Properties

Label 416.2.bd.a.83.9
Level $416$
Weight $2$
Character 416.83
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 83.9
Character \(\chi\) \(=\) 416.83
Dual form 416.2.bd.a.411.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.26014 - 0.641900i) q^{2} +(-0.400717 - 0.165982i) q^{3} +(1.17593 + 1.61777i) q^{4} +(1.56341 - 3.77440i) q^{5} +(0.398417 + 0.466382i) q^{6} -2.76672i q^{7} +(-0.443390 - 2.79346i) q^{8} +(-1.98830 - 1.98830i) q^{9} +O(q^{10})\) \(q+(-1.26014 - 0.641900i) q^{2} +(-0.400717 - 0.165982i) q^{3} +(1.17593 + 1.61777i) q^{4} +(1.56341 - 3.77440i) q^{5} +(0.398417 + 0.466382i) q^{6} -2.76672i q^{7} +(-0.443390 - 2.79346i) q^{8} +(-1.98830 - 1.98830i) q^{9} +(-4.39291 + 3.75274i) q^{10} +(4.68296 + 1.93975i) q^{11} +(-0.202693 - 0.843453i) q^{12} +(-0.679641 + 3.54092i) q^{13} +(-1.77596 + 3.48647i) q^{14} +(-1.25297 + 1.25297i) q^{15} +(-1.23439 + 3.80477i) q^{16} -3.33220 q^{17} +(1.22925 + 3.78183i) q^{18} +(-1.93348 - 4.66783i) q^{19} +(7.94459 - 1.90919i) q^{20} +(-0.459227 + 1.10867i) q^{21} +(-4.65609 - 5.45036i) q^{22} +(2.98467 + 2.98467i) q^{23} +(-0.285991 + 1.19298i) q^{24} +(-8.26634 - 8.26634i) q^{25} +(3.12936 - 4.02580i) q^{26} +(0.964670 + 2.32892i) q^{27} +(4.47593 - 3.25346i) q^{28} +(0.983162 - 2.37356i) q^{29} +(2.38320 - 0.774642i) q^{30} +(5.05908 + 5.05908i) q^{31} +(3.99779 - 4.00221i) q^{32} +(-1.55458 - 1.55458i) q^{33} +(4.19906 + 2.13894i) q^{34} +(-10.4427 - 4.32551i) q^{35} +(0.878520 - 5.55471i) q^{36} +(-8.77750 - 3.63576i) q^{37} +(-0.559818 + 7.12323i) q^{38} +(0.860074 - 1.30610i) q^{39} +(-11.2368 - 2.69378i) q^{40} -0.0305502 q^{41} +(1.29035 - 1.10231i) q^{42} +(-2.60064 - 6.27850i) q^{43} +(2.36876 + 9.85698i) q^{44} +(-10.6132 + 4.39611i) q^{45} +(-1.84525 - 5.67697i) q^{46} +(-2.44565 - 2.44565i) q^{47} +(1.12616 - 1.31975i) q^{48} -0.654734 q^{49} +(5.11062 + 15.7230i) q^{50} +(1.33527 + 0.553088i) q^{51} +(-6.52761 + 3.06436i) q^{52} +(2.04108 + 4.92760i) q^{53} +(0.279310 - 3.55400i) q^{54} +(14.6428 - 14.6428i) q^{55} +(-7.72871 + 1.22674i) q^{56} +2.19140i q^{57} +(-2.76252 + 2.35994i) q^{58} +(-0.589917 + 1.42419i) q^{59} +(-3.50042 - 0.553619i) q^{60} +(-0.595870 + 1.43856i) q^{61} +(-3.12775 - 9.62260i) q^{62} +(-5.50106 + 5.50106i) q^{63} +(-7.60681 + 2.47718i) q^{64} +(12.3023 + 8.10114i) q^{65} +(0.961110 + 2.95688i) q^{66} +(-1.10964 + 0.459627i) q^{67} +(-3.91843 - 5.39075i) q^{68} +(-0.700605 - 1.69141i) q^{69} +(10.3828 + 12.1540i) q^{70} +9.00054 q^{71} +(-4.67263 + 6.43581i) q^{72} -6.79471i q^{73} +(8.72713 + 10.2159i) q^{74} +(1.94040 + 4.68453i) q^{75} +(5.27786 - 8.61696i) q^{76} +(5.36674 - 12.9564i) q^{77} +(-1.92220 + 1.09379i) q^{78} +10.7833 q^{79} +(12.4309 + 10.6075i) q^{80} +7.34227i q^{81} +(0.0384976 + 0.0196102i) q^{82} +(0.681723 + 1.64583i) q^{83} +(-2.33360 + 0.560793i) q^{84} +(-5.20960 + 12.5771i) q^{85} +(-0.752989 + 9.58117i) q^{86} +(-0.787940 + 0.787940i) q^{87} +(3.34222 - 13.9417i) q^{88} +13.6109 q^{89} +(16.1960 + 1.27285i) q^{90} +(9.79672 + 1.88038i) q^{91} +(-1.31876 + 8.33828i) q^{92} +(-1.18754 - 2.86698i) q^{93} +(1.51201 + 4.65174i) q^{94} -20.6411 q^{95} +(-2.26628 + 0.940192i) q^{96} +(7.18176 - 7.18176i) q^{97} +(0.825060 + 0.420274i) q^{98} +(-5.45433 - 13.1679i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24} - 4 q^{26} - 8 q^{27} + 56 q^{28} - 8 q^{29} - 16 q^{30} - 44 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} - 28 q^{39} - 8 q^{40} - 8 q^{41} - 48 q^{42} - 32 q^{43} + 12 q^{44} - 36 q^{45} - 48 q^{46} - 8 q^{47} - 8 q^{48} - 168 q^{49} + 76 q^{50} - 4 q^{52} - 8 q^{53} - 28 q^{54} - 40 q^{55} + 56 q^{56} + 32 q^{58} + 52 q^{59} - 36 q^{60} - 8 q^{61} + 72 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} + 20 q^{70} + 56 q^{71} + 8 q^{72} - 8 q^{74} - 68 q^{76} + 56 q^{77} - 48 q^{78} - 16 q^{79} + 28 q^{80} - 88 q^{82} + 36 q^{83} + 100 q^{84} - 24 q^{85} + 96 q^{86} - 8 q^{87} + 64 q^{88} - 8 q^{89} - 64 q^{90} + 72 q^{91} - 8 q^{92} - 40 q^{93} - 56 q^{94} + 36 q^{96} - 8 q^{97} + 52 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.26014 0.641900i −0.891057 0.453892i
\(3\) −0.400717 0.165982i −0.231354 0.0958300i 0.263995 0.964524i \(-0.414960\pi\)
−0.495349 + 0.868694i \(0.664960\pi\)
\(4\) 1.17593 + 1.61777i 0.587964 + 0.808887i
\(5\) 1.56341 3.77440i 0.699178 1.68796i −0.0262396 0.999656i \(-0.508353\pi\)
0.725418 0.688309i \(-0.241647\pi\)
\(6\) 0.398417 + 0.466382i 0.162653 + 0.190400i
\(7\) 2.76672i 1.04572i −0.852418 0.522861i \(-0.824865\pi\)
0.852418 0.522861i \(-0.175135\pi\)
\(8\) −0.443390 2.79346i −0.156762 0.987636i
\(9\) −1.98830 1.98830i −0.662765 0.662765i
\(10\) −4.39291 + 3.75274i −1.38916 + 1.18672i
\(11\) 4.68296 + 1.93975i 1.41197 + 0.584856i 0.952829 0.303509i \(-0.0981582\pi\)
0.459138 + 0.888365i \(0.348158\pi\)
\(12\) −0.202693 0.843453i −0.0585123 0.243484i
\(13\) −0.679641 + 3.54092i −0.188498 + 0.982073i
\(14\) −1.77596 + 3.48647i −0.474645 + 0.931797i
\(15\) −1.25297 + 1.25297i −0.323515 + 0.323515i
\(16\) −1.23439 + 3.80477i −0.308596 + 0.951193i
\(17\) −3.33220 −0.808178 −0.404089 0.914720i \(-0.632411\pi\)
−0.404089 + 0.914720i \(0.632411\pi\)
\(18\) 1.22925 + 3.78183i 0.289738 + 0.891385i
\(19\) −1.93348 4.66783i −0.443570 1.07087i −0.974687 0.223574i \(-0.928228\pi\)
0.531117 0.847299i \(-0.321772\pi\)
\(20\) 7.94459 1.90919i 1.77646 0.426907i
\(21\) −0.459227 + 1.10867i −0.100212 + 0.241932i
\(22\) −4.65609 5.45036i −0.992681 1.16202i
\(23\) 2.98467 + 2.98467i 0.622346 + 0.622346i 0.946131 0.323784i \(-0.104955\pi\)
−0.323784 + 0.946131i \(0.604955\pi\)
\(24\) −0.285991 + 1.19298i −0.0583777 + 0.243516i
\(25\) −8.26634 8.26634i −1.65327 1.65327i
\(26\) 3.12936 4.02580i 0.613718 0.789525i
\(27\) 0.964670 + 2.32892i 0.185651 + 0.448201i
\(28\) 4.47593 3.25346i 0.845871 0.614847i
\(29\) 0.983162 2.37356i 0.182569 0.440760i −0.805926 0.592016i \(-0.798332\pi\)
0.988495 + 0.151257i \(0.0483320\pi\)
\(30\) 2.38320 0.774642i 0.435112 0.141430i
\(31\) 5.05908 + 5.05908i 0.908638 + 0.908638i 0.996162 0.0875241i \(-0.0278955\pi\)
−0.0875241 + 0.996162i \(0.527895\pi\)
\(32\) 3.99779 4.00221i 0.706716 0.707498i
\(33\) −1.55458 1.55458i −0.270618 0.270618i
\(34\) 4.19906 + 2.13894i 0.720133 + 0.366826i
\(35\) −10.4427 4.32551i −1.76514 0.731145i
\(36\) 0.878520 5.55471i 0.146420 0.925785i
\(37\) −8.77750 3.63576i −1.44301 0.597715i −0.482486 0.875904i \(-0.660266\pi\)
−0.960527 + 0.278188i \(0.910266\pi\)
\(38\) −0.559818 + 7.12323i −0.0908145 + 1.15554i
\(39\) 0.860074 1.30610i 0.137722 0.209143i
\(40\) −11.2368 2.69378i −1.77670 0.425925i
\(41\) −0.0305502 −0.00477113 −0.00238557 0.999997i \(-0.500759\pi\)
−0.00238557 + 0.999997i \(0.500759\pi\)
\(42\) 1.29035 1.10231i 0.199105 0.170090i
\(43\) −2.60064 6.27850i −0.396594 0.957463i −0.988468 0.151432i \(-0.951612\pi\)
0.591874 0.806031i \(-0.298388\pi\)
\(44\) 2.36876 + 9.85698i 0.357104 + 1.48600i
\(45\) −10.6132 + 4.39611i −1.58212 + 0.655334i
\(46\) −1.84525 5.67697i −0.272068 0.837024i
\(47\) −2.44565 2.44565i −0.356735 0.356735i 0.505873 0.862608i \(-0.331171\pi\)
−0.862608 + 0.505873i \(0.831171\pi\)
\(48\) 1.12616 1.31975i 0.162548 0.190490i
\(49\) −0.654734 −0.0935335
\(50\) 5.11062 + 15.7230i 0.722751 + 2.22356i
\(51\) 1.33527 + 0.553088i 0.186975 + 0.0774477i
\(52\) −6.52761 + 3.06436i −0.905217 + 0.424950i
\(53\) 2.04108 + 4.92760i 0.280364 + 0.676858i 0.999844 0.0176550i \(-0.00562005\pi\)
−0.719481 + 0.694513i \(0.755620\pi\)
\(54\) 0.279310 3.55400i 0.0380093 0.483637i
\(55\) 14.6428 14.6428i 1.97443 1.97443i
\(56\) −7.72871 + 1.22674i −1.03279 + 0.163930i
\(57\) 2.19140i 0.290258i
\(58\) −2.76252 + 2.35994i −0.362736 + 0.309875i
\(59\) −0.589917 + 1.42419i −0.0768006 + 0.185413i −0.957617 0.288045i \(-0.906995\pi\)
0.880816 + 0.473458i \(0.156995\pi\)
\(60\) −3.50042 0.553619i −0.451903 0.0714719i
\(61\) −0.595870 + 1.43856i −0.0762933 + 0.184188i −0.957425 0.288683i \(-0.906783\pi\)
0.881131 + 0.472872i \(0.156783\pi\)
\(62\) −3.12775 9.62260i −0.397225 1.22207i
\(63\) −5.50106 + 5.50106i −0.693068 + 0.693068i
\(64\) −7.60681 + 2.47718i −0.950851 + 0.309648i
\(65\) 12.3023 + 8.10114i 1.52591 + 1.00482i
\(66\) 0.961110 + 2.95688i 0.118305 + 0.363967i
\(67\) −1.10964 + 0.459627i −0.135564 + 0.0561524i −0.449434 0.893314i \(-0.648374\pi\)
0.313870 + 0.949466i \(0.398374\pi\)
\(68\) −3.91843 5.39075i −0.475180 0.653725i
\(69\) −0.700605 1.69141i −0.0843430 0.203622i
\(70\) 10.3828 + 12.1540i 1.24098 + 1.45268i
\(71\) 9.00054 1.06817 0.534084 0.845432i \(-0.320657\pi\)
0.534084 + 0.845432i \(0.320657\pi\)
\(72\) −4.67263 + 6.43581i −0.550675 + 0.758468i
\(73\) 6.79471i 0.795261i −0.917546 0.397631i \(-0.869833\pi\)
0.917546 0.397631i \(-0.130167\pi\)
\(74\) 8.72713 + 10.2159i 1.01451 + 1.18757i
\(75\) 1.94040 + 4.68453i 0.224058 + 0.540923i
\(76\) 5.27786 8.61696i 0.605412 0.988433i
\(77\) 5.36674 12.9564i 0.611596 1.47652i
\(78\) −1.92220 + 1.09379i −0.217646 + 0.123847i
\(79\) 10.7833 1.21322 0.606609 0.795000i \(-0.292529\pi\)
0.606609 + 0.795000i \(0.292529\pi\)
\(80\) 12.4309 + 10.6075i 1.38982 + 1.18595i
\(81\) 7.34227i 0.815808i
\(82\) 0.0384976 + 0.0196102i 0.00425135 + 0.00216558i
\(83\) 0.681723 + 1.64583i 0.0748289 + 0.180653i 0.956868 0.290524i \(-0.0938295\pi\)
−0.882039 + 0.471176i \(0.843829\pi\)
\(84\) −2.33360 + 0.560793i −0.254616 + 0.0611876i
\(85\) −5.20960 + 12.5771i −0.565060 + 1.36418i
\(86\) −0.752989 + 9.58117i −0.0811969 + 1.03316i
\(87\) −0.787940 + 0.787940i −0.0844760 + 0.0844760i
\(88\) 3.34222 13.9417i 0.356282 1.48619i
\(89\) 13.6109 1.44275 0.721376 0.692544i \(-0.243510\pi\)
0.721376 + 0.692544i \(0.243510\pi\)
\(90\) 16.1960 + 1.27285i 1.70721 + 0.134170i
\(91\) 9.79672 + 1.88038i 1.02698 + 0.197117i
\(92\) −1.31876 + 8.33828i −0.137491 + 0.869325i
\(93\) −1.18754 2.86698i −0.123142 0.297292i
\(94\) 1.51201 + 4.65174i 0.155952 + 0.479791i
\(95\) −20.6411 −2.11773
\(96\) −2.26628 + 0.940192i −0.231301 + 0.0959579i
\(97\) 7.18176 7.18176i 0.729198 0.729198i −0.241262 0.970460i \(-0.577561\pi\)
0.970460 + 0.241262i \(0.0775614\pi\)
\(98\) 0.825060 + 0.420274i 0.0833437 + 0.0424541i
\(99\) −5.45433 13.1679i −0.548181 1.32343i
\(100\) 3.65245 23.0937i 0.365245 2.30937i
\(101\) −0.915836 2.21102i −0.0911291 0.220005i 0.871743 0.489964i \(-0.162990\pi\)
−0.962872 + 0.269959i \(0.912990\pi\)
\(102\) −1.32761 1.55408i −0.131453 0.153877i
\(103\) −8.61029 + 8.61029i −0.848397 + 0.848397i −0.989933 0.141536i \(-0.954796\pi\)
0.141536 + 0.989933i \(0.454796\pi\)
\(104\) 10.1927 + 0.328541i 0.999481 + 0.0322161i
\(105\) 3.46662 + 3.46662i 0.338307 + 0.338307i
\(106\) 0.590973 7.51965i 0.0574004 0.730373i
\(107\) 1.48045 0.613222i 0.143120 0.0592824i −0.309974 0.950745i \(-0.600320\pi\)
0.453094 + 0.891463i \(0.350320\pi\)
\(108\) −2.63328 + 4.29926i −0.253388 + 0.413696i
\(109\) −9.79021 + 4.05524i −0.937732 + 0.388421i −0.798607 0.601853i \(-0.794429\pi\)
−0.139126 + 0.990275i \(0.544429\pi\)
\(110\) −27.8512 + 9.05282i −2.65551 + 0.863152i
\(111\) 2.91382 + 2.91382i 0.276568 + 0.276568i
\(112\) 10.5267 + 3.41520i 0.994683 + 0.322706i
\(113\) 10.4501i 0.983063i −0.870860 0.491531i \(-0.836437\pi\)
0.870860 0.491531i \(-0.163563\pi\)
\(114\) 1.40666 2.76148i 0.131746 0.258637i
\(115\) 15.9316 6.59909i 1.48563 0.615368i
\(116\) 4.99602 1.20061i 0.463869 0.111473i
\(117\) 8.39172 5.68906i 0.775815 0.525954i
\(118\) 1.65757 1.41601i 0.152591 0.130354i
\(119\) 9.21927i 0.845129i
\(120\) 4.05567 + 2.94456i 0.370231 + 0.268801i
\(121\) 10.3894 + 10.3894i 0.944487 + 0.944487i
\(122\) 1.67429 1.43030i 0.151583 0.129493i
\(123\) 0.0122420 + 0.00507079i 0.00110382 + 0.000457218i
\(124\) −2.23533 + 14.1336i −0.200739 + 1.26923i
\(125\) −25.2522 + 10.4598i −2.25862 + 0.935552i
\(126\) 10.4633 3.40100i 0.932141 0.302985i
\(127\) 19.9532 1.77056 0.885282 0.465054i \(-0.153965\pi\)
0.885282 + 0.465054i \(0.153965\pi\)
\(128\) 11.1758 + 1.76120i 0.987809 + 0.155670i
\(129\) 2.94757i 0.259519i
\(130\) −10.3025 18.1055i −0.903593 1.58795i
\(131\) −1.82503 0.755952i −0.159454 0.0660478i 0.301529 0.953457i \(-0.402503\pi\)
−0.460983 + 0.887409i \(0.652503\pi\)
\(132\) 0.686884 4.34303i 0.0597856 0.378013i
\(133\) −12.9146 + 5.34939i −1.11983 + 0.463851i
\(134\) 1.69334 + 0.133080i 0.146282 + 0.0114964i
\(135\) 10.2985 0.886350
\(136\) 1.47747 + 9.30837i 0.126692 + 0.798186i
\(137\) 14.2779i 1.21984i 0.792463 + 0.609920i \(0.208798\pi\)
−0.792463 + 0.609920i \(0.791202\pi\)
\(138\) −0.202853 + 2.58114i −0.0172680 + 0.219721i
\(139\) 1.75263 0.725963i 0.148656 0.0615754i −0.307115 0.951672i \(-0.599364\pi\)
0.455771 + 0.890097i \(0.349364\pi\)
\(140\) −5.28218 21.9804i −0.446426 1.85769i
\(141\) 0.574080 + 1.38595i 0.0483462 + 0.116718i
\(142\) −11.3420 5.77745i −0.951798 0.484833i
\(143\) −10.0512 + 15.2637i −0.840525 + 1.27641i
\(144\) 10.0193 5.11069i 0.834945 0.425891i
\(145\) −7.42170 7.42170i −0.616339 0.616339i
\(146\) −4.36153 + 8.56232i −0.360963 + 0.708623i
\(147\) 0.262363 + 0.108674i 0.0216394 + 0.00896332i
\(148\) −4.43988 18.4754i −0.364956 1.51867i
\(149\) 6.11550 + 2.53312i 0.501002 + 0.207522i 0.618849 0.785510i \(-0.287599\pi\)
−0.117847 + 0.993032i \(0.537599\pi\)
\(150\) 0.561822 7.14873i 0.0458726 0.583691i
\(151\) −5.03387 −0.409651 −0.204825 0.978799i \(-0.565663\pi\)
−0.204825 + 0.978799i \(0.565663\pi\)
\(152\) −12.1821 + 7.47075i −0.988098 + 0.605958i
\(153\) 6.62541 + 6.62541i 0.535633 + 0.535633i
\(154\) −15.0796 + 12.8821i −1.21515 + 1.03807i
\(155\) 27.0044 11.1856i 2.16905 0.898450i
\(156\) 3.12436 0.144472i 0.250149 0.0115670i
\(157\) −0.398624 + 0.962363i −0.0318136 + 0.0768049i −0.938988 0.343950i \(-0.888235\pi\)
0.907174 + 0.420755i \(0.138235\pi\)
\(158\) −13.5885 6.92181i −1.08105 0.550670i
\(159\) 2.31336i 0.183461i
\(160\) −8.85578 21.3464i −0.700111 1.68758i
\(161\) 8.25774 8.25774i 0.650801 0.650801i
\(162\) 4.71301 9.25232i 0.370289 0.726931i
\(163\) −0.0922893 0.222806i −0.00722865 0.0174515i 0.920224 0.391392i \(-0.128006\pi\)
−0.927453 + 0.373941i \(0.878006\pi\)
\(164\) −0.0359248 0.0494233i −0.00280526 0.00385931i
\(165\) −8.29806 + 3.43717i −0.646003 + 0.267583i
\(166\) 0.197386 2.51158i 0.0153201 0.194936i
\(167\) 15.5075i 1.20000i 0.799998 + 0.600002i \(0.204834\pi\)
−0.799998 + 0.600002i \(0.795166\pi\)
\(168\) 3.30064 + 0.791257i 0.254650 + 0.0610468i
\(169\) −12.0762 4.81310i −0.928937 0.370239i
\(170\) 14.6381 12.5049i 1.12269 0.959082i
\(171\) −5.43670 + 13.1253i −0.415755 + 1.00372i
\(172\) 7.09903 11.5903i 0.541296 0.883754i
\(173\) 7.16012 17.2861i 0.544374 1.31424i −0.377236 0.926117i \(-0.623125\pi\)
0.921610 0.388118i \(-0.126875\pi\)
\(174\) 1.49870 0.487139i 0.113616 0.0369299i
\(175\) −22.8706 + 22.8706i −1.72886 + 1.72886i
\(176\) −13.1609 + 15.4232i −0.992039 + 1.16257i
\(177\) 0.472780 0.472780i 0.0355363 0.0355363i
\(178\) −17.1517 8.73683i −1.28557 0.654853i
\(179\) 12.0137 + 4.97624i 0.897946 + 0.371941i 0.783430 0.621480i \(-0.213468\pi\)
0.114516 + 0.993421i \(0.463468\pi\)
\(180\) −19.5922 12.0002i −1.46032 0.894440i
\(181\) −7.69007 + 3.18533i −0.571599 + 0.236764i −0.649712 0.760181i \(-0.725110\pi\)
0.0781133 + 0.996944i \(0.475110\pi\)
\(182\) −11.1383 8.65806i −0.825624 0.641778i
\(183\) 0.477551 0.477551i 0.0353016 0.0353016i
\(184\) 7.01417 9.66092i 0.517092 0.712212i
\(185\) −27.4457 + 27.4457i −2.01785 + 2.01785i
\(186\) −0.343841 + 4.37509i −0.0252116 + 0.320797i
\(187\) −15.6046 6.46363i −1.14112 0.472668i
\(188\) 1.08060 6.83243i 0.0788110 0.498306i
\(189\) 6.44346 2.66897i 0.468693 0.194139i
\(190\) 26.0107 + 13.2495i 1.88702 + 0.961221i
\(191\) 13.8788i 1.00423i 0.864799 + 0.502117i \(0.167445\pi\)
−0.864799 + 0.502117i \(0.832555\pi\)
\(192\) 3.45935 + 0.269947i 0.249657 + 0.0194818i
\(193\) −0.907904 0.907904i −0.0653524 0.0653524i 0.673675 0.739028i \(-0.264715\pi\)
−0.739028 + 0.673675i \(0.764715\pi\)
\(194\) −13.6600 + 4.44009i −0.980733 + 0.318780i
\(195\) −3.58509 5.28823i −0.256734 0.378698i
\(196\) −0.769921 1.05921i −0.0549943 0.0756580i
\(197\) 6.59972 15.9331i 0.470211 1.13519i −0.493860 0.869542i \(-0.664414\pi\)
0.964070 0.265647i \(-0.0855856\pi\)
\(198\) −1.57924 + 20.0946i −0.112232 + 1.42806i
\(199\) −4.34166 + 4.34166i −0.307772 + 0.307772i −0.844045 0.536273i \(-0.819832\pi\)
0.536273 + 0.844045i \(0.319832\pi\)
\(200\) −19.4265 + 26.7569i −1.37366 + 1.89200i
\(201\) 0.520941 0.0367443
\(202\) −0.265171 + 3.37409i −0.0186574 + 0.237400i
\(203\) −6.56698 2.72013i −0.460912 0.190916i
\(204\) 0.675413 + 2.81056i 0.0472884 + 0.196778i
\(205\) −0.0477624 + 0.115309i −0.00333587 + 0.00805351i
\(206\) 16.3772 5.32326i 1.14105 0.370889i
\(207\) 11.8688i 0.824939i
\(208\) −12.6334 6.95673i −0.875972 0.482363i
\(209\) 25.6097i 1.77146i
\(210\) −2.14322 6.59366i −0.147896 0.455006i
\(211\) 2.62957 6.34835i 0.181027 0.437038i −0.807152 0.590344i \(-0.798992\pi\)
0.988179 + 0.153306i \(0.0489920\pi\)
\(212\) −5.57158 + 9.09650i −0.382658 + 0.624750i
\(213\) −3.60667 1.49393i −0.247125 0.102363i
\(214\) −2.25921 0.177552i −0.154436 0.0121372i
\(215\) −27.7635 −1.89345
\(216\) 6.07801 3.72738i 0.413556 0.253616i
\(217\) 13.9971 13.9971i 0.950183 0.950183i
\(218\) 14.9401 + 1.17415i 1.01187 + 0.0795236i
\(219\) −1.12780 + 2.72276i −0.0762099 + 0.183987i
\(220\) 40.9076 + 6.46985i 2.75799 + 0.436197i
\(221\) 2.26470 11.7991i 0.152340 0.793690i
\(222\) −1.80146 5.54222i −0.120906 0.371970i
\(223\) 3.93888 + 3.93888i 0.263767 + 0.263767i 0.826583 0.562816i \(-0.190282\pi\)
−0.562816 + 0.826583i \(0.690282\pi\)
\(224\) −11.0730 11.0608i −0.739845 0.739028i
\(225\) 32.8719i 2.19146i
\(226\) −6.70792 + 13.1686i −0.446204 + 0.875965i
\(227\) 7.20502 2.98442i 0.478214 0.198083i −0.130538 0.991443i \(-0.541670\pi\)
0.608752 + 0.793361i \(0.291670\pi\)
\(228\) −3.54519 + 2.57693i −0.234786 + 0.170661i
\(229\) 18.5938 + 7.70179i 1.22871 + 0.508949i 0.900169 0.435540i \(-0.143443\pi\)
0.328542 + 0.944489i \(0.393443\pi\)
\(230\) −24.3121 1.91070i −1.60309 0.125988i
\(231\) −4.30109 + 4.30109i −0.282991 + 0.282991i
\(232\) −7.06637 1.69401i −0.463930 0.111217i
\(233\) 9.61063 9.61063i 0.629613 0.629613i −0.318358 0.947971i \(-0.603131\pi\)
0.947971 + 0.318358i \(0.103131\pi\)
\(234\) −14.2266 + 1.78240i −0.930021 + 0.116519i
\(235\) −13.0544 + 5.40733i −0.851578 + 0.352735i
\(236\) −2.99771 + 0.720388i −0.195134 + 0.0468932i
\(237\) −4.32106 1.78984i −0.280683 0.116263i
\(238\) 5.91785 11.6176i 0.383597 0.753058i
\(239\) 20.1563 20.1563i 1.30381 1.30381i 0.378000 0.925806i \(-0.376612\pi\)
0.925806 0.378000i \(-0.123388\pi\)
\(240\) −3.22062 6.31391i −0.207890 0.407561i
\(241\) 15.3552 15.3552i 0.989112 0.989112i −0.0108292 0.999941i \(-0.503447\pi\)
0.999941 + 0.0108292i \(0.00344710\pi\)
\(242\) −6.42316 19.7610i −0.412897 1.27029i
\(243\) 4.11270 9.92893i 0.263830 0.636941i
\(244\) −3.02796 + 0.727657i −0.193845 + 0.0465835i
\(245\) −1.02362 + 2.47123i −0.0653966 + 0.157881i
\(246\) −0.0121717 0.0142481i −0.000776040 0.000908423i
\(247\) 17.8425 3.67383i 1.13529 0.233760i
\(248\) 11.8892 16.3755i 0.754964 1.03984i
\(249\) 0.772665i 0.0489656i
\(250\) 38.5355 + 3.02852i 2.43720 + 0.191541i
\(251\) 2.13893 0.885973i 0.135008 0.0559221i −0.314157 0.949371i \(-0.601722\pi\)
0.449165 + 0.893449i \(0.351722\pi\)
\(252\) −15.3683 2.43062i −0.968113 0.153115i
\(253\) 8.18759 + 19.7666i 0.514750 + 1.24272i
\(254\) −25.1440 12.8080i −1.57767 0.803645i
\(255\) 4.17515 4.17515i 0.261458 0.261458i
\(256\) −12.9526 9.39311i −0.809537 0.587069i
\(257\) 12.3296i 0.769101i −0.923104 0.384551i \(-0.874356\pi\)
0.923104 0.384551i \(-0.125644\pi\)
\(258\) 1.89204 3.71436i 0.117793 0.231246i
\(259\) −10.0591 + 24.2849i −0.625044 + 1.50899i
\(260\) 1.36080 + 29.4287i 0.0843931 + 1.82509i
\(261\) −6.67416 + 2.76453i −0.413120 + 0.171120i
\(262\) 1.81456 + 2.12410i 0.112104 + 0.131227i
\(263\) 14.2392 + 14.2392i 0.878028 + 0.878028i 0.993330 0.115303i \(-0.0367838\pi\)
−0.115303 + 0.993330i \(0.536784\pi\)
\(264\) −3.65337 + 5.03194i −0.224849 + 0.309694i
\(265\) 21.7898 1.33854
\(266\) 19.7080 + 1.54886i 1.20837 + 0.0949667i
\(267\) −5.45412 2.25917i −0.333787 0.138259i
\(268\) −2.04843 1.25465i −0.125128 0.0766402i
\(269\) −29.3922 12.1747i −1.79208 0.742302i −0.989277 0.146051i \(-0.953344\pi\)
−0.802798 0.596251i \(-0.796656\pi\)
\(270\) −12.9775 6.61058i −0.789788 0.402307i
\(271\) −7.40382 7.40382i −0.449750 0.449750i 0.445521 0.895271i \(-0.353018\pi\)
−0.895271 + 0.445521i \(0.853018\pi\)
\(272\) 4.11322 12.6783i 0.249401 0.768734i
\(273\) −3.61360 2.37958i −0.218705 0.144019i
\(274\) 9.16496 17.9922i 0.553675 1.08695i
\(275\) −22.6764 54.7456i −1.36744 3.30128i
\(276\) 1.91246 3.12240i 0.115116 0.187946i
\(277\) 7.54653 3.12587i 0.453427 0.187816i −0.144269 0.989539i \(-0.546083\pi\)
0.597696 + 0.801723i \(0.296083\pi\)
\(278\) −2.67456 0.210195i −0.160410 0.0126067i
\(279\) 20.1179i 1.20443i
\(280\) −7.45294 + 31.0892i −0.445399 + 1.85793i
\(281\) −4.20469 −0.250831 −0.125416 0.992104i \(-0.540026\pi\)
−0.125416 + 0.992104i \(0.540026\pi\)
\(282\) 0.166219 2.11500i 0.00989819 0.125946i
\(283\) −11.0994 + 4.59753i −0.659792 + 0.273295i −0.687351 0.726325i \(-0.741227\pi\)
0.0275589 + 0.999620i \(0.491227\pi\)
\(284\) 10.5840 + 14.5608i 0.628044 + 0.864027i
\(285\) 8.27123 + 3.42606i 0.489946 + 0.202942i
\(286\) 22.4637 12.7825i 1.32831 0.755847i
\(287\) 0.0845237i 0.00498928i
\(288\) −15.9064 + 0.00879443i −0.937292 + 0.000518217i
\(289\) −5.89642 −0.346848
\(290\) 4.58843 + 14.1164i 0.269442 + 0.828944i
\(291\) −4.06990 + 1.68581i −0.238582 + 0.0988239i
\(292\) 10.9923 7.99010i 0.643276 0.467585i
\(293\) 27.7054 + 11.4759i 1.61857 + 0.670432i 0.993882 0.110446i \(-0.0352279\pi\)
0.624684 + 0.780878i \(0.285228\pi\)
\(294\) −0.260858 0.305357i −0.0152135 0.0178088i
\(295\) 4.45317 + 4.45317i 0.259274 + 0.259274i
\(296\) −6.26449 + 26.1316i −0.364116 + 1.51887i
\(297\) 12.7775i 0.741423i
\(298\) −6.08041 7.11765i −0.352228 0.412314i
\(299\) −12.5970 + 8.53996i −0.728501 + 0.493879i
\(300\) −5.29675 + 8.64780i −0.305808 + 0.499281i
\(301\) −17.3709 + 7.19524i −1.00124 + 0.414727i
\(302\) 6.34340 + 3.23124i 0.365022 + 0.185937i
\(303\) 1.03801i 0.0596320i
\(304\) 20.1467 1.59454i 1.15549 0.0914534i
\(305\) 4.49811 + 4.49811i 0.257561 + 0.257561i
\(306\) −4.09612 12.6018i −0.234160 0.720398i
\(307\) −28.6324 + 11.8599i −1.63414 + 0.676883i −0.995687 0.0927787i \(-0.970425\pi\)
−0.638452 + 0.769661i \(0.720425\pi\)
\(308\) 27.2715 6.55369i 1.55394 0.373431i
\(309\) 4.87945 2.02113i 0.277582 0.114978i
\(310\) −41.2095 3.23868i −2.34055 0.183944i
\(311\) 2.18929 + 2.18929i 0.124143 + 0.124143i 0.766449 0.642306i \(-0.222022\pi\)
−0.642306 + 0.766449i \(0.722022\pi\)
\(312\) −4.02988 1.82347i −0.228147 0.103234i
\(313\) −9.49490 + 9.49490i −0.536684 + 0.536684i −0.922553 0.385870i \(-0.873901\pi\)
0.385870 + 0.922553i \(0.373901\pi\)
\(314\) 1.12006 0.956840i 0.0632089 0.0539976i
\(315\) 12.1628 + 29.3636i 0.685297 + 1.65445i
\(316\) 12.6804 + 17.4450i 0.713328 + 0.981356i
\(317\) 7.73315 + 18.6695i 0.434337 + 1.04858i 0.977874 + 0.209197i \(0.0670850\pi\)
−0.543536 + 0.839386i \(0.682915\pi\)
\(318\) −1.48494 + 2.91516i −0.0832715 + 0.163474i
\(319\) 9.20823 9.20823i 0.515562 0.515562i
\(320\) −2.54267 + 32.5840i −0.142139 + 1.82150i
\(321\) −0.695025 −0.0387925
\(322\) −15.7066 + 5.10530i −0.875294 + 0.284507i
\(323\) 6.44274 + 15.5541i 0.358484 + 0.865456i
\(324\) −11.8781 + 8.63398i −0.659896 + 0.479666i
\(325\) 34.8886 23.6523i 1.93527 1.31199i
\(326\) −0.0267214 + 0.340008i −0.00147996 + 0.0188313i
\(327\) 4.59620 0.254171
\(328\) 0.0135456 + 0.0853406i 0.000747933 + 0.00471215i
\(329\) −6.76644 + 6.76644i −0.373046 + 0.373046i
\(330\) 12.6631 + 0.995196i 0.697079 + 0.0547838i
\(331\) −3.29463 + 7.95393i −0.181089 + 0.437188i −0.988192 0.153224i \(-0.951034\pi\)
0.807102 + 0.590411i \(0.201034\pi\)
\(332\) −1.86092 + 3.03825i −0.102131 + 0.166745i
\(333\) 10.2233 + 24.6813i 0.560234 + 1.35252i
\(334\) 9.95425 19.5417i 0.544672 1.06927i
\(335\) 4.90680i 0.268087i
\(336\) −3.65138 3.11578i −0.199199 0.169980i
\(337\) 13.0137 0.708901 0.354450 0.935075i \(-0.384668\pi\)
0.354450 + 0.935075i \(0.384668\pi\)
\(338\) 12.1282 + 13.8169i 0.659687 + 0.751541i
\(339\) −1.73453 + 4.18753i −0.0942069 + 0.227436i
\(340\) −26.4730 + 6.36180i −1.43570 + 0.345017i
\(341\) 13.8782 + 33.5049i 0.751545 + 1.81439i
\(342\) 15.2762 13.0500i 0.826041 0.705664i
\(343\) 17.5556i 0.947912i
\(344\) −16.3856 + 10.0486i −0.883454 + 0.541785i
\(345\) −7.47940 −0.402677
\(346\) −20.1187 + 17.1869i −1.08159 + 0.923971i
\(347\) −11.0791 26.7473i −0.594757 1.43587i −0.878861 0.477077i \(-0.841696\pi\)
0.284104 0.958793i \(-0.408304\pi\)
\(348\) −2.20127 0.348148i −0.118000 0.0186627i
\(349\) −24.8737 + 10.3030i −1.33146 + 0.551508i −0.931071 0.364838i \(-0.881124\pi\)
−0.400387 + 0.916346i \(0.631124\pi\)
\(350\) 43.5010 14.1396i 2.32523 0.755796i
\(351\) −8.90213 + 1.83299i −0.475161 + 0.0978375i
\(352\) 26.4848 10.9875i 1.41164 0.585636i
\(353\) 12.1165 12.1165i 0.644894 0.644894i −0.306860 0.951755i \(-0.599278\pi\)
0.951755 + 0.306860i \(0.0992784\pi\)
\(354\) −0.899248 + 0.292293i −0.0477945 + 0.0155352i
\(355\) 14.0715 33.9717i 0.746839 1.80303i
\(356\) 16.0054 + 22.0193i 0.848286 + 1.16702i
\(357\) 1.53024 3.69432i 0.0809888 0.195524i
\(358\) −11.9448 13.9824i −0.631300 0.738992i
\(359\) 3.06691i 0.161865i −0.996720 0.0809327i \(-0.974210\pi\)
0.996720 0.0809327i \(-0.0257899\pi\)
\(360\) 16.9861 + 27.6982i 0.895247 + 1.45982i
\(361\) −4.61524 + 4.61524i −0.242907 + 0.242907i
\(362\) 11.7353 + 0.922280i 0.616792 + 0.0484740i
\(363\) −2.43874 5.88765i −0.128001 0.309021i
\(364\) 8.47822 + 18.0601i 0.444379 + 0.946605i
\(365\) −25.6460 10.6229i −1.34237 0.556029i
\(366\) −0.908323 + 0.295243i −0.0474788 + 0.0154326i
\(367\) −31.3282 −1.63532 −0.817660 0.575702i \(-0.804729\pi\)
−0.817660 + 0.575702i \(0.804729\pi\)
\(368\) −15.0402 + 7.67175i −0.784025 + 0.399918i
\(369\) 0.0607428 + 0.0607428i 0.00316214 + 0.00316214i
\(370\) 52.2029 16.9681i 2.71390 0.882131i
\(371\) 13.6333 5.64709i 0.707805 0.293182i
\(372\) 3.24166 5.29254i 0.168072 0.274405i
\(373\) −4.75194 11.4722i −0.246046 0.594008i 0.751815 0.659374i \(-0.229178\pi\)
−0.997861 + 0.0653661i \(0.979178\pi\)
\(374\) 15.5150 + 18.1617i 0.802263 + 0.939119i
\(375\) 11.8551 0.612196
\(376\) −5.74745 + 7.91621i −0.296402 + 0.408247i
\(377\) 7.73639 + 5.09447i 0.398444 + 0.262378i
\(378\) −9.83291 0.772772i −0.505750 0.0397471i
\(379\) 15.9148 + 6.59212i 0.817488 + 0.338615i 0.751937 0.659235i \(-0.229120\pi\)
0.0655507 + 0.997849i \(0.479120\pi\)
\(380\) −24.2724 33.3926i −1.24515 1.71300i
\(381\) −7.99561 3.31189i −0.409627 0.169673i
\(382\) 8.90880 17.4893i 0.455814 0.894830i
\(383\) −3.37391 3.37391i −0.172399 0.172399i 0.615634 0.788033i \(-0.288900\pi\)
−0.788033 + 0.615634i \(0.788900\pi\)
\(384\) −4.18600 2.56073i −0.213616 0.130677i
\(385\) −40.5125 40.5125i −2.06471 2.06471i
\(386\) 0.561306 + 1.72687i 0.0285697 + 0.0878956i
\(387\) −7.31268 + 17.6544i −0.371724 + 0.897422i
\(388\) 20.0637 + 3.17323i 1.01858 + 0.161096i
\(389\) 7.62474 + 18.4078i 0.386590 + 0.933310i 0.990657 + 0.136377i \(0.0435458\pi\)
−0.604067 + 0.796933i \(0.706454\pi\)
\(390\) 1.12322 + 8.96521i 0.0568763 + 0.453971i
\(391\) −9.94553 9.94553i −0.502967 0.502967i
\(392\) 0.290303 + 1.82897i 0.0146625 + 0.0923771i
\(393\) 0.605846 + 0.605846i 0.0305609 + 0.0305609i
\(394\) −18.5441 + 15.8417i −0.934237 + 0.798093i
\(395\) 16.8587 40.7006i 0.848255 2.04787i
\(396\) 14.8888 24.3084i 0.748191 1.22154i
\(397\) 3.56723 + 8.61204i 0.179034 + 0.432226i 0.987764 0.155953i \(-0.0498449\pi\)
−0.808731 + 0.588179i \(0.799845\pi\)
\(398\) 8.25803 2.68421i 0.413938 0.134547i
\(399\) 6.06299 0.303529
\(400\) 41.6554 21.2477i 2.08277 1.06239i
\(401\) 24.7905 24.7905i 1.23798 1.23798i 0.277155 0.960825i \(-0.410608\pi\)
0.960825 0.277155i \(-0.0893915\pi\)
\(402\) −0.656461 0.334392i −0.0327413 0.0166780i
\(403\) −21.3522 + 14.4754i −1.06363 + 0.721073i
\(404\) 2.49998 4.08162i 0.124379 0.203068i
\(405\) 27.7127 + 11.4790i 1.37705 + 0.570395i
\(406\) 6.52929 + 7.64311i 0.324043 + 0.379321i
\(407\) −34.0523 34.0523i −1.68791 1.68791i
\(408\) 0.952980 3.97526i 0.0471796 0.196805i
\(409\) 19.5210i 0.965252i 0.875827 + 0.482626i \(0.160317\pi\)
−0.875827 + 0.482626i \(0.839683\pi\)
\(410\) 0.134204 0.114647i 0.00662787 0.00566201i
\(411\) 2.36987 5.72138i 0.116897 0.282215i
\(412\) −24.0546 3.80442i −1.18508 0.187430i
\(413\) 3.94032 + 1.63213i 0.193891 + 0.0803121i
\(414\) −7.61859 + 14.9564i −0.374433 + 0.735068i
\(415\) 7.27782 0.357254
\(416\) 11.4544 + 16.8759i 0.561600 + 0.827409i
\(417\) −0.822806 −0.0402930
\(418\) −16.4389 + 32.2719i −0.804052 + 1.57847i
\(419\) −15.2178 6.30342i −0.743438 0.307942i −0.0213769 0.999771i \(-0.506805\pi\)
−0.722061 + 0.691829i \(0.756805\pi\)
\(420\) −1.53171 + 9.68469i −0.0747398 + 0.472565i
\(421\) −6.43183 + 15.5278i −0.313468 + 0.756779i 0.686103 + 0.727504i \(0.259320\pi\)
−0.999571 + 0.0292751i \(0.990680\pi\)
\(422\) −7.38865 + 6.31191i −0.359674 + 0.307259i
\(423\) 9.72537i 0.472864i
\(424\) 12.8600 7.88651i 0.624539 0.383003i
\(425\) 27.5451 + 27.5451i 1.33614 + 1.33614i
\(426\) 3.58597 + 4.19769i 0.173741 + 0.203379i
\(427\) 3.98008 + 1.64860i 0.192610 + 0.0797816i
\(428\) 2.73296 + 1.67393i 0.132102 + 0.0809123i
\(429\) 6.56119 4.44808i 0.316777 0.214755i
\(430\) 34.9860 + 17.8214i 1.68717 + 0.859423i
\(431\) −3.79419 + 3.79419i −0.182760 + 0.182760i −0.792557 0.609797i \(-0.791251\pi\)
0.609797 + 0.792557i \(0.291251\pi\)
\(432\) −10.0518 + 0.795566i −0.483616 + 0.0382767i
\(433\) −33.2223 −1.59656 −0.798280 0.602287i \(-0.794256\pi\)
−0.798280 + 0.602287i \(0.794256\pi\)
\(434\) −26.6230 + 8.65361i −1.27795 + 0.415386i
\(435\) 1.74213 + 4.20588i 0.0835288 + 0.201656i
\(436\) −18.0730 11.0697i −0.865542 0.530141i
\(437\) 8.16113 19.7027i 0.390400 0.942508i
\(438\) 3.16893 2.70713i 0.151418 0.129352i
\(439\) 17.2022 + 17.2022i 0.821014 + 0.821014i 0.986254 0.165239i \(-0.0528396\pi\)
−0.165239 + 0.986254i \(0.552840\pi\)
\(440\) −47.3965 34.4115i −2.25954 1.64050i
\(441\) 1.30181 + 1.30181i 0.0619908 + 0.0619908i
\(442\) −10.4277 + 13.4148i −0.495994 + 0.638077i
\(443\) 12.7028 + 30.6673i 0.603530 + 1.45705i 0.869924 + 0.493186i \(0.164168\pi\)
−0.266394 + 0.963864i \(0.585832\pi\)
\(444\) −1.28746 + 8.14036i −0.0611002 + 0.386324i
\(445\) 21.2794 51.3730i 1.00874 2.43531i
\(446\) −2.43519 7.49193i −0.115310 0.354753i
\(447\) −2.03013 2.03013i −0.0960220 0.0960220i
\(448\) 6.85367 + 21.0459i 0.323805 + 0.994326i
\(449\) 22.9156 + 22.9156i 1.08146 + 1.08146i 0.996374 + 0.0850814i \(0.0271150\pi\)
0.0850814 + 0.996374i \(0.472885\pi\)
\(450\) 21.1005 41.4233i 0.994685 1.95271i
\(451\) −0.143065 0.0592596i −0.00673668 0.00279043i
\(452\) 16.9059 12.2886i 0.795187 0.578006i
\(453\) 2.01716 + 0.835534i 0.0947744 + 0.0392568i
\(454\) −10.9951 0.864107i −0.516024 0.0405545i
\(455\) 22.4136 34.0370i 1.05076 1.59568i
\(456\) 6.12159 0.971646i 0.286670 0.0455015i
\(457\) 0.0888898 0.00415809 0.00207904 0.999998i \(-0.499338\pi\)
0.00207904 + 0.999998i \(0.499338\pi\)
\(458\) −18.4871 21.6407i −0.863844 1.01120i
\(459\) −3.21448 7.76043i −0.150039 0.362226i
\(460\) 29.4103 + 18.0137i 1.37126 + 0.839892i
\(461\) −12.9297 + 5.35567i −0.602198 + 0.249438i −0.662888 0.748718i \(-0.730670\pi\)
0.0606908 + 0.998157i \(0.480670\pi\)
\(462\) 8.18086 2.65912i 0.380608 0.123714i
\(463\) 22.1982 + 22.1982i 1.03164 + 1.03164i 0.999483 + 0.0321568i \(0.0102376\pi\)
0.0321568 + 0.999483i \(0.489762\pi\)
\(464\) 7.81727 + 6.67060i 0.362908 + 0.309675i
\(465\) −12.6778 −0.587917
\(466\) −18.2798 + 5.94172i −0.846797 + 0.275245i
\(467\) −5.62561 2.33021i −0.260322 0.107829i 0.248705 0.968579i \(-0.419995\pi\)
−0.509028 + 0.860750i \(0.669995\pi\)
\(468\) 19.0717 + 6.88597i 0.881589 + 0.318304i
\(469\) 1.27166 + 3.07005i 0.0587197 + 0.141762i
\(470\) 19.9215 + 1.56564i 0.918908 + 0.0722174i
\(471\) 0.319471 0.319471i 0.0147204 0.0147204i
\(472\) 4.23996 + 1.01644i 0.195160 + 0.0467854i
\(473\) 34.4466i 1.58386i
\(474\) 4.29626 + 5.02915i 0.197334 + 0.230996i
\(475\) −22.6031 + 54.5686i −1.03710 + 2.50378i
\(476\) −14.9147 + 10.8412i −0.683614 + 0.496906i
\(477\) 5.73926 13.8558i 0.262783 0.634413i
\(478\) −38.3383 + 12.4615i −1.75355 + 0.569978i
\(479\) −10.8131 + 10.8131i −0.494065 + 0.494065i −0.909584 0.415519i \(-0.863600\pi\)
0.415519 + 0.909584i \(0.363600\pi\)
\(480\) 0.00554201 + 10.0238i 0.000252957 + 0.457520i
\(481\) 18.8395 28.6094i 0.859006 1.30448i
\(482\) −29.2062 + 9.49323i −1.33031 + 0.432405i
\(483\) −4.67966 + 1.93838i −0.212932 + 0.0881992i
\(484\) −4.59049 + 29.0248i −0.208659 + 1.31931i
\(485\) −15.8788 38.3349i −0.721021 1.74070i
\(486\) −11.5560 + 9.87194i −0.524190 + 0.447800i
\(487\) 10.7050 0.485091 0.242545 0.970140i \(-0.422018\pi\)
0.242545 + 0.970140i \(0.422018\pi\)
\(488\) 4.28275 + 1.02670i 0.193871 + 0.0464763i
\(489\) 0.104601i 0.00473020i
\(490\) 2.87619 2.45705i 0.129933 0.110998i
\(491\) −4.53631 10.9516i −0.204721 0.494239i 0.787856 0.615859i \(-0.211191\pi\)
−0.992577 + 0.121620i \(0.961191\pi\)
\(492\) 0.00619229 + 0.0257676i 0.000279170 + 0.00116169i
\(493\) −3.27610 + 7.90920i −0.147548 + 0.356212i
\(494\) −24.8423 6.82351i −1.11771 0.307004i
\(495\) −58.2284 −2.61717
\(496\) −25.4935 + 13.0038i −1.14469 + 0.583888i
\(497\) 24.9020i 1.11701i
\(498\) −0.495974 + 0.973669i −0.0222251 + 0.0436312i
\(499\) 0.0771298 + 0.186208i 0.00345280 + 0.00833580i 0.925597 0.378512i \(-0.123564\pi\)
−0.922144 + 0.386847i \(0.873564\pi\)
\(500\) −46.6163 28.5523i −2.08475 1.27690i
\(501\) 2.57397 6.21411i 0.114996 0.277626i
\(502\) −3.26406 0.256524i −0.145682 0.0114492i
\(503\) −14.2199 + 14.2199i −0.634035 + 0.634035i −0.949078 0.315042i \(-0.897981\pi\)
0.315042 + 0.949078i \(0.397981\pi\)
\(504\) 17.8061 + 12.9279i 0.793146 + 0.575852i
\(505\) −9.77713 −0.435076
\(506\) 2.37063 30.1644i 0.105387 1.34097i
\(507\) 4.04024 + 3.93313i 0.179433 + 0.174676i
\(508\) 23.4636 + 32.2798i 1.04103 + 1.43219i
\(509\) 2.35220 + 5.67872i 0.104260 + 0.251705i 0.967397 0.253264i \(-0.0815041\pi\)
−0.863138 + 0.504969i \(0.831504\pi\)
\(510\) −7.94132 + 2.58126i −0.351648 + 0.114300i
\(511\) −18.7991 −0.831622
\(512\) 10.2927 + 20.1509i 0.454877 + 0.890554i
\(513\) 9.00582 9.00582i 0.397617 0.397617i
\(514\) −7.91439 + 15.5371i −0.349089 + 0.685313i
\(515\) 19.0373 + 45.9601i 0.838884 + 2.02525i
\(516\) −4.76849 + 3.46613i −0.209921 + 0.152588i
\(517\) −6.70896 16.1969i −0.295060 0.712337i
\(518\) 28.2644 24.1455i 1.24187 1.06089i
\(519\) −5.73837 + 5.73837i −0.251886 + 0.251886i
\(520\) 17.1755 37.9579i 0.753195 1.66456i
\(521\) −2.29471 2.29471i −0.100533 0.100533i 0.655051 0.755584i \(-0.272647\pi\)
−0.755584 + 0.655051i \(0.772647\pi\)
\(522\) 10.1850 + 0.800441i 0.445784 + 0.0350343i
\(523\) 0.996233 0.412653i 0.0435622 0.0180441i −0.360796 0.932645i \(-0.617495\pi\)
0.404358 + 0.914601i \(0.367495\pi\)
\(524\) −0.923144 3.84143i −0.0403278 0.167814i
\(525\) 12.9608 5.36853i 0.565655 0.234302i
\(526\) −8.80332 27.0836i −0.383843 1.18090i
\(527\) −16.8579 16.8579i −0.734342 0.734342i
\(528\) 7.83377 3.99587i 0.340921 0.173898i
\(529\) 5.18351i 0.225370i
\(530\) −27.4583 13.9869i −1.19271 0.607551i
\(531\) 4.00463 1.65877i 0.173786 0.0719846i
\(532\) −23.8407 14.6023i −1.03363 0.633092i
\(533\) 0.0207631 0.108176i 0.000899352 0.00468560i
\(534\) 5.42281 + 6.34788i 0.234668 + 0.274700i
\(535\) 6.54653i 0.283031i
\(536\) 1.77595 + 2.89593i 0.0767094 + 0.125085i
\(537\) −3.98813 3.98813i −0.172100 0.172100i
\(538\) 29.2235 + 34.2087i 1.25992 + 1.47484i
\(539\) −3.06610 1.27002i −0.132066 0.0547036i
\(540\) 12.1102 + 16.6606i 0.521142 + 0.716957i
\(541\) −25.5732 + 10.5928i −1.09948 + 0.455418i −0.857302 0.514815i \(-0.827861\pi\)
−0.242175 + 0.970233i \(0.577861\pi\)
\(542\) 4.57737 + 14.0824i 0.196615 + 0.604891i
\(543\) 3.61025 0.154931
\(544\) −13.3214 + 13.3362i −0.571152 + 0.571784i
\(545\) 43.2922i 1.85443i
\(546\) 3.02621 + 5.31819i 0.129510 + 0.227598i
\(547\) −38.4895 15.9429i −1.64569 0.681669i −0.648839 0.760926i \(-0.724745\pi\)
−0.996854 + 0.0792571i \(0.974745\pi\)
\(548\) −23.0983 + 16.7897i −0.986712 + 0.717222i
\(549\) 4.04504 1.67551i 0.172638 0.0715091i
\(550\) −6.56571 + 83.5433i −0.279963 + 3.56230i
\(551\) −12.9803 −0.552979
\(552\) −4.41424 + 2.70707i −0.187883 + 0.115220i
\(553\) 29.8344i 1.26869i
\(554\) −11.5162 0.905064i −0.489277 0.0384525i
\(555\) 15.5534 6.44245i 0.660207 0.273467i
\(556\) 3.23541 + 1.98168i 0.137212 + 0.0840419i
\(557\) −1.12136 2.70721i −0.0475136 0.114708i 0.898341 0.439299i \(-0.144773\pi\)
−0.945854 + 0.324591i \(0.894773\pi\)
\(558\) −12.9137 + 25.3515i −0.546680 + 1.07321i
\(559\) 23.9992 4.94153i 1.01506 0.209004i
\(560\) 29.3479 34.3928i 1.24018 1.45336i
\(561\) 5.18018 + 5.18018i 0.218707 + 0.218707i
\(562\) 5.29852 + 2.69899i 0.223505 + 0.113850i
\(563\) 31.7116 + 13.1354i 1.33648 + 0.553589i 0.932498 0.361176i \(-0.117625\pi\)
0.403985 + 0.914765i \(0.367625\pi\)
\(564\) −1.56708 + 2.55851i −0.0659859 + 0.107733i
\(565\) −39.4429 16.3378i −1.65938 0.687336i
\(566\) 16.9380 + 1.33117i 0.711959 + 0.0559531i
\(567\) 20.3140 0.853108
\(568\) −3.99075 25.1426i −0.167448 1.05496i
\(569\) −6.07877 6.07877i −0.254835 0.254835i 0.568114 0.822950i \(-0.307673\pi\)
−0.822950 + 0.568114i \(0.807673\pi\)
\(570\) −8.22376 9.62663i −0.344456 0.403215i
\(571\) −28.0933 + 11.6366i −1.17567 + 0.486977i −0.883062 0.469256i \(-0.844522\pi\)
−0.292605 + 0.956233i \(0.594522\pi\)
\(572\) −36.5127 + 1.68836i −1.52667 + 0.0705940i
\(573\) 2.30364 5.56147i 0.0962358 0.232334i
\(574\) 0.0542558 0.106512i 0.00226459 0.00444573i
\(575\) 49.3446i 2.05781i
\(576\) 20.0500 + 10.1992i 0.835415 + 0.424967i
\(577\) −12.7075 + 12.7075i −0.529020 + 0.529020i −0.920280 0.391260i \(-0.872039\pi\)
0.391260 + 0.920280i \(0.372039\pi\)
\(578\) 7.43034 + 3.78491i 0.309061 + 0.157432i
\(579\) 0.213117 + 0.514509i 0.00885682 + 0.0213823i
\(580\) 3.27925 20.7340i 0.136163 0.860934i
\(581\) 4.55354 1.88614i 0.188913 0.0782501i
\(582\) 6.21079 + 0.488109i 0.257445 + 0.0202328i
\(583\) 27.0349i 1.11967i
\(584\) −18.9807 + 3.01271i −0.785429 + 0.124667i
\(585\) −8.35313 40.5681i −0.345359 1.67728i
\(586\) −27.5464 32.2454i −1.13793 1.33205i
\(587\) 3.40655 8.22415i 0.140603 0.339447i −0.837854 0.545894i \(-0.816190\pi\)
0.978458 + 0.206447i \(0.0661901\pi\)
\(588\) 0.132710 + 0.552238i 0.00547286 + 0.0227739i
\(589\) 13.8333 33.3965i 0.569991 1.37608i
\(590\) −2.75315 8.47013i −0.113345 0.348710i
\(591\) −5.28924 + 5.28924i −0.217570 + 0.217570i
\(592\) 24.6681 28.9085i 1.01385 1.18813i
\(593\) −18.3627 + 18.3627i −0.754067 + 0.754067i −0.975236 0.221169i \(-0.929013\pi\)
0.221169 + 0.975236i \(0.429013\pi\)
\(594\) 8.20185 16.1014i 0.336526 0.660650i
\(595\) 34.7973 + 14.4135i 1.42655 + 0.590896i
\(596\) 3.09337 + 12.8723i 0.126709 + 0.527269i
\(597\) 2.46042 1.01914i 0.100698 0.0417105i
\(598\) 21.3558 2.67559i 0.873303 0.109413i
\(599\) 11.8896 11.8896i 0.485794 0.485794i −0.421182 0.906976i \(-0.638385\pi\)
0.906976 + 0.421182i \(0.138385\pi\)
\(600\) 12.2257 7.49749i 0.499112 0.306084i
\(601\) −19.4345 + 19.4345i −0.792750 + 0.792750i −0.981940 0.189191i \(-0.939414\pi\)
0.189191 + 0.981940i \(0.439414\pi\)
\(602\) 26.5084 + 2.08331i 1.08040 + 0.0849093i
\(603\) 3.12016 + 1.29241i 0.127063 + 0.0526311i
\(604\) −5.91947 8.14367i −0.240860 0.331361i
\(605\) 55.4565 22.9708i 2.25463 0.933897i
\(606\) 0.666298 1.30804i 0.0270665 0.0531355i
\(607\) 15.6810i 0.636471i 0.948012 + 0.318235i \(0.103090\pi\)
−0.948012 + 0.318235i \(0.896910\pi\)
\(608\) −26.4113 10.9228i −1.07112 0.442978i
\(609\) 2.18001 + 2.18001i 0.0883384 + 0.0883384i
\(610\) −2.78093 8.55560i −0.112597 0.346406i
\(611\) 10.3220 6.99769i 0.417584 0.283096i
\(612\) −2.92741 + 18.5094i −0.118333 + 0.748199i
\(613\) −8.26934 + 19.9639i −0.333995 + 0.806336i 0.664272 + 0.747491i \(0.268742\pi\)
−0.998267 + 0.0588449i \(0.981258\pi\)
\(614\) 43.6939 + 3.43392i 1.76334 + 0.138582i
\(615\) 0.0382784 0.0382784i 0.00154354 0.00154354i
\(616\) −38.5728 9.24699i −1.55414 0.372572i
\(617\) −18.4583 −0.743103 −0.371552 0.928412i \(-0.621174\pi\)
−0.371552 + 0.928412i \(0.621174\pi\)
\(618\) −7.44618 0.585198i −0.299529 0.0235401i
\(619\) 37.6771 + 15.6064i 1.51437 + 0.627273i 0.976454 0.215724i \(-0.0692111\pi\)
0.537918 + 0.842997i \(0.319211\pi\)
\(620\) 49.8511 + 30.5336i 2.00207 + 1.22626i
\(621\) −4.07183 + 9.83027i −0.163397 + 0.394475i
\(622\) −1.35351 4.16412i −0.0542710 0.166966i
\(623\) 37.6575i 1.50872i
\(624\) 3.90774 + 4.88461i 0.156435 + 0.195541i
\(625\) 53.2130i 2.12852i
\(626\) 18.0597 5.87017i 0.721812 0.234619i
\(627\) −4.25076 + 10.2623i −0.169759 + 0.409835i
\(628\) −2.02564 + 0.486787i −0.0808318 + 0.0194249i
\(629\) 29.2484 + 12.1151i 1.16621 + 0.483061i
\(630\) 3.52162 44.8097i 0.140305 1.78526i
\(631\) 26.6954 1.06273 0.531363 0.847144i \(-0.321680\pi\)
0.531363 + 0.847144i \(0.321680\pi\)
\(632\) −4.78122 30.1227i −0.190187 1.19822i
\(633\) −2.10743 + 2.10743i −0.0837628 + 0.0837628i
\(634\) 2.23905 28.4902i 0.0889242 1.13149i
\(635\) 31.1951 75.3116i 1.23794 2.98865i
\(636\) 3.74249 2.72034i 0.148399 0.107869i
\(637\) 0.444984 2.31836i 0.0176309 0.0918568i
\(638\) −17.5145 + 5.69293i −0.693404 + 0.225385i
\(639\) −17.8957 17.8957i −0.707944 0.707944i
\(640\) 24.1198 39.4284i 0.953420 1.55855i
\(641\) 10.7626i 0.425097i 0.977151 + 0.212548i \(0.0681763\pi\)
−0.977151 + 0.212548i \(0.931824\pi\)
\(642\) 0.875832 + 0.446137i 0.0345664 + 0.0176076i
\(643\) −8.97502 + 3.71757i −0.353940 + 0.146607i −0.552567 0.833468i \(-0.686352\pi\)
0.198627 + 0.980075i \(0.436352\pi\)
\(644\) 23.0697 + 3.64865i 0.909072 + 0.143777i
\(645\) 11.1253 + 4.60825i 0.438058 + 0.181450i
\(646\) 1.86543 23.7361i 0.0733943 0.933883i
\(647\) 4.95783 4.95783i 0.194913 0.194913i −0.602902 0.797815i \(-0.705989\pi\)
0.797815 + 0.602902i \(0.205989\pi\)
\(648\) 20.5103 3.25549i 0.805722 0.127888i
\(649\) −5.52512 + 5.52512i −0.216880 + 0.216880i
\(650\) −59.1471 + 7.41031i −2.31994 + 0.290656i
\(651\) −7.93213 + 3.28560i −0.310885 + 0.128773i
\(652\) 0.251924 0.411307i 0.00986611 0.0161080i
\(653\) −16.9683 7.02851i −0.664022 0.275047i 0.0251078 0.999685i \(-0.492007\pi\)
−0.689130 + 0.724638i \(0.742007\pi\)
\(654\) −5.79188 2.95030i −0.226480 0.115366i
\(655\) −5.70654 + 5.70654i −0.222973 + 0.222973i
\(656\) 0.0377107 0.116236i 0.00147235 0.00453827i
\(657\) −13.5099 + 13.5099i −0.527072 + 0.527072i
\(658\) 12.8701 4.18331i 0.501727 0.163082i
\(659\) −9.45512 + 22.8267i −0.368319 + 0.889201i 0.625707 + 0.780058i \(0.284811\pi\)
−0.994026 + 0.109143i \(0.965189\pi\)
\(660\) −15.3185 9.38252i −0.596271 0.365214i
\(661\) 11.2619 27.1886i 0.438037 1.05751i −0.538589 0.842568i \(-0.681043\pi\)
0.976626 0.214946i \(-0.0689574\pi\)
\(662\) 9.25733 7.90828i 0.359797 0.307364i
\(663\) −2.86594 + 4.35218i −0.111304 + 0.169025i
\(664\) 4.29527 2.63411i 0.166689 0.102223i
\(665\) 57.1081i 2.21456i
\(666\) 2.96005 37.6643i 0.114700 1.45946i
\(667\) 10.0187 4.14989i 0.387926 0.160684i
\(668\) −25.0876 + 18.2357i −0.970668 + 0.705560i
\(669\) −0.924592 2.23216i −0.0357468 0.0863004i
\(670\) 3.14968 6.18328i 0.121683 0.238881i
\(671\) −5.58088 + 5.58088i −0.215447 + 0.215447i
\(672\) 2.60125 + 6.27016i 0.100345 + 0.241877i
\(673\) 35.5378i 1.36988i 0.728598 + 0.684941i \(0.240172\pi\)
−0.728598 + 0.684941i \(0.759828\pi\)
\(674\) −16.3991 8.35349i −0.631671 0.321764i
\(675\) 11.2773 27.2259i 0.434065 1.04793i
\(676\) −6.41420 25.1964i −0.246700 0.969092i
\(677\) −42.4275 + 17.5741i −1.63062 + 0.675426i −0.995302 0.0968222i \(-0.969132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(678\) 4.87374 4.16350i 0.187175 0.159898i
\(679\) −19.8699 19.8699i −0.762538 0.762538i
\(680\) 37.4434 + 8.97624i 1.43589 + 0.344223i
\(681\) −3.38254 −0.129619
\(682\) 4.01828 51.1294i 0.153868 1.95784i
\(683\) −37.7219 15.6249i −1.44339 0.597871i −0.482771 0.875747i \(-0.660370\pi\)
−0.960617 + 0.277876i \(0.910370\pi\)
\(684\) −27.6270 + 6.63912i −1.05635 + 0.253853i
\(685\) 53.8904 + 22.3221i 2.05905 + 0.852885i
\(686\) −11.2689 + 22.1226i −0.430249 + 0.844643i
\(687\) −6.17248 6.17248i −0.235495 0.235495i
\(688\) 27.0985 2.14476i 1.03312 0.0817681i
\(689\) −18.8354 + 3.87829i −0.717572 + 0.147751i
\(690\) 9.42512 + 4.80103i 0.358808 + 0.182772i
\(691\) −13.7702 33.2442i −0.523843 1.26467i −0.935499 0.353330i \(-0.885049\pi\)
0.411655 0.911340i \(-0.364951\pi\)
\(692\) 36.3847 8.74371i 1.38314 0.332386i
\(693\) −36.4319 + 15.0906i −1.38393 + 0.573244i
\(694\) −3.20784 + 40.8171i −0.121768 + 1.54940i
\(695\) 7.75011i 0.293979i
\(696\) 2.55044 + 1.85171i 0.0966742 + 0.0701890i
\(697\) 0.101799 0.00385593
\(698\) 37.9580 + 2.98313i 1.43673 + 0.112913i
\(699\) −5.44634 + 2.25595i −0.205999 + 0.0853278i
\(700\) −63.8938 10.1053i −2.41496 0.381944i
\(701\) −7.87216 3.26076i −0.297328 0.123157i 0.229033 0.973419i \(-0.426444\pi\)
−0.526360 + 0.850262i \(0.676444\pi\)
\(702\) 12.3946 + 3.40445i 0.467803 + 0.128493i
\(703\) 48.0015i 1.81041i
\(704\) −40.4275 3.15473i −1.52367 0.118898i
\(705\) 6.12866 0.230819
\(706\) −23.0461 + 7.49094i −0.867350 + 0.281925i
\(707\) −6.11728 + 2.53386i −0.230064 + 0.0952957i
\(708\) 1.32081 + 0.208896i 0.0496389 + 0.00785078i
\(709\) 2.49025 + 1.03149i 0.0935232 + 0.0387386i 0.428955 0.903326i \(-0.358882\pi\)
−0.335431 + 0.942065i \(0.608882\pi\)
\(710\) −39.5386 + 33.7767i −1.48386 + 1.26762i
\(711\) −21.4404 21.4404i −0.804079 0.804079i
\(712\) −6.03493 38.0214i −0.226169 1.42491i
\(713\) 30.1994i 1.13098i
\(714\) −4.29971 + 3.67312i −0.160912 + 0.137463i
\(715\) 41.8970 + 61.8007i 1.56686 + 2.31121i
\(716\) 6.07682 + 25.2872i 0.227102 + 0.945025i
\(717\) −11.4226 + 4.73139i −0.426585 + 0.176697i
\(718\) −1.96865 + 3.86475i −0.0734694 + 0.144231i
\(719\) 38.3966i 1.43195i 0.698124 + 0.715976i \(0.254018\pi\)
−0.698124 + 0.715976i \(0.745982\pi\)
\(720\) −3.62549 45.8071i −0.135114 1.70713i
\(721\) 23.8223 + 23.8223i 0.887187 + 0.887187i
\(722\) 8.77839 2.85334i 0.326698 0.106191i
\(723\) −8.70176 + 3.60439i −0.323622 + 0.134049i
\(724\) −14.1961 8.69508i −0.527595 0.323150i
\(725\) −27.7478 + 11.4935i −1.03053 + 0.426859i
\(726\) −0.706113 + 8.98472i −0.0262063 + 0.333454i
\(727\) 11.9588 + 11.9588i 0.443527 + 0.443527i 0.893196 0.449668i \(-0.148458\pi\)
−0.449668 + 0.893196i \(0.648458\pi\)
\(728\) 0.908980 28.2005i 0.0336890 1.04518i
\(729\) 12.2793 12.2793i 0.454787 0.454787i
\(730\) 25.4988 + 29.8486i 0.943753 + 1.10475i
\(731\) 8.66587 + 20.9213i 0.320519 + 0.773801i
\(732\) 1.33413 + 0.211004i 0.0493110 + 0.00779892i
\(733\) −9.86013 23.8045i −0.364192 0.879238i −0.994678 0.103037i \(-0.967144\pi\)
0.630485 0.776201i \(-0.282856\pi\)
\(734\) 39.4781 + 20.1096i 1.45716 + 0.742259i
\(735\) 0.820363 0.820363i 0.0302595 0.0302595i
\(736\) 23.8773 0.0132015i 0.880131 0.000486613i
\(737\) −6.08795 −0.224253
\(738\) −0.0375539 0.115535i −0.00138238 0.00425292i
\(739\) −5.96247 14.3947i −0.219333 0.529517i 0.775464 0.631391i \(-0.217516\pi\)
−0.994797 + 0.101875i \(0.967516\pi\)
\(740\) −76.6750 12.1267i −2.81863 0.445788i
\(741\) −7.75957 1.48937i −0.285055 0.0547132i
\(742\) −20.8048 1.63506i −0.763767 0.0600248i
\(743\) 28.0260 1.02817 0.514087 0.857738i \(-0.328131\pi\)
0.514087 + 0.857738i \(0.328131\pi\)
\(744\) −7.48225 + 4.58854i −0.274312 + 0.168224i
\(745\) 19.1221 19.1221i 0.700579 0.700579i
\(746\) −1.37587 + 17.5069i −0.0503743 + 0.640973i
\(747\) 1.91692 4.62786i 0.0701365 0.169324i
\(748\) −7.89318 32.8455i −0.288603 1.20095i
\(749\) −1.69661 4.09599i −0.0619929 0.149664i
\(750\) −14.9392 7.60981i −0.545501 0.277871i
\(751\) 34.5873i 1.26211i 0.775739 + 0.631054i \(0.217377\pi\)
−0.775739 + 0.631054i \(0.782623\pi\)
\(752\) 12.3240 6.28628i 0.449411 0.229237i
\(753\) −1.00416 −0.0365937
\(754\) −6.47883 11.3858i −0.235945 0.414645i
\(755\) −7.87000 + 18.9999i −0.286419 + 0.691476i
\(756\) 11.8948 + 7.28555i 0.432611 + 0.264973i
\(757\) 20.4386 + 49.3430i 0.742852 + 1.79340i 0.593866 + 0.804564i \(0.297601\pi\)
0.148986 + 0.988839i \(0.452399\pi\)
\(758\) −15.8235 18.5227i −0.574734 0.672776i
\(759\) 9.27981i 0.336836i
\(760\) 9.15205 + 57.6600i 0.331980 + 2.09155i
\(761\) 0.754180 0.0273390 0.0136695 0.999907i \(-0.495649\pi\)
0.0136695 + 0.999907i \(0.495649\pi\)
\(762\) 7.94972 + 9.30584i 0.287988 + 0.337115i
\(763\) 11.2197 + 27.0868i 0.406181 + 0.980607i
\(764\) −22.4528 + 16.3205i −0.812312 + 0.590454i
\(765\) 35.3652 14.6487i 1.27863 0.529626i
\(766\) 2.08590 + 6.41734i 0.0753668 + 0.231868i
\(767\) −4.64199 3.05678i −0.167613 0.110374i
\(768\) 3.63123 + 5.91388i 0.131031 + 0.213399i
\(769\) 5.74698 5.74698i 0.207242 0.207242i −0.595852