\(577\) 18.4191 18.4191i 0.766796 0.766796i −0.210745 0.977541i \(-0.567589\pi\)
0.977541 + 0.210745i \(0.0675891\pi\)
\(578\) 15.1152 + 0.817810i 0.628711 + 0.0340164i
\(579\) 10.5521 + 25.4751i 0.438532 + 1.05871i
\(580\) −0.0349748 0.0434905i −0.00145225 0.00180584i
\(581\) −5.66831 + 2.34789i −0.235161 + 0.0974069i
\(582\) −25.1269 + 8.85008i −1.04154 + 0.366847i
\(583\) 0.218833i 0.00906315i
\(584\) 0.410778 2.51097i 0.0169981 0.103905i
\(585\) 8.40132 + 3.93284i 0.347352 + 0.162603i
\(586\) −12.9834 6.21974i −0.536337 0.256935i
\(587\) −2.94384 + 7.10705i −0.121505 + 0.293340i −0.972916 0.231161i \(-0.925748\pi\)
0.851410 + 0.524500i \(0.175748\pi\)
\(588\) 24.0609 + 13.1696i 0.992253 + 0.543106i
\(589\) 0.181673 0.438597i 0.00748570 0.0180721i
\(590\) 5.41235 + 6.03152i 0.222823 + 0.248314i
\(591\) −12.1587 + 12.1587i −0.500144 + 0.500144i
\(592\) −24.6760 17.2065i −1.01418 0.707182i
\(593\) 11.0895 11.0895i 0.455393 0.455393i −0.441747 0.897140i \(-0.645641\pi\)
0.897140 + 0.441747i \(0.145641\pi\)
\(594\) −0.0215515 + 0.398328i −0.000884270 + 0.0163436i
\(595\) 2.41140 + 0.998836i 0.0988580 + 0.0409483i
\(596\) 25.5249 + 13.9710i 1.04554 + 0.572273i
\(597\) −21.6043 + 8.94878i −0.884203 + 0.366249i
\(598\) −1.45904 + 14.6635i −0.0596646 + 0.599637i
\(599\) −1.73973 + 1.73973i −0.0710836 + 0.0710836i −0.741755 0.670671i \(-0.766006\pi\)
0.670671 + 0.741755i \(0.266006\pi\)
\(600\) −6.54857 27.9000i −0.267344 1.13901i
\(601\) −16.5353 + 16.5353i −0.674488 + 0.674488i −0.958747 0.284259i \(-0.908252\pi\)
0.284259 + 0.958747i \(0.408252\pi\)
\(602\) 11.9413 4.20590i 0.486690 0.171419i
\(603\) −16.8088 6.96243i −0.684507 0.283532i
\(604\) 22.3021 + 2.42040i 0.907461 + 0.0984846i
\(605\) −8.62620 + 3.57309i −0.350705 + 0.145267i
\(606\) −2.87870 + 53.2059i −0.116939 + 2.16134i
\(607\) 11.0822i 0.449812i −0.974380 0.224906i \(-0.927792\pi\)
0.974380 0.224906i \(-0.0722076\pi\)
\(608\) −0.130800 1.06295i −0.00530463 0.0431085i
\(609\) 0.0611276 + 0.0611276i 0.00247702 + 0.00247702i
\(610\) 1.88384 + 2.09936i 0.0762746 + 0.0850004i
\(611\) 1.11779 24.7555i 0.0452209 1.00150i
\(612\) 8.97711 + 11.1629i 0.362878 + 0.451232i
\(613\) 5.65034 13.6411i 0.228215 0.550960i −0.767745 0.640755i \(-0.778621\pi\)
0.995960 + 0.0897955i \(0.0286213\pi\)
\(614\) 8.81854 3.10602i 0.355887 0.125349i
\(615\) 5.57675 5.57675i 0.224876 0.224876i
\(616\) 1.37682 2.22137i 0.0554736 0.0895015i
\(617\) −29.5338 −1.18899 −0.594493 0.804101i \(-0.702647\pi\)
−0.594493 + 0.804101i \(0.702647\pi\)
\(618\) 48.0630 16.9285i 1.93338 0.680965i
\(619\) 10.2945 + 4.26411i 0.413770 + 0.171389i 0.579850 0.814723i \(-0.303111\pi\)
−0.166080 + 0.986112i \(0.553111\pi\)
\(620\) −4.33846 + 1.26915i −0.174237 + 0.0509704i
\(621\) −0.389625 + 0.940639i −0.0156351 + 0.0377465i
\(622\) 25.6373 + 28.5701i 1.02796 + 1.14556i
\(623\) 18.9494i 0.759190i
\(624\) 4.57099 + 34.5951i 0.182986 + 1.38491i
\(625\) 13.4738i 0.538953i
\(626\) 0.201985 0.181250i 0.00807296 0.00724422i
\(627\) −0.140355 + 0.338847i −0.00560524 + 0.0135322i
\(628\) 11.4042 20.8355i 0.455078 0.831426i
\(629\) −17.4347 7.22169i −0.695167 0.287948i
\(630\) −1.39494 3.96048i −0.0555758 0.157789i
\(631\) 31.4475 1.25191 0.625953 0.779861i \(-0.284710\pi\)
0.625953 + 0.779861i \(0.284710\pi\)
\(632\) 37.1166 + 6.07202i 1.47642 + 0.241532i
\(633\) 24.1927 24.1927i 0.961575 0.961575i
\(634\) −13.3380 37.8688i −0.529718 1.50396i
\(635\) −3.05040 + 7.36432i −0.121051 + 0.292244i
\(636\) 0.142705 1.31491i 0.00565860 0.0521397i
\(637\) 13.7845 + 15.0882i 0.546162 + 0.597816i
\(638\) −0.0260904 + 0.0234121i −0.00103293 + 0.000926893i
\(639\) −2.81459 2.81459i −0.111344 0.111344i
\(640\) −7.10662 + 7.31332i −0.280914 + 0.289084i
\(641\) 11.4636i 0.452785i 0.974036 + 0.226392i \(0.0726931\pi\)
−0.974036 + 0.226392i \(0.927307\pi\)
\(642\) 18.0208 + 0.975013i 0.711222 + 0.0384807i
\(643\) −23.5941 + 9.77301i −0.930462 + 0.385410i −0.795854 0.605489i \(-0.792978\pi\)
−0.134608 + 0.990899i \(0.542978\pi\)
\(644\) 5.19798 4.18019i 0.204829 0.164723i
\(645\) 15.6297 + 6.47402i 0.615417 + 0.254914i
\(646\) −0.223190 0.633674i −0.00878128 0.0249316i
\(647\) −7.14355 + 7.14355i −0.280842 + 0.280842i −0.833445 0.552603i \(-0.813635\pi\)
0.552603 + 0.833445i \(0.313635\pi\)
\(648\) −4.29956 + 26.2820i −0.168903 + 1.03245i
\(649\) 3.59931 3.59931i 0.141285 0.141285i
\(650\) 2.11417 21.2477i 0.0829245 0.833402i
\(651\) 6.46887 2.67949i 0.253535 0.105018i
\(652\) −9.67528 33.0739i −0.378913 1.29527i
\(653\) 12.7020 + 5.26132i 0.497066 + 0.205892i 0.617110 0.786877i \(-0.288303\pi\)
−0.120044 + 0.992769i \(0.538303\pi\)
\(654\) −37.5164 2.02982i −1.46701 0.0793724i
\(655\) −11.3772 + 11.3772i −0.444543 + 0.444543i
\(656\) 14.1285 + 3.10322i 0.551625 + 0.121160i
\(657\) −1.81565 + 1.81565i −0.0708351 + 0.0708351i
\(658\) −8.34865 + 7.49161i −0.325464 + 0.292053i
\(659\) 8.05605 19.4490i 0.313819 0.757627i −0.685737 0.727849i \(-0.740520\pi\)
0.999557 0.0297777i \(-0.00947993\pi\)
\(660\) 3.35176 0.980510i 0.130467 0.0381663i
\(661\) 9.19732 22.2043i 0.357734 0.863647i −0.637883 0.770133i \(-0.720190\pi\)
0.995618 0.0935144i \(-0.0298101\pi\)
\(662\) −15.1512 + 31.6272i −0.588867 + 1.22923i
\(663\) 7.45633 + 20.5814i 0.289580 + 0.799316i
\(664\) −3.43602 14.6391i −0.133343 0.568107i
\(665\) 0.196932i 0.00763668i
\(666\) 10.0856 + 28.6347i 0.390808 + 1.10957i
\(667\) −0.0826597 + 0.0342388i −0.00320060 + 0.00132573i
\(668\) −4.31732 + 39.7808i −0.167042 + 1.53917i
\(669\) −4.57188 11.0375i −0.176759 0.426734i
\(670\) 0.438948 8.11288i 0.0169580 0.313428i
\(671\) 1.25279 1.25279i 0.0483634 0.0483634i
\(672\) 9.72154 12.4498i 0.375017 0.480261i
\(673\) 41.9454i 1.61688i −0.588582 0.808438i \(-0.700314\pi\)
0.588582 0.808438i \(-0.299686\pi\)
\(674\) 4.14872 + 0.224467i 0.159803 + 0.00864613i
\(675\) 0.564572 1.36300i 0.0217304 0.0524618i
\(676\) −5.12334 + 25.4902i −0.197052 + 0.980393i
\(677\) −5.29844 + 2.19469i −0.203636 + 0.0843486i −0.482170 0.876078i \(-0.660151\pi\)
0.278535 + 0.960426i \(0.410151\pi\)
\(678\) −14.2779 + 29.8044i −0.548341 + 1.14463i
\(679\) 6.35311 + 6.35311i 0.243810 + 0.243810i
\(680\) −3.37007 + 5.43729i −0.129236 + 0.208510i
\(681\) 15.7194 0.602371
\(682\) 0.943238 + 2.67802i 0.0361184 + 0.102547i
\(683\) −5.03273 2.08462i −0.192572 0.0797659i 0.284314 0.958731i \(-0.408234\pi\)
−0.476885 + 0.878965i \(0.658234\pi\)
\(684\) −0.518927 + 0.948078i −0.0198417 + 0.0362507i
\(685\) 1.38488 + 0.573637i 0.0529136 + 0.0219175i
\(686\) 1.11701 20.6452i 0.0426475 0.788236i
\(687\) 8.97893 + 8.97893i 0.342567 + 0.342567i
\(688\) 5.44788 + 30.5468i 0.207699 + 1.16459i
\(689\) 0.417805 0.892512i 0.0159171 0.0340020i
\(690\) 8.90022 + 0.481547i 0.338826 + 0.0183322i
\(691\) −5.11955 12.3597i −0.194757 0.470184i 0.796090 0.605179i \(-0.206898\pi\)
−0.990846 + 0.134994i \(0.956898\pi\)
\(692\) 14.3780 26.2686i 0.546571 0.998582i
\(693\) −2.43668 + 1.00931i −0.0925618 + 0.0383403i
\(694\) −16.3244 46.3479i −0.619666 1.75934i
\(695\) 10.7428i 0.407498i
\(696\) −0.172038 + 0.123663i −0.00652108 + 0.00468744i
\(697\) 9.07422 0.343711
\(698\) −19.5457 + 6.88431i −0.739817 + 0.260575i
\(699\) −64.7359 + 26.8145i −2.44854 + 1.01422i
\(700\) −7.53195 + 6.05715i −0.284681 + 0.228939i
\(701\) 9.30572 + 3.85455i 0.351472 + 0.145585i 0.551433 0.834219i \(-0.314081\pi\)
−0.199961 + 0.979804i \(0.564081\pi\)
\(702\) −0.848401 + 1.58343i −0.0320208 + 0.0597629i
\(703\) 1.42384i 0.0537010i
\(704\) 4.82808 + 4.20910i 0.181965 + 0.158637i
\(705\) −14.9890 −0.564517
\(706\) −5.17469 + 4.64347i −0.194752 + 0.174759i
\(707\) 16.6027 6.87705i 0.624408 0.258638i
\(708\) 23.9745 19.2802i 0.901017 0.724593i
\(709\) 45.6245 + 18.8983i 1.71346 + 0.709740i 0.999959 + 0.00908884i \(0.00289311\pi\)
0.713504 + 0.700651i \(0.247107\pi\)
\(710\) 0.767965 1.60308i 0.0288212 0.0601627i
\(711\) −26.8384 26.8384i −1.00652 1.00652i
\(712\) 45.8332 + 7.49800i 1.71767 + 0.281000i
\(713\) 7.24668i 0.271390i
\(714\) 4.28099 8.93633i 0.160212 0.334434i
\(715\) 2.59933 + 0.117368i 0.0972096 + 0.00438932i
\(716\) 7.46821 + 4.08770i 0.279100 + 0.152764i
\(717\) −45.0860 + 18.6752i −1.68377 + 0.697439i
\(718\) −0.438850 + 8.11108i −0.0163777 + 0.302703i
\(719\) 15.6190i 0.582492i −0.956648 0.291246i \(-0.905930\pi\)
0.956648 0.291246i \(-0.0940698\pi\)
\(720\) 10.1313 1.80686i 0.377569 0.0673378i
\(721\) −12.1523 12.1523i −0.452575 0.452575i
\(722\) −19.9610 + 17.9119i −0.742872 + 0.666612i
\(723\) −2.40641 + 0.996769i −0.0894955 + 0.0370702i
\(724\) −16.3180 + 4.77360i −0.606455 + 0.177409i
\(725\) 0.119775 0.0496125i 0.00444834 0.00184256i
\(726\) 11.7757 + 33.4332i 0.437036 + 1.24082i
\(727\) −16.8338 16.8338i −0.624331 0.624331i 0.322305 0.946636i \(-0.395542\pi\)
−0.946636 + 0.322305i \(0.895542\pi\)
\(728\) 9.85648 6.43118i 0.365305 0.238356i
\(729\) 17.1958 17.1958i 0.636883 0.636883i
\(730\) −1.03412 0.495401i −0.0382746 0.0183356i
\(731\) 7.44881 + 17.9830i 0.275504 + 0.665126i
\(732\) 8.34466 6.71073i 0.308427 0.248036i
\(733\) 12.9675 + 31.3063i 0.478966 + 1.15633i 0.960095 + 0.279676i \(0.0902269\pi\)
−0.481129 + 0.876650i \(0.659773\pi\)
\(734\) −10.6400 0.575676i −0.392729 0.0212486i
\(735\) 8.74092 8.74092i 0.322414 0.322414i
\(736\) 8.05394 + 14.2265i 0.296872 + 0.524396i
\(737\) −5.10330 −0.187983
\(738\) −9.74966 10.8650i −0.358890 0.399947i
\(739\) −7.00116 16.9023i −0.257542 0.621761i 0.741233 0.671248i \(-0.234241\pi\)
−0.998775 + 0.0494870i \(0.984241\pi\)
\(740\) −10.5649 + 8.49622i −0.388372 + 0.312327i
\(741\) −1.21938 + 1.11402i −0.0447949 + 0.0409244i
\(742\) −0.420741 + 0.148191i −0.0154459 + 0.00544027i
\(743\) 40.7184 1.49381 0.746907 0.664929i \(-0.231538\pi\)
0.746907 + 0.664929i \(0.231538\pi\)
\(744\) 3.92130 + 16.7066i 0.143762 + 0.612495i
\(745\) 9.27279 9.27279i 0.339729 0.339729i
\(746\) −14.5084 41.1919i −0.531191 1.50814i
\(747\) −5.80721 + 14.0199i −0.212475 + 0.512960i
\(748\) 3.52463 + 1.92919i 0.128873 + 0.0705383i
\(749\) −2.32925 5.62330i −0.0851089 0.205471i
\(750\) −28.2951 1.53091i −1.03319 0.0559008i
\(751\) 13.0313i 0.475518i −0.971324 0.237759i \(-0.923587\pi\)
0.971324 0.237759i \(-0.0764129\pi\)
\(752\) −14.8167 23.1574i −0.540308 0.844462i
\(753\) 40.3670 1.47105
\(754\) −0.151109 + 0.0456734i −0.00550306 + 0.00166333i
\(755\) 3.86889 9.34034i 0.140803 0.339930i
\(756\) 0.780441 0.228307i 0.0283844 0.00830343i
\(757\) −5.33975 12.8913i −0.194077 0.468542i 0.796645 0.604447i \(-0.206606\pi\)
−0.990722 + 0.135905i \(0.956606\pi\)
\(758\) 1.87650 + 0.898945i 0.0681575 + 0.0326511i
\(759\) 5.59857i 0.203215i
\(760\) −0.476322 0.0779231i −0.0172780 0.00282657i
\(761\) −45.0922 −1.63459 −0.817295 0.576219i \(-0.804527\pi\)
−0.817295 + 0.576219i \(0.804527\pi\)
\(762\) 27.2912 + 13.0740i 0.988654 + 0.473620i
\(763\) 4.84913 + 11.7068i 0.175550 + 0.423816i
\(764\) 2.73669 25.2165i 0.0990099 0.912301i
\(765\) 5.96431 2.47050i 0.215640 0.0893210i
\(766\) −12.7225 14.1780i −0.459684 0.512272i
\(767\) 21.5517 7.80785i 0.778187 0.281925i
\(768\) 26.2659 + 28.4399i 0.947789 + 1.02624i
\(769\) −26.3171 + 26.3171i