Properties

Label 416.2.bd.a.83.1
Level $416$
Weight $2$
Character 416.83
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 83.1
Character \(\chi\) \(=\) 416.83
Dual form 416.2.bd.a.411.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41400 - 0.0247176i) q^{2} +(1.03934 + 0.430508i) q^{3} +(1.99878 + 0.0699014i) q^{4} +(-0.387075 + 0.934483i) q^{5} +(-1.45898 - 0.634427i) q^{6} -4.00321i q^{7} +(-2.82454 - 0.148245i) q^{8} +(-1.22643 - 1.22643i) q^{9} +O(q^{10})\) \(q+(-1.41400 - 0.0247176i) q^{2} +(1.03934 + 0.430508i) q^{3} +(1.99878 + 0.0699014i) q^{4} +(-0.387075 + 0.934483i) q^{5} +(-1.45898 - 0.634427i) q^{6} -4.00321i q^{7} +(-2.82454 - 0.148245i) q^{8} +(-1.22643 - 1.22643i) q^{9} +(0.570422 - 1.31179i) q^{10} +(-5.03511 - 2.08561i) q^{11} +(2.04731 + 0.933141i) q^{12} +(-3.26904 - 1.52098i) q^{13} +(-0.0989499 + 5.66053i) q^{14} +(-0.804604 + 0.804604i) q^{15} +(3.99023 + 0.279435i) q^{16} -1.31652 q^{17} +(1.70386 + 1.76449i) q^{18} +(-1.63531 - 3.94798i) q^{19} +(-0.838999 + 1.84077i) q^{20} +(1.72341 - 4.16069i) q^{21} +(7.06808 + 3.07350i) q^{22} +(2.48957 + 2.48957i) q^{23} +(-2.87183 - 1.37006i) q^{24} +(2.81210 + 2.81210i) q^{25} +(4.58482 + 2.23147i) q^{26} +(-2.03821 - 4.92068i) q^{27} +(0.279830 - 8.00152i) q^{28} +(-0.417444 + 1.00780i) q^{29} +(1.15760 - 1.11782i) q^{30} +(4.10888 + 4.10888i) q^{31} +(-5.63527 - 0.493749i) q^{32} +(-4.33531 - 4.33531i) q^{33} +(1.86155 + 0.0325412i) q^{34} +(3.74093 + 1.54954i) q^{35} +(-2.36564 - 2.53710i) q^{36} +(-1.34477 - 0.557021i) q^{37} +(2.21473 + 5.62285i) q^{38} +(-2.74284 - 2.98816i) q^{39} +(1.23184 - 2.58210i) q^{40} +0.321682 q^{41} +(-2.53974 + 5.84060i) q^{42} +(-2.08238 - 5.02730i) q^{43} +(-9.91827 - 4.52063i) q^{44} +(1.62080 - 0.671359i) q^{45} +(-3.45871 - 3.58178i) q^{46} +(6.70557 + 6.70557i) q^{47} +(4.02690 + 2.00825i) q^{48} -9.02567 q^{49} +(-3.90680 - 4.04582i) q^{50} +(-1.36831 - 0.566771i) q^{51} +(-6.42776 - 3.26862i) q^{52} +(-3.64238 - 8.79347i) q^{53} +(2.76040 + 7.00821i) q^{54} +(3.89793 - 3.89793i) q^{55} +(-0.593457 + 11.3072i) q^{56} -4.80730i q^{57} +(0.615176 - 1.41471i) q^{58} +(2.38670 - 5.76200i) q^{59} +(-1.66447 + 1.55198i) q^{60} +(-1.26927 + 3.06430i) q^{61} +(-5.70839 - 5.91151i) q^{62} +(-4.90967 + 4.90967i) q^{63} +(7.95605 + 0.837450i) q^{64} +(2.68670 - 2.46612i) q^{65} +(6.02295 + 6.23727i) q^{66} +(8.05384 - 3.33601i) q^{67} +(-2.63143 - 0.0920264i) q^{68} +(1.51572 + 3.65928i) q^{69} +(-5.25136 - 2.28352i) q^{70} +8.00373 q^{71} +(3.28230 + 3.64593i) q^{72} -10.6425i q^{73} +(1.88773 + 0.820866i) q^{74} +(1.71209 + 4.13336i) q^{75} +(-2.99265 - 8.00544i) q^{76} +(-8.34913 + 20.1566i) q^{77} +(3.80451 + 4.29305i) q^{78} +0.399083 q^{79} +(-1.80565 + 3.62064i) q^{80} -0.788397i q^{81} +(-0.454858 - 0.00795122i) q^{82} +(-1.49038 - 3.59810i) q^{83} +(3.73556 - 8.19582i) q^{84} +(0.509592 - 1.23026i) q^{85} +(2.82021 + 7.16007i) q^{86} +(-0.867731 + 0.867731i) q^{87} +(13.9127 + 6.63732i) q^{88} -8.13354 q^{89} +(-2.30841 + 0.909238i) q^{90} +(-6.08881 + 13.0866i) q^{91} +(4.80207 + 5.15012i) q^{92} +(2.50161 + 6.03942i) q^{93} +(-9.31592 - 9.64741i) q^{94} +4.32230 q^{95} +(-5.64438 - 2.93920i) q^{96} +(-7.10314 + 7.10314i) q^{97} +(12.7623 + 0.223093i) q^{98} +(3.61736 + 8.73309i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24} - 4 q^{26} - 8 q^{27} + 56 q^{28} - 8 q^{29} - 16 q^{30} - 44 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} - 28 q^{39} - 8 q^{40} - 8 q^{41} - 48 q^{42} - 32 q^{43} + 12 q^{44} - 36 q^{45} - 48 q^{46} - 8 q^{47} - 8 q^{48} - 168 q^{49} + 76 q^{50} - 4 q^{52} - 8 q^{53} - 28 q^{54} - 40 q^{55} + 56 q^{56} + 32 q^{58} + 52 q^{59} - 36 q^{60} - 8 q^{61} + 72 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} + 20 q^{70} + 56 q^{71} + 8 q^{72} - 8 q^{74} - 68 q^{76} + 56 q^{77} - 48 q^{78} - 16 q^{79} + 28 q^{80} - 88 q^{82} + 36 q^{83} + 100 q^{84} - 24 q^{85} + 96 q^{86} - 8 q^{87} + 64 q^{88} - 8 q^{89} - 64 q^{90} + 72 q^{91} - 8 q^{92} - 40 q^{93} - 56 q^{94} + 36 q^{96} - 8 q^{97} + 52 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41400 0.0247176i −0.999847 0.0174780i
\(3\) 1.03934 + 0.430508i 0.600062 + 0.248554i 0.661973 0.749528i \(-0.269719\pi\)
−0.0619108 + 0.998082i \(0.519719\pi\)
\(4\) 1.99878 + 0.0699014i 0.999389 + 0.0349507i
\(5\) −0.387075 + 0.934483i −0.173105 + 0.417913i −0.986492 0.163810i \(-0.947622\pi\)
0.813386 + 0.581724i \(0.197622\pi\)
\(6\) −1.45898 0.634427i −0.595626 0.259004i
\(7\) 4.00321i 1.51307i −0.653953 0.756535i \(-0.726891\pi\)
0.653953 0.756535i \(-0.273109\pi\)
\(8\) −2.82454 0.148245i −0.998626 0.0524127i
\(9\) −1.22643 1.22643i −0.408811 0.408811i
\(10\) 0.570422 1.31179i 0.180383 0.414824i
\(11\) −5.03511 2.08561i −1.51814 0.628835i −0.540924 0.841072i \(-0.681925\pi\)
−0.977218 + 0.212237i \(0.931925\pi\)
\(12\) 2.04731 + 0.933141i 0.591008 + 0.269375i
\(13\) −3.26904 1.52098i −0.906668 0.421845i
\(14\) −0.0989499 + 5.66053i −0.0264455 + 1.51284i
\(15\) −0.804604 + 0.804604i −0.207748 + 0.207748i
\(16\) 3.99023 + 0.279435i 0.997557 + 0.0698587i
\(17\) −1.31652 −0.319303 −0.159651 0.987173i \(-0.551037\pi\)
−0.159651 + 0.987173i \(0.551037\pi\)
\(18\) 1.70386 + 1.76449i 0.401604 + 0.415894i
\(19\) −1.63531 3.94798i −0.375165 0.905728i −0.992857 0.119309i \(-0.961932\pi\)
0.617692 0.786420i \(-0.288068\pi\)
\(20\) −0.838999 + 1.84077i −0.187606 + 0.411608i
\(21\) 1.72341 4.16069i 0.376079 0.907936i
\(22\) 7.06808 + 3.07350i 1.50692 + 0.655273i
\(23\) 2.48957 + 2.48957i 0.519111 + 0.519111i 0.917302 0.398192i \(-0.130362\pi\)
−0.398192 + 0.917302i \(0.630362\pi\)
\(24\) −2.87183 1.37006i −0.586210 0.279663i
\(25\) 2.81210 + 2.81210i 0.562421 + 0.562421i
\(26\) 4.58482 + 2.23147i 0.899156 + 0.437627i
\(27\) −2.03821 4.92068i −0.392254 0.946986i
\(28\) 0.279830 8.00152i 0.0528828 1.51215i
\(29\) −0.417444 + 1.00780i −0.0775175 + 0.187144i −0.957888 0.287144i \(-0.907294\pi\)
0.880370 + 0.474287i \(0.157294\pi\)
\(30\) 1.15760 1.11782i 0.211347 0.204085i
\(31\) 4.10888 + 4.10888i 0.737977 + 0.737977i 0.972186 0.234209i \(-0.0752501\pi\)
−0.234209 + 0.972186i \(0.575250\pi\)
\(32\) −5.63527 0.493749i −0.996184 0.0872833i
\(33\) −4.33531 4.33531i −0.754680 0.754680i
\(34\) 1.86155 + 0.0325412i 0.319254 + 0.00558077i
\(35\) 3.74093 + 1.54954i 0.632332 + 0.261921i
\(36\) −2.36564 2.53710i −0.394273 0.422850i
\(37\) −1.34477 0.557021i −0.221078 0.0915737i 0.269395 0.963030i \(-0.413176\pi\)
−0.490474 + 0.871456i \(0.663176\pi\)
\(38\) 2.21473 + 5.62285i 0.359277 + 0.912147i
\(39\) −2.74284 2.98816i −0.439206 0.478489i
\(40\) 1.23184 2.58210i 0.194771 0.408266i
\(41\) 0.321682 0.0502383 0.0251192 0.999684i \(-0.492003\pi\)
0.0251192 + 0.999684i \(0.492003\pi\)
\(42\) −2.53974 + 5.84060i −0.391891 + 0.901224i
\(43\) −2.08238 5.02730i −0.317560 0.766657i −0.999382 0.0351393i \(-0.988813\pi\)
0.681823 0.731517i \(-0.261187\pi\)
\(44\) −9.91827 4.52063i −1.49524 0.681511i
\(45\) 1.62080 0.671359i 0.241615 0.100080i
\(46\) −3.45871 3.58178i −0.509958 0.528104i
\(47\) 6.70557 + 6.70557i 0.978108 + 0.978108i 0.999765 0.0216571i \(-0.00689422\pi\)
−0.0216571 + 0.999765i \(0.506894\pi\)
\(48\) 4.02690 + 2.00825i 0.581232 + 0.289866i
\(49\) −9.02567 −1.28938
\(50\) −3.90680 4.04582i −0.552505 0.572165i
\(51\) −1.36831 0.566771i −0.191601 0.0793638i
\(52\) −6.42776 3.26862i −0.891370 0.453276i
\(53\) −3.64238 8.79347i −0.500319 1.20788i −0.949310 0.314340i \(-0.898217\pi\)
0.448992 0.893536i \(-0.351783\pi\)
\(54\) 2.76040 + 7.00821i 0.375643 + 0.953697i
\(55\) 3.89793 3.89793i 0.525597 0.525597i
\(56\) −0.593457 + 11.3072i −0.0793041 + 1.51099i
\(57\) 4.80730i 0.636742i
\(58\) 0.615176 1.41471i 0.0807765 0.185760i
\(59\) 2.38670 5.76200i 0.310722 0.750148i −0.688957 0.724802i \(-0.741931\pi\)
0.999679 0.0253461i \(-0.00806879\pi\)
\(60\) −1.66447 + 1.55198i −0.214882 + 0.200360i
\(61\) −1.26927 + 3.06430i −0.162514 + 0.392343i −0.984069 0.177785i \(-0.943107\pi\)
0.821555 + 0.570129i \(0.193107\pi\)
\(62\) −5.70839 5.91151i −0.724966 0.750762i
\(63\) −4.90967 + 4.90967i −0.618560 + 0.618560i
\(64\) 7.95605 + 0.837450i 0.994506 + 0.104681i
\(65\) 2.68670 2.46612i 0.333244 0.305885i
\(66\) 6.02295 + 6.23727i 0.741374 + 0.767755i
\(67\) 8.05384 3.33601i 0.983933 0.407558i 0.168052 0.985778i \(-0.446252\pi\)
0.815881 + 0.578220i \(0.196252\pi\)
\(68\) −2.63143 0.0920264i −0.319107 0.0111598i
\(69\) 1.51572 + 3.65928i 0.182472 + 0.440526i
\(70\) −5.25136 2.28352i −0.627658 0.272933i
\(71\) 8.00373 0.949868 0.474934 0.880022i \(-0.342472\pi\)
0.474934 + 0.880022i \(0.342472\pi\)
\(72\) 3.28230 + 3.64593i 0.386823 + 0.429676i
\(73\) 10.6425i 1.24561i −0.782376 0.622807i \(-0.785992\pi\)
0.782376 0.622807i \(-0.214008\pi\)
\(74\) 1.88773 + 0.820866i 0.219444 + 0.0954237i
\(75\) 1.71209 + 4.13336i 0.197695 + 0.477279i
\(76\) −2.99265 8.00544i −0.343280 0.918287i
\(77\) −8.34913 + 20.1566i −0.951472 + 2.29706i
\(78\) 3.80451 + 4.29305i 0.430776 + 0.486092i
\(79\) 0.399083 0.0449004 0.0224502 0.999748i \(-0.492853\pi\)
0.0224502 + 0.999748i \(0.492853\pi\)
\(80\) −1.80565 + 3.62064i −0.201877 + 0.404799i
\(81\) 0.788397i 0.0875997i
\(82\) −0.454858 0.00795122i −0.0502306 0.000878066i
\(83\) −1.49038 3.59810i −0.163591 0.394942i 0.820734 0.571311i \(-0.193565\pi\)
−0.984324 + 0.176368i \(0.943565\pi\)
\(84\) 3.73556 8.19582i 0.407583 0.894237i
\(85\) 0.509592 1.23026i 0.0552730 0.133441i
\(86\) 2.82021 + 7.16007i 0.304111 + 0.772090i
\(87\) −0.867731 + 0.867731i −0.0930306 + 0.0930306i
\(88\) 13.9127 + 6.63732i 1.48310 + 0.707540i
\(89\) −8.13354 −0.862153 −0.431077 0.902315i \(-0.641866\pi\)
−0.431077 + 0.902315i \(0.641866\pi\)
\(90\) −2.30841 + 0.909238i −0.243328 + 0.0958421i
\(91\) −6.08881 + 13.0866i −0.638281 + 1.37185i
\(92\) 4.80207 + 5.15012i 0.500650 + 0.536937i
\(93\) 2.50161 + 6.03942i 0.259405 + 0.626259i
\(94\) −9.31592 9.64741i −0.960864 0.995054i
\(95\) 4.32230 0.443459
\(96\) −5.64438 2.93920i −0.576077 0.299981i
\(97\) −7.10314 + 7.10314i −0.721214 + 0.721214i −0.968853 0.247638i \(-0.920346\pi\)
0.247638 + 0.968853i \(0.420346\pi\)
\(98\) 12.7623 + 0.223093i 1.28919 + 0.0225358i
\(99\) 3.61736 + 8.73309i 0.363559 + 0.877709i
\(100\) 5.42420 + 5.81734i 0.542420 + 0.581734i
\(101\) 6.49575 + 15.6821i 0.646351 + 1.56043i 0.817967 + 0.575265i \(0.195101\pi\)
−0.171616 + 0.985164i \(0.554899\pi\)
\(102\) 1.92077 + 0.835234i 0.190185 + 0.0827005i
\(103\) 9.90285 9.90285i 0.975756 0.975756i −0.0239566 0.999713i \(-0.507626\pi\)
0.999713 + 0.0239566i \(0.00762635\pi\)
\(104\) 9.00805 + 4.78070i 0.883312 + 0.468786i
\(105\) 3.22100 + 3.22100i 0.314337 + 0.314337i
\(106\) 4.93296 + 12.5240i 0.479131 + 1.21644i
\(107\) 13.1702 5.45527i 1.27321 0.527381i 0.359272 0.933233i \(-0.383025\pi\)
0.913939 + 0.405852i \(0.133025\pi\)
\(108\) −3.72997 9.97783i −0.358917 0.960117i
\(109\) −5.08877 + 2.10784i −0.487415 + 0.201894i −0.612837 0.790210i \(-0.709972\pi\)
0.125421 + 0.992104i \(0.459972\pi\)
\(110\) −5.60801 + 5.41532i −0.534703 + 0.516330i
\(111\) −1.15787 1.15787i −0.109900 0.109900i
\(112\) 1.11863 15.9737i 0.105701 1.50937i
\(113\) 1.15881i 0.109012i 0.998513 + 0.0545060i \(0.0173584\pi\)
−0.998513 + 0.0545060i \(0.982642\pi\)
\(114\) −0.118825 + 6.79750i −0.0111290 + 0.636645i
\(115\) −3.29011 + 1.36281i −0.306804 + 0.127082i
\(116\) −0.904825 + 1.98519i −0.0840109 + 0.184320i
\(117\) 2.14387 + 5.87465i 0.198201 + 0.543111i
\(118\) −3.51721 + 8.08846i −0.323785 + 0.744603i
\(119\) 5.27030i 0.483127i
\(120\) 2.39192 2.15336i 0.218351 0.196574i
\(121\) 13.2244 + 13.2244i 1.20221 + 1.20221i
\(122\) 1.87049 4.30154i 0.169346 0.389443i
\(123\) 0.334336 + 0.138487i 0.0301461 + 0.0124869i
\(124\) 7.92552 + 8.49996i 0.711733 + 0.763319i
\(125\) −8.38877 + 3.47474i −0.750315 + 0.310790i
\(126\) 7.06362 6.82091i 0.629277 0.607655i
\(127\) −1.79658 −0.159420 −0.0797102 0.996818i \(-0.525399\pi\)
−0.0797102 + 0.996818i \(0.525399\pi\)
\(128\) −11.2291 1.38081i −0.992524 0.122047i
\(129\) 6.12155i 0.538972i
\(130\) −3.85994 + 3.42068i −0.338539 + 0.300014i
\(131\) −18.0536 7.47805i −1.57735 0.653360i −0.589360 0.807870i \(-0.700620\pi\)
−0.987991 + 0.154510i \(0.950620\pi\)
\(132\) −8.36227 8.96836i −0.727842 0.780595i
\(133\) −15.8046 + 6.54647i −1.37043 + 0.567651i
\(134\) −11.4706 + 4.51804i −0.990906 + 0.390299i
\(135\) 5.38724 0.463659
\(136\) 3.71856 + 0.195168i 0.318864 + 0.0167355i
\(137\) 13.2194i 1.12941i −0.825292 0.564706i \(-0.808989\pi\)
0.825292 0.564706i \(-0.191011\pi\)
\(138\) −2.05278 5.21168i −0.174744 0.443647i
\(139\) 14.0734 5.82937i 1.19369 0.494441i 0.304732 0.952438i \(-0.401433\pi\)
0.888954 + 0.457997i \(0.151433\pi\)
\(140\) 7.36897 + 3.35869i 0.622792 + 0.283861i
\(141\) 4.08255 + 9.85616i 0.343813 + 0.830038i
\(142\) −11.3173 0.197833i −0.949723 0.0166018i
\(143\) 13.2878 + 14.4763i 1.11118 + 1.21057i
\(144\) −4.55104 5.23646i −0.379254 0.436372i
\(145\) −0.780189 0.780189i −0.0647912 0.0647912i
\(146\) −0.263058 + 15.0485i −0.0217708 + 1.24542i
\(147\) −9.38072 3.88562i −0.773709 0.320481i
\(148\) −2.64896 1.20736i −0.217743 0.0992446i
\(149\) 1.05215 + 0.435816i 0.0861957 + 0.0357034i 0.425365 0.905022i \(-0.360146\pi\)
−0.339169 + 0.940725i \(0.610146\pi\)
\(150\) −2.31873 5.88688i −0.189323 0.480661i
\(151\) −17.9914 −1.46412 −0.732058 0.681242i \(-0.761440\pi\)
−0.732058 + 0.681242i \(0.761440\pi\)
\(152\) 4.03372 + 11.3936i 0.327178 + 0.924147i
\(153\) 1.61462 + 1.61462i 0.130535 + 0.130535i
\(154\) 12.3039 28.2950i 0.991474 2.28007i
\(155\) −5.43012 + 2.24923i −0.436158 + 0.180663i
\(156\) −5.27345 6.16440i −0.422214 0.493547i
\(157\) 5.83646 14.0905i 0.465800 1.12454i −0.500179 0.865922i \(-0.666732\pi\)
0.965979 0.258619i \(-0.0832675\pi\)
\(158\) −0.564303 0.00986440i −0.0448935 0.000784769i
\(159\) 10.7075i 0.849157i
\(160\) 2.64267 5.07494i 0.208922 0.401209i
\(161\) 9.96626 9.96626i 0.785451 0.785451i
\(162\) −0.0194873 + 1.11479i −0.00153107 + 0.0875863i
\(163\) 0.476411 + 1.15016i 0.0373154 + 0.0900873i 0.941439 0.337185i \(-0.109475\pi\)
−0.904123 + 0.427272i \(0.859475\pi\)
\(164\) 0.642971 + 0.0224860i 0.0502076 + 0.00175586i
\(165\) 5.72936 2.37318i 0.446030 0.184752i
\(166\) 2.01846 + 5.12454i 0.156663 + 0.397741i
\(167\) 0.981684i 0.0759650i −0.999278 0.0379825i \(-0.987907\pi\)
0.999278 0.0379825i \(-0.0120931\pi\)
\(168\) −5.48465 + 11.4965i −0.423150 + 0.886977i
\(169\) 8.37322 + 9.94431i 0.644094 + 0.764947i
\(170\) −0.750971 + 1.72699i −0.0575968 + 0.132454i
\(171\) −2.83634 + 6.84753i −0.216900 + 0.523644i
\(172\) −3.81079 10.1940i −0.290570 0.777287i
\(173\) 3.76378 9.08658i 0.286155 0.690840i −0.713800 0.700350i \(-0.753027\pi\)
0.999955 + 0.00951042i \(0.00302730\pi\)
\(174\) 1.24842 1.20552i 0.0946423 0.0913904i
\(175\) 11.2574 11.2574i 0.850982 0.850982i
\(176\) −19.5084 9.72904i −1.47050 0.733354i
\(177\) 4.96117 4.96117i 0.372904 0.372904i
\(178\) 11.5008 + 0.201042i 0.862021 + 0.0150687i
\(179\) −13.9701 5.78662i −1.04418 0.432512i −0.206367 0.978475i \(-0.566164\pi\)
−0.837809 + 0.545963i \(0.816164\pi\)
\(180\) 3.28656 1.22860i 0.244966 0.0915745i
\(181\) −15.1205 + 6.26312i −1.12390 + 0.465534i −0.865703 0.500558i \(-0.833128\pi\)
−0.258196 + 0.966093i \(0.583128\pi\)
\(182\) 8.93304 18.3540i 0.662161 1.36049i
\(183\) −2.63841 + 2.63841i −0.195037 + 0.195037i
\(184\) −6.66282 7.40095i −0.491189 0.545605i
\(185\) 1.04105 1.04105i 0.0765397 0.0765397i
\(186\) −3.38799 8.60156i −0.248419 0.630697i
\(187\) 6.62881 + 2.74574i 0.484746 + 0.200789i
\(188\) 12.9342 + 13.8717i 0.943325 + 1.01170i
\(189\) −19.6985 + 8.15939i −1.43286 + 0.593508i
\(190\) −6.11173 0.106837i −0.443391 0.00775078i
\(191\) 8.25717i 0.597468i −0.954336 0.298734i \(-0.903436\pi\)
0.954336 0.298734i \(-0.0965644\pi\)
\(192\) 7.90849 + 4.29553i 0.570746 + 0.310003i
\(193\) −12.6912 12.6912i −0.913531 0.913531i 0.0830171 0.996548i \(-0.473544\pi\)
−0.996548 + 0.0830171i \(0.973544\pi\)
\(194\) 10.2194 9.86825i 0.733710 0.708499i
\(195\) 3.85407 1.40649i 0.275996 0.100721i
\(196\) −18.0403 0.630907i −1.28859 0.0450648i
\(197\) 4.96803 11.9939i 0.353958 0.854530i −0.642166 0.766566i \(-0.721964\pi\)
0.996124 0.0879640i \(-0.0280361\pi\)
\(198\) −4.89908 12.4380i −0.348163 0.883929i
\(199\) 17.9928 17.9928i 1.27548 1.27548i 0.332307 0.943171i \(-0.392173\pi\)
0.943171 0.332307i \(-0.107827\pi\)
\(200\) −7.52602 8.35978i −0.532170 0.591126i
\(201\) 9.80684 0.691721
\(202\) −8.79735 22.3350i −0.618979 1.57149i
\(203\) 4.03443 + 1.67112i 0.283162 + 0.117289i
\(204\) −2.69532 1.22850i −0.188710 0.0860120i
\(205\) −0.124515 + 0.300606i −0.00869652 + 0.0209953i
\(206\) −14.2474 + 13.7578i −0.992662 + 0.958553i
\(207\) 6.10658i 0.424437i
\(208\) −12.6192 6.98255i −0.874983 0.484153i
\(209\) 23.2891i 1.61094i
\(210\) −4.47487 4.63410i −0.308795 0.319783i
\(211\) −9.28690 + 22.4205i −0.639336 + 1.54349i 0.188229 + 0.982125i \(0.439725\pi\)
−0.827565 + 0.561369i \(0.810275\pi\)
\(212\) −6.66563 17.8308i −0.457797 1.22462i
\(213\) 8.31858 + 3.44567i 0.569979 + 0.236093i
\(214\) −18.7575 + 7.38821i −1.28223 + 0.505047i
\(215\) 5.50397 0.375367
\(216\) 5.02755 + 14.2008i 0.342081 + 0.966243i
\(217\) 16.4487 16.4487i 1.11661 1.11661i
\(218\) 7.24760 2.85469i 0.490870 0.193344i
\(219\) 4.58169 11.0612i 0.309602 0.747445i
\(220\) 8.06357 7.51863i 0.543646 0.506906i
\(221\) 4.30375 + 2.00240i 0.289501 + 0.134696i
\(222\) 1.60860 + 1.66584i 0.107962 + 0.111804i
\(223\) 16.1248 + 16.1248i 1.07980 + 1.07980i 0.996527 + 0.0832723i \(0.0265371\pi\)
0.0832723 + 0.996527i \(0.473463\pi\)
\(224\) −1.97658 + 22.5591i −0.132066 + 1.50730i
\(225\) 6.89772i 0.459848i
\(226\) 0.0286431 1.63856i 0.00190531 0.108995i
\(227\) −7.59392 + 3.14551i −0.504026 + 0.208775i −0.620184 0.784456i \(-0.712942\pi\)
0.116158 + 0.993231i \(0.462942\pi\)
\(228\) 0.336037 9.60872i 0.0222546 0.636353i
\(229\) −4.81266 1.99347i −0.318030 0.131732i 0.217958 0.975958i \(-0.430061\pi\)
−0.535987 + 0.844226i \(0.680061\pi\)
\(230\) 4.68589 1.84568i 0.308978 0.121701i
\(231\) −17.3551 + 17.3551i −1.14188 + 1.14188i
\(232\) 1.32849 2.78469i 0.0872196 0.182824i
\(233\) −17.8948 + 17.8948i −1.17233 + 1.17233i −0.190677 + 0.981653i \(0.561068\pi\)
−0.981653 + 0.190677i \(0.938932\pi\)
\(234\) −2.88622 8.35973i −0.188678 0.546493i
\(235\) −8.86180 + 3.67068i −0.578080 + 0.239449i
\(236\) 5.17325 11.3501i 0.336750 0.738830i
\(237\) 0.414782 + 0.171808i 0.0269430 + 0.0111602i
\(238\) 0.130269 7.45218i 0.00844410 0.483053i
\(239\) −20.7919 + 20.7919i −1.34492 + 1.34492i −0.453829 + 0.891089i \(0.649942\pi\)
−0.891089 + 0.453829i \(0.850058\pi\)
\(240\) −3.43539 + 2.98572i −0.221753 + 0.192727i
\(241\) −8.68365 + 8.68365i −0.559363 + 0.559363i −0.929126 0.369763i \(-0.879439\pi\)
0.369763 + 0.929126i \(0.379439\pi\)
\(242\) −18.3723 19.0261i −1.18102 1.22304i
\(243\) −5.77523 + 13.9426i −0.370481 + 0.894421i
\(244\) −2.75120 + 6.03613i −0.176127 + 0.386424i
\(245\) 3.49362 8.43434i 0.223199 0.538850i
\(246\) −0.469328 0.204084i −0.0299232 0.0130119i
\(247\) −0.658933 + 15.3934i −0.0419269 + 0.979456i
\(248\) −10.9966 12.2148i −0.698283 0.775642i
\(249\) 4.38126i 0.277651i
\(250\) 11.9476 4.70593i 0.755632 0.297629i
\(251\) 9.46757 3.92160i 0.597588 0.247529i −0.0633234 0.997993i \(-0.520170\pi\)
0.660911 + 0.750464i \(0.270170\pi\)
\(252\) −10.1565 + 9.47015i −0.639802 + 0.596563i
\(253\) −7.34297 17.7275i −0.461649 1.11452i
\(254\) 2.54036 + 0.0444071i 0.159396 + 0.00278635i
\(255\) 1.05928 1.05928i 0.0663344 0.0663344i
\(256\) 15.8438 + 2.23002i 0.990240 + 0.139376i
\(257\) 21.9735i 1.37067i −0.728229 0.685334i \(-0.759656\pi\)
0.728229 0.685334i \(-0.240344\pi\)
\(258\) −0.151310 + 8.65585i −0.00942016 + 0.538890i
\(259\) −2.22987 + 5.38338i −0.138557 + 0.334507i
\(260\) 5.54250 4.74143i 0.343731 0.294051i
\(261\) 1.74797 0.724032i 0.108197 0.0448165i
\(262\) 25.3429 + 11.0202i 1.56569 + 0.680830i
\(263\) −4.69386 4.69386i −0.289436 0.289436i 0.547421 0.836857i \(-0.315610\pi\)
−0.836857 + 0.547421i \(0.815610\pi\)
\(264\) 11.6026 + 12.8879i 0.714088 + 0.793197i
\(265\) 9.62722 0.591396
\(266\) 22.5095 8.86604i 1.38014 0.543612i
\(267\) −8.45349 3.50155i −0.517345 0.214291i
\(268\) 16.3310 6.10497i 0.997576 0.372920i
\(269\) 3.50289 + 1.45094i 0.213575 + 0.0884656i 0.486906 0.873454i \(-0.338125\pi\)
−0.273331 + 0.961920i \(0.588125\pi\)
\(270\) −7.61754 0.133160i −0.463589 0.00810384i
\(271\) 11.8900 + 11.8900i 0.722267 + 0.722267i 0.969066 0.246800i \(-0.0793790\pi\)
−0.246800 + 0.969066i \(0.579379\pi\)
\(272\) −5.25321 0.367881i −0.318522 0.0223060i
\(273\) −11.9622 + 10.9802i −0.723987 + 0.664549i
\(274\) −0.326753 + 18.6923i −0.0197399 + 1.12924i
\(275\) −8.29429 20.0242i −0.500165 1.20750i
\(276\) 2.77381 + 7.42004i 0.166964 + 0.446634i
\(277\) 13.6789 5.66597i 0.821883 0.340435i 0.0681988 0.997672i \(-0.478275\pi\)
0.753684 + 0.657237i \(0.228275\pi\)
\(278\) −20.0438 + 7.89486i −1.20215 + 0.473502i
\(279\) 10.0785i 0.603387i
\(280\) −10.3367 4.93132i −0.617735 0.294703i
\(281\) 13.8765 0.827804 0.413902 0.910321i \(-0.364166\pi\)
0.413902 + 0.910321i \(0.364166\pi\)
\(282\) −5.52910 14.0375i −0.329253 0.835920i
\(283\) −8.02276 + 3.32314i −0.476904 + 0.197540i −0.608169 0.793807i \(-0.708096\pi\)
0.131266 + 0.991347i \(0.458096\pi\)
\(284\) 15.9977 + 0.559471i 0.949287 + 0.0331985i
\(285\) 4.49233 + 1.86079i 0.266103 + 0.110223i
\(286\) −18.4311 20.7978i −1.08985 1.22980i
\(287\) 1.28776i 0.0760141i
\(288\) 6.30573 + 7.51683i 0.371569 + 0.442934i
\(289\) −15.2668 −0.898046
\(290\) 1.08390 + 1.12247i 0.0636489 + 0.0659137i
\(291\) −10.4405 + 4.32460i −0.612034 + 0.253513i
\(292\) 0.743927 21.2720i 0.0435350 1.24485i
\(293\) 30.0013 + 12.4270i 1.75270 + 0.725990i 0.997514 + 0.0704751i \(0.0224515\pi\)
0.755182 + 0.655515i \(0.227548\pi\)
\(294\) 13.1683 + 5.72613i 0.767989 + 0.333955i
\(295\) 4.46066 + 4.46066i 0.259709 + 0.259709i
\(296\) 3.71577 + 1.77268i 0.215975 + 0.103035i
\(297\) 29.0271i 1.68432i
\(298\) −1.47697 0.642249i −0.0855585 0.0372045i
\(299\) −4.35190 11.9251i −0.251677 0.689645i
\(300\) 3.13317 + 8.38134i 0.180893 + 0.483897i
\(301\) −20.1253 + 8.33619i −1.16001 + 0.480490i
\(302\) 25.4397 + 0.444704i 1.46389 + 0.0255898i
\(303\) 19.0955i 1.09701i
\(304\) −5.42204 16.2103i −0.310975 0.929724i
\(305\) −2.37223 2.37223i −0.135833 0.135833i
\(306\) −2.24316 2.32298i −0.128233 0.132796i
\(307\) 27.1657 11.2524i 1.55043 0.642208i 0.567034 0.823694i \(-0.308091\pi\)
0.983393 + 0.181486i \(0.0580908\pi\)
\(308\) −18.0970 + 39.7049i −1.03117 + 2.26240i
\(309\) 14.5557 6.02915i 0.828042 0.342986i
\(310\) 7.73378 3.04619i 0.439249 0.173012i
\(311\) −14.8173 14.8173i −0.840213 0.840213i 0.148673 0.988886i \(-0.452500\pi\)
−0.988886 + 0.148673i \(0.952500\pi\)
\(312\) 7.30428 + 8.84680i 0.413523 + 0.500851i
\(313\) 12.6396 12.6396i 0.714431 0.714431i −0.253028 0.967459i \(-0.581426\pi\)
0.967459 + 0.253028i \(0.0814265\pi\)
\(314\) −8.60102 + 19.7796i −0.485384 + 1.11623i
\(315\) −2.68759 6.48842i −0.151429 0.365581i
\(316\) 0.797679 + 0.0278965i 0.0448729 + 0.00156930i
\(317\) 3.17537 + 7.66601i 0.178346 + 0.430566i 0.987620 0.156866i \(-0.0501390\pi\)
−0.809274 + 0.587432i \(0.800139\pi\)
\(318\) −0.264663 + 15.1403i −0.0148416 + 0.849027i
\(319\) 4.20375 4.20375i 0.235365 0.235365i
\(320\) −3.86217 + 7.11063i −0.215902 + 0.397496i
\(321\) 16.0368 0.895088
\(322\) −14.3386 + 13.8459i −0.799059 + 0.771603i
\(323\) 2.15291 + 5.19758i 0.119791 + 0.289201i
\(324\) 0.0551100 1.57583i 0.00306167 0.0875462i
\(325\) −4.91571 13.4700i −0.272674 0.747183i
\(326\) −0.645215 1.63810i −0.0357351 0.0907258i
\(327\) −6.19639 −0.342661
\(328\) −0.908604 0.0476879i −0.0501693 0.00263312i
\(329\) 26.8438 26.8438i 1.47995 1.47995i
\(330\) −8.15996 + 3.21405i −0.449191 + 0.176928i
\(331\) −7.82394 + 18.8887i −0.430042 + 1.03821i 0.549231 + 0.835671i \(0.314921\pi\)
−0.979273 + 0.202543i \(0.935079\pi\)
\(332\) −2.72743 7.29598i −0.149687 0.400419i
\(333\) 0.966119 + 2.33242i 0.0529430 + 0.127816i
\(334\) −0.0242649 + 1.38810i −0.00132772 + 0.0759534i
\(335\) 8.81746i 0.481749i
\(336\) 8.03945 16.1205i 0.438588 0.879445i
\(337\) 26.7270 1.45591 0.727957 0.685623i \(-0.240470\pi\)
0.727957 + 0.685623i \(0.240470\pi\)
\(338\) −11.5939 14.2682i −0.630625 0.776087i
\(339\) −0.498878 + 1.20440i −0.0270953 + 0.0654139i
\(340\) 1.10456 2.42340i 0.0599031 0.131427i
\(341\) −12.1191 29.2582i −0.656288 1.58442i
\(342\) 4.17983 9.61229i 0.226020 0.519773i
\(343\) 8.10919i 0.437855i
\(344\) 5.13648 + 14.5085i 0.276941 + 0.782247i
\(345\) −4.00623 −0.215688
\(346\) −5.54658 + 12.7554i −0.298186 + 0.685733i
\(347\) −8.86026 21.3906i −0.475644 1.14831i −0.961633 0.274340i \(-0.911541\pi\)
0.485989 0.873965i \(-0.338459\pi\)
\(348\) −1.79506 + 1.67375i −0.0962252 + 0.0897223i
\(349\) 4.30549 1.78339i 0.230468 0.0954628i −0.264461 0.964396i \(-0.585194\pi\)
0.494929 + 0.868934i \(0.335194\pi\)
\(350\) −16.1962 + 15.6397i −0.865726 + 0.835979i
\(351\) −0.821281 + 19.1860i −0.0438367 + 1.02407i
\(352\) 27.3444 + 14.2390i 1.45746 + 0.758943i
\(353\) −0.687334 + 0.687334i −0.0365831 + 0.0365831i −0.725162 0.688579i \(-0.758235\pi\)
0.688579 + 0.725162i \(0.258235\pi\)
\(354\) −7.13771 + 6.89245i −0.379365 + 0.366330i
\(355\) −3.09805 + 7.47934i −0.164427 + 0.396962i
\(356\) −16.2571 0.568545i −0.861626 0.0301328i
\(357\) −2.26890 + 5.47762i −0.120083 + 0.289906i
\(358\) 19.6107 + 8.52757i 1.03646 + 0.450696i
\(359\) 26.0218i 1.37338i −0.726952 0.686688i \(-0.759064\pi\)
0.726952 0.686688i \(-0.240936\pi\)
\(360\) −4.67755 + 1.65600i −0.246529 + 0.0872791i
\(361\) 0.522720 0.522720i 0.0275116 0.0275116i
\(362\) 21.5352 8.48229i 1.13186 0.445819i
\(363\) 8.05139 + 19.4378i 0.422588 + 1.02022i
\(364\) −13.0850 + 25.7317i −0.685838 + 1.34871i
\(365\) 9.94526 + 4.11946i 0.520559 + 0.215622i
\(366\) 3.79592 3.66549i 0.198416 0.191598i
\(367\) −2.67219 −0.139487 −0.0697436 0.997565i \(-0.522218\pi\)
−0.0697436 + 0.997565i \(0.522218\pi\)
\(368\) 9.23827 + 10.6296i 0.481578 + 0.554107i
\(369\) −0.394522 0.394522i −0.0205380 0.0205380i
\(370\) −1.49778 + 1.44631i −0.0778658 + 0.0751903i
\(371\) −35.2021 + 14.5812i −1.82760 + 0.757018i
\(372\) 4.57800 + 12.2463i 0.237358 + 0.634942i
\(373\) 13.6983 + 33.0707i 0.709272 + 1.71233i 0.701813 + 0.712361i \(0.252374\pi\)
0.00745886 + 0.999972i \(0.497626\pi\)
\(374\) −9.30525 4.04632i −0.481163 0.209230i
\(375\) −10.2147 −0.527483
\(376\) −17.9461 19.9342i −0.925499 1.02803i
\(377\) 2.89749 2.65961i 0.149228 0.136977i
\(378\) 28.0553 11.0505i 1.44301 0.568374i
\(379\) 17.3836 + 7.20052i 0.892936 + 0.369866i 0.781500 0.623906i \(-0.214455\pi\)
0.111436 + 0.993772i \(0.464455\pi\)
\(380\) 8.63933 + 0.302135i 0.443188 + 0.0154992i
\(381\) −1.86725 0.773440i −0.0956621 0.0396246i
\(382\) −0.204098 + 11.6756i −0.0104426 + 0.597377i
\(383\) −4.76778 4.76778i −0.243622 0.243622i 0.574725 0.818347i \(-0.305109\pi\)
−0.818347 + 0.574725i \(0.805109\pi\)
\(384\) −11.0764 6.26935i −0.565241 0.319932i
\(385\) −15.6042 15.6042i −0.795265 0.795265i
\(386\) 17.6316 + 18.2590i 0.897425 + 0.929358i
\(387\) −3.61176 + 8.71956i −0.183596 + 0.443240i
\(388\) −14.6941 + 13.7011i −0.745981 + 0.695567i
\(389\) −8.28986 20.0135i −0.420313 1.01472i −0.982255 0.187549i \(-0.939946\pi\)
0.561943 0.827176i \(-0.310054\pi\)
\(390\) −5.48441 + 1.89351i −0.277714 + 0.0958817i
\(391\) −3.27756 3.27756i −0.165753 0.165753i
\(392\) 25.4934 + 1.33801i 1.28761 + 0.0675800i
\(393\) −15.5444 15.5444i −0.784113 0.784113i
\(394\) −7.32125 + 16.8365i −0.368839 + 0.848213i
\(395\) −0.154475 + 0.372936i −0.00777250 + 0.0187645i
\(396\) 6.61985 + 17.7084i 0.332660 + 0.889879i
\(397\) 9.40202 + 22.6985i 0.471874 + 1.13920i 0.963334 + 0.268304i \(0.0864633\pi\)
−0.491460 + 0.870900i \(0.663537\pi\)
\(398\) −25.8866 + 24.9971i −1.29758 + 1.25299i
\(399\) −19.2446 −0.963435
\(400\) 10.4351 + 12.0067i 0.521757 + 0.600337i
\(401\) 15.2537 15.2537i 0.761733 0.761733i −0.214903 0.976635i \(-0.568943\pi\)
0.976635 + 0.214903i \(0.0689435\pi\)
\(402\) −13.8668 0.242402i −0.691615 0.0120899i
\(403\) −7.18255 19.6816i −0.357788 0.980412i
\(404\) 11.8874 + 31.7991i 0.591418 + 1.58207i
\(405\) 0.736744 + 0.305169i 0.0366091 + 0.0151640i
\(406\) −5.66337 2.46268i −0.281068 0.122221i
\(407\) 5.60932 + 5.60932i 0.278044 + 0.278044i
\(408\) 3.78082 + 1.80371i 0.187178 + 0.0892971i
\(409\) 1.52450i 0.0753819i 0.999289 + 0.0376909i \(0.0120002\pi\)
−0.999289 + 0.0376909i \(0.988000\pi\)
\(410\) 0.183495 0.421979i 0.00906215 0.0208401i
\(411\) 5.69107 13.7395i 0.280720 0.677718i
\(412\) 20.4858 19.1014i 1.00926 0.941057i
\(413\) −23.0665 9.55445i −1.13503 0.470144i
\(414\) −0.150940 + 8.63469i −0.00741831 + 0.424372i
\(415\) 3.93925 0.193370
\(416\) 17.6709 + 10.1852i 0.866388 + 0.499372i
\(417\) 17.1366 0.839181
\(418\) 0.575652 32.9307i 0.0281560 1.61070i
\(419\) 0.842029 + 0.348780i 0.0411358 + 0.0170390i 0.403156 0.915131i \(-0.367913\pi\)
−0.362021 + 0.932170i \(0.617913\pi\)
\(420\) 6.21291 + 6.66321i 0.303159 + 0.325131i
\(421\) −11.2248 + 27.0991i −0.547064 + 1.32073i 0.372589 + 0.927996i \(0.378470\pi\)
−0.919653 + 0.392732i \(0.871530\pi\)
\(422\) 13.6858 31.4731i 0.666216 1.53208i
\(423\) 16.4479i 0.799724i
\(424\) 8.98444 + 25.3775i 0.436323 + 1.23244i
\(425\) −3.70218 3.70218i −0.179582 0.179582i
\(426\) −11.6773 5.07778i −0.565766 0.246019i
\(427\) 12.2670 + 5.08117i 0.593643 + 0.245895i
\(428\) 26.7056 9.98327i 1.29087 0.482559i
\(429\) 7.57835 + 20.7662i 0.365886 + 1.00260i
\(430\) −7.78259 0.136045i −0.375310 0.00656067i
\(431\) 19.0693 19.0693i 0.918537 0.918537i −0.0783860 0.996923i \(-0.524977\pi\)
0.996923 + 0.0783860i \(0.0249767\pi\)
\(432\) −6.75793 20.2042i −0.325141 0.972075i
\(433\) −28.1205 −1.35138 −0.675692 0.737184i \(-0.736155\pi\)
−0.675692 + 0.737184i \(0.736155\pi\)
\(434\) −23.6650 + 22.8519i −1.13596 + 1.09692i
\(435\) −0.475003 1.14676i −0.0227746 0.0549828i
\(436\) −10.3187 + 3.85738i −0.494174 + 0.184735i
\(437\) 5.75755 13.9000i 0.275421 0.664926i
\(438\) −6.75191 + 15.5272i −0.322619 + 0.741920i
\(439\) −9.30428 9.30428i −0.444069 0.444069i 0.449308 0.893377i \(-0.351671\pi\)
−0.893377 + 0.449308i \(0.851671\pi\)
\(440\) −11.5877 + 10.4320i −0.552423 + 0.497327i
\(441\) 11.0694 + 11.0694i 0.527114 + 0.527114i
\(442\) −6.03599 2.93777i −0.287103 0.139735i
\(443\) −15.6473 37.7760i −0.743427 1.79479i −0.591337 0.806424i \(-0.701400\pi\)
−0.152090 0.988367i \(-0.548600\pi\)
\(444\) −2.23338 2.39525i −0.105992 0.113674i
\(445\) 3.14829 7.60065i 0.149243 0.360305i
\(446\) −22.4019 23.1991i −1.06076 1.09851i
\(447\) 0.905919 + 0.905919i 0.0428485 + 0.0428485i
\(448\) 3.35249 31.8497i 0.158390 1.50476i
\(449\) 13.1722 + 13.1722i 0.621637 + 0.621637i 0.945950 0.324313i \(-0.105133\pi\)
−0.324313 + 0.945950i \(0.605133\pi\)
\(450\) −0.170495 + 9.75336i −0.00803723 + 0.459778i
\(451\) −1.61970 0.670903i −0.0762689 0.0315916i
\(452\) −0.0810026 + 2.31621i −0.00381004 + 0.108945i
\(453\) −18.6991 7.74542i −0.878560 0.363911i
\(454\) 10.8155 4.26003i 0.507598 0.199933i
\(455\) −9.87241 10.7554i −0.462826 0.504221i
\(456\) −0.712660 + 13.5784i −0.0333733 + 0.635867i
\(457\) −25.9365 −1.21326 −0.606630 0.794984i \(-0.707479\pi\)
−0.606630 + 0.794984i \(0.707479\pi\)
\(458\) 6.75582 + 2.93772i 0.315679 + 0.137271i
\(459\) 2.68334 + 6.47817i 0.125248 + 0.302375i
\(460\) −6.67146 + 2.49397i −0.311058 + 0.116282i
\(461\) 12.7293 5.27264i 0.592862 0.245571i −0.0660195 0.997818i \(-0.521030\pi\)
0.658881 + 0.752247i \(0.271030\pi\)
\(462\) 24.9691 24.1111i 1.16167 1.12175i
\(463\) −10.5771 10.5771i −0.491559 0.491559i 0.417238 0.908797i \(-0.362998\pi\)
−0.908797 + 0.417238i \(0.862998\pi\)
\(464\) −1.94731 + 3.90470i −0.0904017 + 0.181271i
\(465\) −6.61205 −0.306626
\(466\) 25.7456 24.8609i 1.19264 1.15166i
\(467\) −15.7453 6.52190i −0.728603 0.301797i −0.0126254 0.999920i \(-0.504019\pi\)
−0.715978 + 0.698123i \(0.754019\pi\)
\(468\) 3.87448 + 11.8920i 0.179098 + 0.549707i
\(469\) −13.3547 32.2412i −0.616665 1.48876i
\(470\) 12.6213 4.97129i 0.582177 0.229308i
\(471\) 12.1321 12.1321i 0.559018 0.559018i
\(472\) −7.59551 + 15.9212i −0.349612 + 0.732831i
\(473\) 29.6560i 1.36359i
\(474\) −0.582254 0.253189i −0.0267438 0.0116294i
\(475\) 6.50347 15.7008i 0.298400 0.720401i
\(476\) −0.368401 + 10.5342i −0.0168856 + 0.482832i
\(477\) −6.31748 + 15.2518i −0.289258 + 0.698330i
\(478\) 29.9137 28.8858i 1.36822 1.32121i
\(479\) 6.23873 6.23873i 0.285055 0.285055i −0.550066 0.835121i \(-0.685398\pi\)
0.835121 + 0.550066i \(0.185398\pi\)
\(480\) 4.93143 4.13689i 0.225088 0.188822i
\(481\) 3.54888 + 3.86629i 0.161815 + 0.176288i
\(482\) 12.4933 12.0640i 0.569054 0.549501i
\(483\) 14.6489 6.06776i 0.666546 0.276092i
\(484\) 25.5082 + 27.3570i 1.15946 + 1.24350i
\(485\) −3.88831 9.38721i −0.176559 0.426251i
\(486\) 8.51079 19.5721i 0.386057 0.887809i
\(487\) −35.4651 −1.60708 −0.803538 0.595253i \(-0.797052\pi\)
−0.803538 + 0.595253i \(0.797052\pi\)
\(488\) 4.03938 8.46707i 0.182854 0.383286i
\(489\) 1.40050i 0.0633329i
\(490\) −5.14844 + 11.8398i −0.232583 + 0.534867i
\(491\) 10.4198 + 25.1556i 0.470238 + 1.13526i 0.964058 + 0.265692i \(0.0856003\pi\)
−0.493820 + 0.869564i \(0.664400\pi\)
\(492\) 0.658584 + 0.300175i 0.0296912 + 0.0135329i
\(493\) 0.549573 1.32679i 0.0247515 0.0597555i
\(494\) 1.31222 21.7499i 0.0590395 0.978574i
\(495\) −9.56112 −0.429740
\(496\) 15.2472 + 17.5435i 0.684620 + 0.787728i
\(497\) 32.0406i 1.43722i
\(498\) −0.108294 + 6.19509i −0.00485279 + 0.277609i
\(499\) 10.2090 + 24.6468i 0.457019 + 1.10334i 0.969598 + 0.244702i \(0.0786902\pi\)
−0.512579 + 0.858640i \(0.671310\pi\)
\(500\) −17.0102 + 6.35885i −0.760718 + 0.284377i
\(501\) 0.422623 1.02030i 0.0188814 0.0455837i
\(502\) −13.4841 + 5.31111i −0.601823 + 0.237047i
\(503\) −3.01334 + 3.01334i −0.134358 + 0.134358i −0.771087 0.636729i \(-0.780287\pi\)
0.636729 + 0.771087i \(0.280287\pi\)
\(504\) 14.5954 13.1397i 0.650131 0.585290i
\(505\) −17.1690 −0.764011
\(506\) 9.94476 + 25.2482i 0.442099 + 1.12242i
\(507\) 4.42150 + 13.9402i 0.196366 + 0.619107i
\(508\) −3.59096 0.125583i −0.159323 0.00557185i
\(509\) 4.35853 + 10.5224i 0.193188 + 0.466398i 0.990558 0.137093i \(-0.0437759\pi\)
−0.797370 + 0.603491i \(0.793776\pi\)
\(510\) −1.52400 + 1.47163i −0.0674837 + 0.0651649i
\(511\) −42.6042 −1.88470
\(512\) −22.3480 3.54486i −0.987652 0.156662i
\(513\) −16.0936 + 16.0936i −0.710552 + 0.710552i
\(514\) −0.543132 + 31.0704i −0.0239565 + 1.37046i
\(515\) 5.42089 + 13.0872i 0.238873 + 0.576690i
\(516\) 0.427904 12.2356i 0.0188374 0.538643i
\(517\) −19.7781 47.7485i −0.869838 2.09998i
\(518\) 3.28610 7.55697i 0.144383 0.332034i
\(519\) 7.82368 7.82368i 0.343422 0.343422i
\(520\) −7.95427 + 6.56737i −0.348818 + 0.287998i
\(521\) 23.1735 + 23.1735i 1.01525 + 1.01525i 0.999882 + 0.0153654i \(0.00489114\pi\)
0.0153654 + 0.999882i \(0.495109\pi\)
\(522\) −2.48952 + 0.980574i −0.108963 + 0.0429186i
\(523\) 11.2484 4.65925i 0.491860 0.203735i −0.122946 0.992413i \(-0.539234\pi\)
0.614806 + 0.788678i \(0.289234\pi\)
\(524\) −35.5624 16.2089i −1.55355 0.708091i
\(525\) 16.5467 6.85386i 0.722157 0.299127i
\(526\) 6.52109 + 6.75313i 0.284333 + 0.294450i
\(527\) −5.40942 5.40942i −0.235638 0.235638i
\(528\) −16.0874 18.5103i −0.700115 0.805557i
\(529\) 10.6041i 0.461048i
\(530\) −13.6129 0.237962i −0.591305 0.0103364i
\(531\) −9.99384 + 4.13958i −0.433696 + 0.179643i
\(532\) −32.0475 + 11.9802i −1.38943 + 0.519407i
\(533\) −1.05159 0.489273i −0.0455495 0.0211928i
\(534\) 11.8667 + 5.16013i 0.513521 + 0.223301i
\(535\) 14.4189i 0.623384i
\(536\) −23.2429 + 8.22875i −1.00394 + 0.355428i
\(537\) −12.0285 12.0285i −0.519068 0.519068i
\(538\) −4.91721 2.13821i −0.211996 0.0921850i
\(539\) 45.4452 + 18.8240i 1.95746 + 0.810808i
\(540\) 10.7679 + 0.376575i 0.463376 + 0.0162052i
\(541\) 14.7592 6.11348i 0.634549 0.262839i −0.0421354 0.999112i \(-0.513416\pi\)
0.676685 + 0.736273i \(0.263416\pi\)
\(542\) −16.5185 17.1063i −0.709532 0.734780i
\(543\) −18.4116 −0.790119
\(544\) 7.41893 + 0.650029i 0.318084 + 0.0278698i
\(545\) 5.57125i 0.238646i
\(546\) 17.1860 15.2302i 0.735492 0.651794i
\(547\) −0.191386 0.0792748i −0.00818308 0.00338954i 0.378588 0.925565i \(-0.376410\pi\)
−0.386771 + 0.922176i \(0.626410\pi\)
\(548\) 0.924057 26.4227i 0.0394737 1.12872i
\(549\) 5.31484 2.20148i 0.226832 0.0939569i
\(550\) 11.2332 + 28.5192i 0.478983 + 1.21606i
\(551\) 4.66142 0.198583
\(552\) −3.73875 10.5605i −0.159132 0.449484i
\(553\) 1.59761i 0.0679374i
\(554\) −19.4819 + 7.67356i −0.827708 + 0.326018i
\(555\) 1.53019 0.633824i 0.0649528 0.0269043i
\(556\) 28.5370 10.6679i 1.21024 0.452419i
\(557\) 6.88896 + 16.6314i 0.291895 + 0.704696i 0.999999 0.00141156i \(-0.000449315\pi\)
−0.708104 + 0.706108i \(0.750449\pi\)
\(558\) −0.249118 + 14.2510i −0.0105460 + 0.603295i
\(559\) −0.839077 + 19.6017i −0.0354892 + 0.829064i
\(560\) 14.4942 + 7.22838i 0.612490 + 0.305455i
\(561\) 5.70751 + 5.70751i 0.240971 + 0.240971i
\(562\) −19.6214 0.342995i −0.827678 0.0144684i
\(563\) 38.2612 + 15.8483i 1.61252 + 0.667927i 0.993115 0.117146i \(-0.0373745\pi\)
0.619403 + 0.785073i \(0.287375\pi\)
\(564\) 7.47116 + 19.9856i 0.314593 + 0.841547i
\(565\) −1.08289 0.448548i −0.0455575 0.0188706i
\(566\) 11.4263 4.50060i 0.480283 0.189174i
\(567\) −3.15612 −0.132545
\(568\) −22.6068 1.18652i −0.948562 0.0497851i
\(569\) 9.95156 + 9.95156i 0.417191 + 0.417191i 0.884234 0.467043i \(-0.154681\pi\)
−0.467043 + 0.884234i \(0.654681\pi\)
\(570\) −6.30616 2.74219i −0.264136 0.114858i
\(571\) 21.1867 8.77582i 0.886636 0.367257i 0.107569 0.994198i \(-0.465693\pi\)
0.779067 + 0.626941i \(0.215693\pi\)
\(572\) 25.5474 + 29.8636i 1.06819 + 1.24866i
\(573\) 3.55478 8.58199i 0.148503 0.358518i
\(574\) −0.0318304 + 1.82089i −0.00132858 + 0.0760025i
\(575\) 14.0018i 0.583917i
\(576\) −8.73049 10.7846i −0.363770 0.449360i
\(577\) 10.3609 10.3609i 0.431329 0.431329i −0.457752 0.889080i \(-0.651345\pi\)
0.889080 + 0.457752i \(0.151345\pi\)
\(578\) 21.5872 + 0.377359i 0.897909 + 0.0156961i
\(579\) −7.72677 18.6541i −0.321114 0.775237i
\(580\) −1.50489 1.61396i −0.0624871 0.0670161i
\(581\) −14.4039 + 5.96630i −0.597576 + 0.247524i
\(582\) 14.8698 5.85691i 0.616371 0.242777i
\(583\) 51.8727i 2.14835i
\(584\) −1.57771 + 30.0602i −0.0652859 + 1.24390i
\(585\) −6.31960 0.270519i −0.261283 0.0111846i
\(586\) −42.1146 18.3132i −1.73974 0.756513i
\(587\) 4.84590 11.6990i 0.200012 0.482871i −0.791769 0.610821i \(-0.790840\pi\)
0.991781 + 0.127950i \(0.0408397\pi\)
\(588\) −18.4784 8.42222i −0.762035 0.347327i
\(589\) 9.50249 22.9411i 0.391543 0.945270i
\(590\) −6.19710 6.41761i −0.255131 0.264209i
\(591\) 10.3269 10.3269i 0.424793 0.424793i
\(592\) −5.21028 2.59841i −0.214141 0.106794i
\(593\) 17.3002 17.3002i 0.710434 0.710434i −0.256192 0.966626i \(-0.582468\pi\)
0.966626 + 0.256192i \(0.0824679\pi\)
\(594\) 0.717481 41.0442i 0.0294386 1.68406i
\(595\) −4.92500 2.04000i −0.201905 0.0836319i
\(596\) 2.07255 + 0.944646i 0.0848951 + 0.0386942i
\(597\) 26.4467 10.9546i 1.08239 0.448341i
\(598\) 5.85881 + 16.9696i 0.239585 + 0.693939i
\(599\) 21.2291 21.2291i 0.867400 0.867400i −0.124784 0.992184i \(-0.539824\pi\)
0.992184 + 0.124784i \(0.0398239\pi\)
\(600\) −4.22312 11.9286i −0.172408 0.486985i
\(601\) −17.0759 + 17.0759i −0.696540 + 0.696540i −0.963662 0.267123i \(-0.913927\pi\)
0.267123 + 0.963662i \(0.413927\pi\)
\(602\) 28.6632 11.2899i 1.16823 0.460142i
\(603\) −13.9689 5.78611i −0.568858 0.235629i
\(604\) −35.9607 1.25762i −1.46322 0.0511718i
\(605\) −17.4768 + 7.23911i −0.710531 + 0.294312i
\(606\) 0.471995 27.0010i 0.0191735 1.09684i
\(607\) 24.1177i 0.978909i −0.872029 0.489455i \(-0.837196\pi\)
0.872029 0.489455i \(-0.162804\pi\)
\(608\) 7.26607 + 23.0553i 0.294678 + 0.935017i
\(609\) 3.47371 + 3.47371i 0.140762 + 0.140762i
\(610\) 3.29569 + 3.41296i 0.133439 + 0.138187i
\(611\) −11.7217 32.1198i −0.474209 1.29943i
\(612\) 3.11441 + 3.34014i 0.125892 + 0.135017i
\(613\) 10.6617 25.7397i 0.430623 1.03962i −0.548464 0.836174i \(-0.684787\pi\)
0.979087 0.203442i \(-0.0652129\pi\)
\(614\) −38.6903 + 15.2394i −1.56142 + 0.615012i
\(615\) −0.258827 + 0.258827i −0.0104369 + 0.0104369i
\(616\) 26.5706 55.6953i 1.07056 2.24403i
\(617\) −28.6911 −1.15506 −0.577531 0.816369i \(-0.695984\pi\)
−0.577531 + 0.816369i \(0.695984\pi\)
\(618\) −20.7307 + 8.16542i −0.833910 + 0.328461i
\(619\) −18.0497 7.47645i −0.725481 0.300504i −0.0107872 0.999942i \(-0.503434\pi\)
−0.714693 + 0.699438i \(0.753434\pi\)
\(620\) −11.0108 + 4.11614i −0.442206 + 0.165308i
\(621\) 7.17610 17.3246i 0.287967 0.695214i
\(622\) 20.5854 + 21.3179i 0.825400 + 0.854770i
\(623\) 32.5602i 1.30450i
\(624\) −10.1096 12.6899i −0.404706 0.508002i
\(625\) 10.7004i 0.428017i
\(626\) −18.1847 + 17.5599i −0.726809 + 0.701835i
\(627\) −10.0261 + 24.2052i −0.400406 + 0.966664i
\(628\) 12.6507 27.7557i 0.504819 1.10757i
\(629\) 1.77041 + 0.733328i 0.0705909 + 0.0292397i
\(630\) 3.63987 + 9.24104i 0.145016 + 0.368172i
\(631\) 1.25528 0.0499718 0.0249859 0.999688i \(-0.492046\pi\)
0.0249859 + 0.999688i \(0.492046\pi\)
\(632\) −1.12723 0.0591623i −0.0448387 0.00235335i
\(633\) −19.3044 + 19.3044i −0.767283 + 0.767283i
\(634\) −4.30047 10.9182i −0.170794 0.433618i
\(635\) 0.695411 1.67887i 0.0275965 0.0666239i
\(636\) 0.748466 21.4018i 0.0296786 0.848638i
\(637\) 29.5053 + 13.7279i 1.16904 + 0.543919i
\(638\) −6.04800 + 5.84019i −0.239443 + 0.231215i
\(639\) −9.81605 9.81605i −0.388317 0.388317i
\(640\) 5.63686 9.95895i 0.222816 0.393662i
\(641\) 14.5355i 0.574120i 0.957913 + 0.287060i \(0.0926779\pi\)
−0.957913 + 0.287060i \(0.907322\pi\)
\(642\) −22.6760 0.396392i −0.894951 0.0156444i
\(643\) −1.63693 + 0.678037i −0.0645540 + 0.0267392i −0.414727 0.909946i \(-0.636123\pi\)
0.350173 + 0.936685i \(0.386123\pi\)
\(644\) 20.6170 19.2237i 0.812423 0.757519i
\(645\) 5.72048 + 2.36950i 0.225244 + 0.0932990i
\(646\) −2.91574 7.40259i −0.114718 0.291251i
\(647\) −4.16077 + 4.16077i −0.163577 + 0.163577i −0.784149 0.620572i \(-0.786900\pi\)
0.620572 + 0.784149i \(0.286900\pi\)
\(648\) −0.116876 + 2.22686i −0.00459133 + 0.0874793i
\(649\) −24.0346 + 24.0346i −0.943439 + 0.943439i
\(650\) 6.61785 + 19.1681i 0.259574 + 0.751835i
\(651\) 24.1771 10.0145i 0.947573 0.392498i
\(652\) 0.871842 + 2.33221i 0.0341440 + 0.0913365i
\(653\) 19.6786 + 8.15115i 0.770084 + 0.318979i 0.732906 0.680330i \(-0.238163\pi\)
0.0371773 + 0.999309i \(0.488163\pi\)
\(654\) 8.76167 + 0.153160i 0.342609 + 0.00598903i
\(655\) 13.9762 13.9762i 0.546096 0.546096i
\(656\) 1.28358 + 0.0898891i 0.0501156 + 0.00350958i
\(657\) −13.0524 + 13.0524i −0.509221 + 0.509221i
\(658\) −38.6206 + 37.2936i −1.50559 + 1.45385i
\(659\) 3.28764 7.93707i 0.128068 0.309184i −0.846820 0.531880i \(-0.821486\pi\)
0.974888 + 0.222696i \(0.0714857\pi\)
\(660\) 11.6176 4.34297i 0.452215 0.169050i
\(661\) 2.80839 6.78006i 0.109234 0.263714i −0.859805 0.510623i \(-0.829415\pi\)
0.969039 + 0.246909i \(0.0794148\pi\)
\(662\) 11.5299 26.5151i 0.448123 1.03054i
\(663\) 3.61100 + 3.93397i 0.140239 + 0.152783i
\(664\) 3.67624 + 10.3839i 0.142666 + 0.402974i
\(665\) 17.3031i 0.670985i
\(666\) −1.30844 3.32191i −0.0507010 0.128722i
\(667\) −3.54824 + 1.46973i −0.137388 + 0.0569082i
\(668\) 0.0686211 1.96217i 0.00265503 0.0759186i
\(669\) 9.81729 + 23.7010i 0.379558 + 0.916335i
\(670\) 0.217947 12.4679i 0.00842002 0.481676i
\(671\) 12.7819 12.7819i 0.493438 0.493438i
\(672\) −11.7662 + 22.5956i −0.453892 + 0.871645i
\(673\) 30.7329i 1.18466i 0.805694 + 0.592332i \(0.201793\pi\)
−0.805694 + 0.592332i \(0.798207\pi\)
\(674\) −37.7919 0.660629i −1.45569 0.0254465i
\(675\) 8.10580 19.5691i 0.311992 0.753216i
\(676\) 16.0411 + 20.4618i 0.616965 + 0.786991i
\(677\) −15.5734 + 6.45073i −0.598536 + 0.247922i −0.661318 0.750105i \(-0.730003\pi\)
0.0627820 + 0.998027i \(0.480003\pi\)
\(678\) 0.735182 1.69068i 0.0282345 0.0649303i
\(679\) 28.4353 + 28.4353i 1.09125 + 1.09125i
\(680\) −1.62174 + 3.39938i −0.0621910 + 0.130360i
\(681\) −9.24682 −0.354339
\(682\) 16.4132 + 41.6705i 0.628495 + 1.59565i
\(683\) −23.9817 9.93354i −0.917633 0.380096i −0.126660 0.991946i \(-0.540426\pi\)
−0.790974 + 0.611850i \(0.790426\pi\)
\(684\) −6.14787 + 13.4884i −0.235070 + 0.515743i
\(685\) 12.3533 + 5.11692i 0.471997 + 0.195507i
\(686\) 0.200440 11.4664i 0.00765284 0.437788i
\(687\) −4.14378 4.14378i −0.158095 0.158095i
\(688\) −6.90436 20.6420i −0.263226 0.786968i
\(689\) −1.46767 + 34.2862i −0.0559136 + 1.30620i
\(690\) 5.66480 + 0.0990246i 0.215655 + 0.00376980i
\(691\) 0.533717 + 1.28851i 0.0203036 + 0.0490171i 0.933706 0.358040i \(-0.116555\pi\)
−0.913403 + 0.407057i \(0.866555\pi\)
\(692\) 8.15813 17.8990i 0.310126 0.680416i
\(693\) 34.9604 14.4811i 1.32804 0.550090i
\(694\) 11.9997 + 30.4652i 0.455501 + 1.15644i
\(695\) 15.4077i 0.584448i
\(696\) 2.57958 2.32230i 0.0977787 0.0880267i
\(697\) −0.423500 −0.0160412
\(698\) −6.13203 + 2.41529i −0.232101 + 0.0914201i
\(699\) −26.3026 + 10.8949i −0.994857 + 0.412083i
\(700\) 23.2880 21.7142i 0.880205 0.820720i
\(701\) −8.80288 3.64627i −0.332480 0.137718i 0.210197 0.977659i \(-0.432589\pi\)
−0.542677 + 0.839941i \(0.682589\pi\)
\(702\) 1.63552 27.1086i 0.0617288 1.02315i
\(703\) 6.22001i 0.234592i
\(704\) −38.3130 20.8099i −1.44397 0.784301i
\(705\) −10.7907 −0.406400
\(706\) 0.988877 0.954899i 0.0372169 0.0359381i
\(707\) 62.7788 26.0038i 2.36104 0.977975i
\(708\) 10.2631 9.56948i 0.385710 0.359643i
\(709\) 33.1544 + 13.7330i 1.24514 + 0.515753i 0.905317 0.424737i \(-0.139633\pi\)
0.339822 + 0.940490i \(0.389633\pi\)
\(710\) 4.56550 10.4992i 0.171340 0.394028i
\(711\) −0.489449 0.489449i −0.0183558 0.0183558i
\(712\) 22.9735 + 1.20576i 0.860968 + 0.0451878i
\(713\) 20.4587i 0.766183i
\(714\) 3.34362 7.68925i 0.125132 0.287763i
\(715\) −18.6712 + 6.81380i −0.698263 + 0.254822i
\(716\) −27.5187 12.5427i −1.02842 0.468742i
\(717\) −30.5609 + 12.6587i −1.14132 + 0.472750i
\(718\) −0.643196 + 36.7947i −0.0240039 + 1.37317i
\(719\) 21.5035i 0.801944i −0.916090 0.400972i \(-0.868673\pi\)
0.916090 0.400972i \(-0.131327\pi\)
\(720\) 6.65498 2.22597i 0.248016 0.0829569i
\(721\) −39.6432 39.6432i −1.47639 1.47639i
\(722\) −0.752045 + 0.726204i −0.0279882 + 0.0270265i
\(723\) −12.7636 + 5.28687i −0.474684 + 0.196621i
\(724\) −30.6603 + 11.4616i −1.13948 + 0.425969i
\(725\) −4.00793 + 1.66014i −0.148851 + 0.0616561i
\(726\) −10.9042 27.6840i −0.404692 1.02745i
\(727\) −28.4471 28.4471i −1.05504 1.05504i −0.998394 0.0566487i \(-0.981959\pi\)
−0.0566487 0.998394i \(-0.518041\pi\)
\(728\) 19.1381 36.0611i 0.709306 1.33651i
\(729\) −13.6773 + 13.6773i −0.506566 + 0.506566i
\(730\) −13.9607 6.07073i −0.516710 0.224688i
\(731\) 2.74149 + 6.61854i 0.101398 + 0.244795i
\(732\) −5.45802 + 5.08917i −0.201734 + 0.188101i
\(733\) −1.14575 2.76609i −0.0423194 0.102168i 0.901306 0.433182i \(-0.142609\pi\)
−0.943626 + 0.331014i \(0.892609\pi\)
\(734\) 3.77847 + 0.0660502i 0.139466 + 0.00243796i
\(735\) 7.26210 7.26210i 0.267866 0.267866i
\(736\) −12.8002 15.2586i −0.471820 0.562439i
\(737\) −47.5096 −1.75004
\(738\) 0.548101 + 0.567605i 0.0201759 + 0.0208938i
\(739\) 5.98303 + 14.4443i 0.220089 + 0.531342i 0.994902 0.100849i \(-0.0321558\pi\)
−0.774813 + 0.632191i \(0.782156\pi\)
\(740\) 2.15360 2.00806i 0.0791681 0.0738179i
\(741\) −7.31182 + 15.7152i −0.268606 + 0.577313i
\(742\) 50.1361 19.7477i 1.84055 0.724959i
\(743\) 13.9428 0.511510 0.255755 0.966742i \(-0.417676\pi\)
0.255755 + 0.966742i \(0.417676\pi\)
\(744\) −6.17058 17.4294i −0.226224 0.638994i
\(745\) −0.814525 + 0.814525i −0.0298419 + 0.0298419i
\(746\) −18.5520 47.1004i −0.679235 1.72447i
\(747\) −2.58498 + 6.24068i −0.0945793 + 0.228335i
\(748\) 13.0576 + 5.95149i 0.477433 + 0.217608i
\(749\) −21.8386 52.7230i −0.797965 1.92646i
\(750\) 14.4435 + 0.252483i 0.527403 + 0.00921936i
\(751\) 2.86826i 0.104664i 0.998630 + 0.0523321i \(0.0166654\pi\)
−0.998630 + 0.0523321i \(0.983335\pi\)
\(752\) 24.8830 + 28.6305i 0.907389 + 1.04405i
\(753\) 11.5283 0.420114
\(754\) −4.16278 + 3.68906i −0.151600 + 0.134348i
\(755\) 6.96401 16.8126i 0.253446 0.611874i
\(756\) −39.9433 + 14.9319i −1.45272 + 0.543067i
\(757\) 5.19822 + 12.5496i 0.188933 + 0.456123i 0.989755 0.142779i \(-0.0456038\pi\)
−0.800822 + 0.598902i \(0.795604\pi\)
\(758\) −24.4024 10.6112i −0.886335 0.385416i
\(759\) 21.5861i 0.783525i
\(760\) −12.2085 0.640762i −0.442850 0.0232429i
\(761\) 50.3148 1.82391 0.911955 0.410291i \(-0.134573\pi\)
0.911955 + 0.410291i \(0.134573\pi\)
\(762\) 2.62117 + 1.13980i 0.0949550 + 0.0412905i
\(763\) 8.43810 + 20.3714i 0.305480 + 0.737494i
\(764\) 0.577188 16.5043i 0.0208819 0.597103i
\(765\) −2.13382 + 0.883856i −0.0771484 + 0.0319559i
\(766\) 6.62379 + 6.85948i 0.239327 + 0.247843i
\(767\) −16.5661 + 15.2061i −0.598168 + 0.549059i
\(768\) 15.5071 + 9.13863i 0.559563 + 0.329762i
\(769\) −20.2223 + 20.2223i −0.729235