Properties

Label 416.2.bd.a.83.10
Level $416$
Weight $2$
Character 416.83
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 83.10
Character \(\chi\) \(=\) 416.83
Dual form 416.2.bd.a.411.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.24384 + 0.672951i) q^{2} +(1.34047 + 0.555241i) q^{3} +(1.09427 - 1.67409i) q^{4} +(1.54705 - 3.73491i) q^{5} +(-2.04098 + 0.211441i) q^{6} -0.167444i q^{7} +(-0.234521 + 2.81869i) q^{8} +(-0.632754 - 0.632754i) q^{9} +O(q^{10})\) \(q+(-1.24384 + 0.672951i) q^{2} +(1.34047 + 0.555241i) q^{3} +(1.09427 - 1.67409i) q^{4} +(1.54705 - 3.73491i) q^{5} +(-2.04098 + 0.211441i) q^{6} -0.167444i q^{7} +(-0.234521 + 2.81869i) q^{8} +(-0.632754 - 0.632754i) q^{9} +(0.589131 + 5.68672i) q^{10} +(0.115501 + 0.0478422i) q^{11} +(2.39636 - 1.63648i) q^{12} +(0.804107 - 3.51474i) q^{13} +(0.112681 + 0.208273i) q^{14} +(4.14755 - 4.14755i) q^{15} +(-1.60513 - 3.66382i) q^{16} -4.75422 q^{17} +(1.21286 + 0.361232i) q^{18} +(1.08803 + 2.62674i) q^{19} +(-4.55967 - 6.67692i) q^{20} +(0.0929715 - 0.224453i) q^{21} +(-0.175861 + 0.0182187i) q^{22} +(-0.822050 - 0.822050i) q^{23} +(-1.87942 + 3.64815i) q^{24} +(-8.02068 - 8.02068i) q^{25} +(1.36507 + 4.91290i) q^{26} +(-2.16258 - 5.22093i) q^{27} +(-0.280315 - 0.183229i) q^{28} +(-0.362881 + 0.876073i) q^{29} +(-2.36779 + 7.94999i) q^{30} +(1.60097 + 1.60097i) q^{31} +(4.46210 + 3.47702i) q^{32} +(0.128262 + 0.128262i) q^{33} +(5.91349 - 3.19936i) q^{34} +(-0.625388 - 0.259044i) q^{35} +(-1.75169 + 0.366879i) q^{36} +(9.94226 + 4.11822i) q^{37} +(-3.12101 - 2.53505i) q^{38} +(3.02941 - 4.26493i) q^{39} +(10.1647 + 5.23657i) q^{40} +1.57976 q^{41} +(0.0354044 + 0.341749i) q^{42} +(2.99613 + 7.23329i) q^{43} +(0.206482 - 0.141007i) q^{44} +(-3.34218 + 1.38438i) q^{45} +(1.57570 + 0.469298i) q^{46} +(5.14120 + 5.14120i) q^{47} +(-0.117333 - 5.80247i) q^{48} +6.97196 q^{49} +(15.3740 + 4.57891i) q^{50} +(-6.37289 - 2.63974i) q^{51} +(-5.00407 - 5.19223i) q^{52} +(0.952080 + 2.29853i) q^{53} +(6.20333 + 5.03868i) q^{54} +(0.357373 - 0.357373i) q^{55} +(0.471971 + 0.0392691i) q^{56} +4.12519i q^{57} +(-0.138188 - 1.33390i) q^{58} +(4.80965 - 11.6115i) q^{59} +(-2.40481 - 11.4819i) q^{60} +(-1.39878 + 3.37697i) q^{61} +(-3.06872 - 0.913973i) q^{62} +(-0.105951 + 0.105951i) q^{63} +(-7.89000 - 1.32208i) q^{64} +(-11.8833 - 8.44076i) q^{65} +(-0.245852 - 0.0732233i) q^{66} +(5.27576 - 2.18529i) q^{67} +(-5.20242 + 7.95898i) q^{68} +(-0.645497 - 1.55837i) q^{69} +(0.952206 - 0.0986463i) q^{70} -12.4430 q^{71} +(1.93193 - 1.63514i) q^{72} +8.93301i q^{73} +(-15.1379 + 1.56825i) q^{74} +(-6.29807 - 15.2049i) q^{75} +(5.58800 + 1.05291i) q^{76} +(0.00801088 - 0.0193400i) q^{77} +(-0.898007 + 7.34354i) q^{78} +14.3833 q^{79} +(-16.1673 + 0.326920i) q^{80} -5.51470i q^{81} +(-1.96497 + 1.06310i) q^{82} +(4.24121 + 10.2392i) q^{83} +(-0.274018 - 0.401255i) q^{84} +(-7.35503 + 17.7566i) q^{85} +(-8.59435 - 6.98080i) q^{86} +(-0.972863 + 0.972863i) q^{87} +(-0.161940 + 0.314342i) q^{88} +6.33972 q^{89} +(3.22552 - 3.97107i) q^{90} +(-0.588521 - 0.134643i) q^{91} +(-2.27573 + 0.476636i) q^{92} +(1.25713 + 3.03497i) q^{93} +(-9.85461 - 2.93505i) q^{94} +11.4939 q^{95} +(4.05072 + 7.13838i) q^{96} +(-7.29863 + 7.29863i) q^{97} +(-8.67200 + 4.69179i) q^{98} +(-0.0428116 - 0.103356i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24} - 4 q^{26} - 8 q^{27} + 56 q^{28} - 8 q^{29} - 16 q^{30} - 44 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} - 28 q^{39} - 8 q^{40} - 8 q^{41} - 48 q^{42} - 32 q^{43} + 12 q^{44} - 36 q^{45} - 48 q^{46} - 8 q^{47} - 8 q^{48} - 168 q^{49} + 76 q^{50} - 4 q^{52} - 8 q^{53} - 28 q^{54} - 40 q^{55} + 56 q^{56} + 32 q^{58} + 52 q^{59} - 36 q^{60} - 8 q^{61} + 72 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} + 20 q^{70} + 56 q^{71} + 8 q^{72} - 8 q^{74} - 68 q^{76} + 56 q^{77} - 48 q^{78} - 16 q^{79} + 28 q^{80} - 88 q^{82} + 36 q^{83} + 100 q^{84} - 24 q^{85} + 96 q^{86} - 8 q^{87} + 64 q^{88} - 8 q^{89} - 64 q^{90} + 72 q^{91} - 8 q^{92} - 40 q^{93} - 56 q^{94} + 36 q^{96} - 8 q^{97} + 52 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24384 + 0.672951i −0.879527 + 0.475848i
\(3\) 1.34047 + 0.555241i 0.773920 + 0.320568i 0.734459 0.678653i \(-0.237436\pi\)
0.0394612 + 0.999221i \(0.487436\pi\)
\(4\) 1.09427 1.67409i 0.547137 0.837043i
\(5\) 1.54705 3.73491i 0.691863 1.67030i −0.0491308 0.998792i \(-0.515645\pi\)
0.740994 0.671512i \(-0.234355\pi\)
\(6\) −2.04098 + 0.211441i −0.833226 + 0.0863202i
\(7\) 0.167444i 0.0632878i −0.999499 0.0316439i \(-0.989926\pi\)
0.999499 0.0316439i \(-0.0100742\pi\)
\(8\) −0.234521 + 2.81869i −0.0829157 + 0.996557i
\(9\) −0.632754 0.632754i −0.210918 0.210918i
\(10\) 0.589131 + 5.68672i 0.186300 + 1.79830i
\(11\) 0.115501 + 0.0478422i 0.0348250 + 0.0144250i 0.400028 0.916503i \(-0.369000\pi\)
−0.365203 + 0.930928i \(0.619000\pi\)
\(12\) 2.39636 1.63648i 0.691770 0.472410i
\(13\) 0.804107 3.51474i 0.223019 0.974814i
\(14\) 0.112681 + 0.208273i 0.0301154 + 0.0556633i
\(15\) 4.14755 4.14755i 1.07089 1.07089i
\(16\) −1.60513 3.66382i −0.401283 0.915954i
\(17\) −4.75422 −1.15307 −0.576534 0.817073i \(-0.695595\pi\)
−0.576534 + 0.817073i \(0.695595\pi\)
\(18\) 1.21286 + 0.361232i 0.285873 + 0.0851431i
\(19\) 1.08803 + 2.62674i 0.249612 + 0.602616i 0.998171 0.0604517i \(-0.0192541\pi\)
−0.748559 + 0.663068i \(0.769254\pi\)
\(20\) −4.55967 6.67692i −1.01957 1.49300i
\(21\) 0.0929715 0.224453i 0.0202881 0.0489797i
\(22\) −0.175861 + 0.0182187i −0.0374936 + 0.00388425i
\(23\) −0.822050 0.822050i −0.171409 0.171409i 0.616189 0.787598i \(-0.288676\pi\)
−0.787598 + 0.616189i \(0.788676\pi\)
\(24\) −1.87942 + 3.64815i −0.383635 + 0.744675i
\(25\) −8.02068 8.02068i −1.60414 1.60414i
\(26\) 1.36507 + 4.91290i 0.267712 + 0.963499i
\(27\) −2.16258 5.22093i −0.416188 1.00477i
\(28\) −0.280315 0.183229i −0.0529746 0.0346270i
\(29\) −0.362881 + 0.876073i −0.0673854 + 0.162683i −0.953984 0.299856i \(-0.903061\pi\)
0.886599 + 0.462539i \(0.153061\pi\)
\(30\) −2.36779 + 7.94999i −0.432297 + 1.45146i
\(31\) 1.60097 + 1.60097i 0.287542 + 0.287542i 0.836108 0.548565i \(-0.184826\pi\)
−0.548565 + 0.836108i \(0.684826\pi\)
\(32\) 4.46210 + 3.47702i 0.788795 + 0.614656i
\(33\) 0.128262 + 0.128262i 0.0223276 + 0.0223276i
\(34\) 5.91349 3.19936i 1.01415 0.548686i
\(35\) −0.625388 0.259044i −0.105710 0.0437864i
\(36\) −1.75169 + 0.366879i −0.291948 + 0.0611466i
\(37\) 9.94226 + 4.11822i 1.63450 + 0.677031i 0.995725 0.0923646i \(-0.0294425\pi\)
0.638772 + 0.769396i \(0.279443\pi\)
\(38\) −3.12101 2.53505i −0.506294 0.411240i
\(39\) 3.02941 4.26493i 0.485094 0.682936i
\(40\) 10.1647 + 5.23657i 1.60719 + 0.827975i
\(41\) 1.57976 0.246717 0.123359 0.992362i \(-0.460633\pi\)
0.123359 + 0.992362i \(0.460633\pi\)
\(42\) 0.0354044 + 0.341749i 0.00546301 + 0.0527330i
\(43\) 2.99613 + 7.23329i 0.456905 + 1.10307i 0.969644 + 0.244522i \(0.0786309\pi\)
−0.512739 + 0.858545i \(0.671369\pi\)
\(44\) 0.206482 0.141007i 0.0311284 0.0212576i
\(45\) −3.34218 + 1.38438i −0.498223 + 0.206371i
\(46\) 1.57570 + 0.469298i 0.232324 + 0.0691943i
\(47\) 5.14120 + 5.14120i 0.749921 + 0.749921i 0.974464 0.224543i \(-0.0720889\pi\)
−0.224543 + 0.974464i \(0.572089\pi\)
\(48\) −0.117333 5.80247i −0.0169355 0.837514i
\(49\) 6.97196 0.995995
\(50\) 15.3740 + 4.57891i 2.17421 + 0.647556i
\(51\) −6.37289 2.63974i −0.892383 0.369637i
\(52\) −5.00407 5.19223i −0.693940 0.720033i
\(53\) 0.952080 + 2.29853i 0.130778 + 0.315727i 0.975682 0.219192i \(-0.0703422\pi\)
−0.844903 + 0.534919i \(0.820342\pi\)
\(54\) 6.20333 + 5.03868i 0.844166 + 0.685678i
\(55\) 0.357373 0.357373i 0.0481882 0.0481882i
\(56\) 0.471971 + 0.0392691i 0.0630698 + 0.00524755i
\(57\) 4.12519i 0.546395i
\(58\) −0.138188 1.33390i −0.0181450 0.175149i
\(59\) 4.80965 11.6115i 0.626164 1.51169i −0.218190 0.975906i \(-0.570015\pi\)
0.844353 0.535787i \(-0.179985\pi\)
\(60\) −2.40481 11.4819i −0.310459 1.48231i
\(61\) −1.39878 + 3.37697i −0.179096 + 0.432376i −0.987777 0.155871i \(-0.950182\pi\)
0.808681 + 0.588247i \(0.200182\pi\)
\(62\) −3.06872 0.913973i −0.389728 0.116075i
\(63\) −0.105951 + 0.105951i −0.0133485 + 0.0133485i
\(64\) −7.89000 1.32208i −0.986250 0.165260i
\(65\) −11.8833 8.44076i −1.47394 1.04695i
\(66\) −0.245852 0.0732233i −0.0302623 0.00901317i
\(67\) 5.27576 2.18529i 0.644537 0.266976i −0.0363783 0.999338i \(-0.511582\pi\)
0.680915 + 0.732362i \(0.261582\pi\)
\(68\) −5.20242 + 7.95898i −0.630886 + 0.965168i
\(69\) −0.645497 1.55837i −0.0777087 0.187606i
\(70\) 0.952206 0.0986463i 0.113810 0.0117905i
\(71\) −12.4430 −1.47671 −0.738357 0.674410i \(-0.764398\pi\)
−0.738357 + 0.674410i \(0.764398\pi\)
\(72\) 1.93193 1.63514i 0.227680 0.192703i
\(73\) 8.93301i 1.04553i 0.852477 + 0.522765i \(0.175100\pi\)
−0.852477 + 0.522765i \(0.824900\pi\)
\(74\) −15.1379 + 1.56825i −1.75975 + 0.182306i
\(75\) −6.29807 15.2049i −0.727239 1.75571i
\(76\) 5.58800 + 1.05291i 0.640988 + 0.120777i
\(77\) 0.00801088 0.0193400i 0.000912925 0.00220399i
\(78\) −0.898007 + 7.34354i −0.101679 + 0.831492i
\(79\) 14.3833 1.61824 0.809122 0.587641i \(-0.199943\pi\)
0.809122 + 0.587641i \(0.199943\pi\)
\(80\) −16.1673 + 0.326920i −1.80756 + 0.0365508i
\(81\) 5.51470i 0.612744i
\(82\) −1.96497 + 1.06310i −0.216995 + 0.117400i
\(83\) 4.24121 + 10.2392i 0.465533 + 1.12390i 0.966093 + 0.258194i \(0.0831273\pi\)
−0.500560 + 0.865702i \(0.666873\pi\)
\(84\) −0.274018 0.401255i −0.0298978 0.0437806i
\(85\) −7.35503 + 17.7566i −0.797765 + 1.92597i
\(86\) −8.59435 6.98080i −0.926753 0.752759i
\(87\) −0.972863 + 0.972863i −0.104302 + 0.104302i
\(88\) −0.161940 + 0.314342i −0.0172628 + 0.0335090i
\(89\) 6.33972 0.672009 0.336004 0.941860i \(-0.390924\pi\)
0.336004 + 0.941860i \(0.390924\pi\)
\(90\) 3.22552 3.97107i 0.340000 0.418588i
\(91\) −0.588521 0.134643i −0.0616938 0.0141144i
\(92\) −2.27573 + 0.476636i −0.237261 + 0.0496927i
\(93\) 1.25713 + 3.03497i 0.130358 + 0.314712i
\(94\) −9.85461 2.93505i −1.01642 0.302727i
\(95\) 11.4939 1.17925
\(96\) 4.05072 + 7.13838i 0.413425 + 0.728558i
\(97\) −7.29863 + 7.29863i −0.741063 + 0.741063i −0.972783 0.231719i \(-0.925565\pi\)
0.231719 + 0.972783i \(0.425565\pi\)
\(98\) −8.67200 + 4.69179i −0.876004 + 0.473943i
\(99\) −0.0428116 0.103356i −0.00430273 0.0103877i
\(100\) −22.2041 + 4.65050i −2.22041 + 0.465050i
\(101\) −4.28791 10.3519i −0.426663 1.03006i −0.980338 0.197323i \(-0.936775\pi\)
0.553675 0.832733i \(-0.313225\pi\)
\(102\) 9.70327 1.00524i 0.960766 0.0995331i
\(103\) 5.94537 5.94537i 0.585815 0.585815i −0.350680 0.936495i \(-0.614050\pi\)
0.936495 + 0.350680i \(0.114050\pi\)
\(104\) 9.71838 + 3.09081i 0.952966 + 0.303079i
\(105\) −0.694481 0.694481i −0.0677745 0.0677745i
\(106\) −2.73103 2.21829i −0.265261 0.215460i
\(107\) −17.4698 + 7.23622i −1.68887 + 0.699552i −0.999687 0.0250362i \(-0.992030\pi\)
−0.689182 + 0.724588i \(0.742030\pi\)
\(108\) −11.1067 2.09277i −1.06875 0.201377i
\(109\) −2.26257 + 0.937189i −0.216715 + 0.0897664i −0.488400 0.872620i \(-0.662419\pi\)
0.271685 + 0.962386i \(0.412419\pi\)
\(110\) −0.204020 + 0.685010i −0.0194526 + 0.0653131i
\(111\) 11.0407 + 11.0407i 1.04794 + 1.04794i
\(112\) −0.613483 + 0.268769i −0.0579687 + 0.0253963i
\(113\) 0.849823i 0.0799447i 0.999201 + 0.0399723i \(0.0127270\pi\)
−0.999201 + 0.0399723i \(0.987273\pi\)
\(114\) −2.77605 5.13107i −0.260001 0.480569i
\(115\) −4.34204 + 1.79853i −0.404897 + 0.167714i
\(116\) 1.06953 + 1.56616i 0.0993035 + 0.145414i
\(117\) −2.73277 + 1.71516i −0.252645 + 0.158567i
\(118\) 1.83156 + 17.6795i 0.168609 + 1.62753i
\(119\) 0.796064i 0.0729751i
\(120\) 10.7180 + 12.6633i 0.978412 + 1.15600i
\(121\) −7.76712 7.76712i −0.706102 0.706102i
\(122\) −0.532670 5.14172i −0.0482256 0.465509i
\(123\) 2.11762 + 0.877148i 0.190940 + 0.0790897i
\(124\) 4.43206 0.928263i 0.398010 0.0833605i
\(125\) −23.6904 + 9.81288i −2.11893 + 0.877691i
\(126\) 0.0604859 0.203085i 0.00538852 0.0180923i
\(127\) 14.1303 1.25387 0.626933 0.779073i \(-0.284310\pi\)
0.626933 + 0.779073i \(0.284310\pi\)
\(128\) 10.7036 3.66513i 0.946073 0.323955i
\(129\) 11.3596i 1.00015i
\(130\) 20.4611 + 2.50209i 1.79456 + 0.219448i
\(131\) −16.9635 7.02653i −1.48211 0.613911i −0.512528 0.858670i \(-0.671291\pi\)
−0.969584 + 0.244759i \(0.921291\pi\)
\(132\) 0.355076 0.0743682i 0.0309054 0.00647292i
\(133\) 0.439831 0.182184i 0.0381382 0.0157974i
\(134\) −5.09161 + 6.26849i −0.439848 + 0.541515i
\(135\) −22.8453 −1.96621
\(136\) 1.11496 13.4007i 0.0956074 1.14910i
\(137\) 11.5094i 0.983314i −0.870789 0.491657i \(-0.836391\pi\)
0.870789 0.491657i \(-0.163609\pi\)
\(138\) 1.85160 + 1.50397i 0.157619 + 0.128027i
\(139\) 0.979057 0.405539i 0.0830425 0.0343973i −0.340776 0.940145i \(-0.610690\pi\)
0.423818 + 0.905747i \(0.360690\pi\)
\(140\) −1.11801 + 0.763488i −0.0944889 + 0.0645266i
\(141\) 4.03702 + 9.74623i 0.339978 + 0.820780i
\(142\) 15.4771 8.37355i 1.29881 0.702692i
\(143\) 0.261029 0.367487i 0.0218283 0.0307308i
\(144\) −1.30264 + 3.33395i −0.108553 + 0.277829i
\(145\) 2.71066 + 2.71066i 0.225108 + 0.225108i
\(146\) −6.01148 11.1112i −0.497514 0.919572i
\(147\) 9.34570 + 3.87112i 0.770821 + 0.319284i
\(148\) 17.7738 12.1378i 1.46100 0.997717i
\(149\) −1.87501 0.776656i −0.153607 0.0636262i 0.304555 0.952495i \(-0.401492\pi\)
−0.458162 + 0.888869i \(0.651492\pi\)
\(150\) 18.0659 + 14.6741i 1.47508 + 1.19814i
\(151\) 15.1813 1.23544 0.617718 0.786400i \(-0.288057\pi\)
0.617718 + 0.786400i \(0.288057\pi\)
\(152\) −7.65913 + 2.45080i −0.621238 + 0.198786i
\(153\) 3.00825 + 3.00825i 0.243203 + 0.243203i
\(154\) 0.00305061 + 0.0294468i 0.000245825 + 0.00237289i
\(155\) 8.45626 3.50270i 0.679223 0.281343i
\(156\) −3.82486 9.73849i −0.306234 0.779704i
\(157\) −1.17723 + 2.84209i −0.0939532 + 0.226823i −0.963869 0.266378i \(-0.914173\pi\)
0.869916 + 0.493201i \(0.164173\pi\)
\(158\) −17.8905 + 9.67924i −1.42329 + 0.770039i
\(159\) 3.60974i 0.286271i
\(160\) 19.8895 11.2864i 1.57240 0.892270i
\(161\) −0.137647 + 0.137647i −0.0108481 + 0.0108481i
\(162\) 3.71112 + 6.85940i 0.291573 + 0.538925i
\(163\) 4.24566 + 10.2499i 0.332546 + 0.802837i 0.998389 + 0.0567448i \(0.0180721\pi\)
−0.665843 + 0.746092i \(0.731928\pi\)
\(164\) 1.72869 2.64466i 0.134988 0.206513i
\(165\) 0.677476 0.280620i 0.0527415 0.0218462i
\(166\) −12.1658 9.88177i −0.944253 0.766974i
\(167\) 1.63379i 0.126426i 0.998000 + 0.0632132i \(0.0201348\pi\)
−0.998000 + 0.0632132i \(0.979865\pi\)
\(168\) 0.610860 + 0.314697i 0.0471288 + 0.0242794i
\(169\) −11.7068 5.65246i −0.900525 0.434805i
\(170\) −2.80086 27.0359i −0.214816 2.07356i
\(171\) 0.973625 2.35054i 0.0744549 0.179750i
\(172\) 15.3877 + 2.89942i 1.17330 + 0.221079i
\(173\) −3.26898 + 7.89203i −0.248536 + 0.600020i −0.998080 0.0619350i \(-0.980273\pi\)
0.749544 + 0.661955i \(0.230273\pi\)
\(174\) 0.555396 1.86477i 0.0421044 0.141368i
\(175\) −1.34301 + 1.34301i −0.101522 + 0.101522i
\(176\) −0.0101099 0.499969i −0.000762066 0.0376866i
\(177\) 12.8944 12.8944i 0.969202 0.969202i
\(178\) −7.88559 + 4.26632i −0.591050 + 0.319774i
\(179\) −2.69384 1.11583i −0.201347 0.0834007i 0.279731 0.960078i \(-0.409755\pi\)
−0.481078 + 0.876678i \(0.659755\pi\)
\(180\) −1.33969 + 7.10999i −0.0998548 + 0.529948i
\(181\) −14.1781 + 5.87274i −1.05385 + 0.436518i −0.841263 0.540625i \(-0.818188\pi\)
−0.212583 + 0.977143i \(0.568188\pi\)
\(182\) 0.822634 0.228572i 0.0609777 0.0169429i
\(183\) −3.75006 + 3.75006i −0.277212 + 0.277212i
\(184\) 2.50989 2.12431i 0.185032 0.156606i
\(185\) 30.7624 30.7624i 2.26170 2.26170i
\(186\) −3.60605 2.92903i −0.264408 0.214767i
\(187\) −0.549119 0.227453i −0.0401556 0.0166330i
\(188\) 14.2327 2.98094i 1.03803 0.217407i
\(189\) −0.874211 + 0.362110i −0.0635895 + 0.0263396i
\(190\) −14.2966 + 7.73484i −1.03718 + 0.561144i
\(191\) 12.8849i 0.932318i 0.884701 + 0.466159i \(0.154363\pi\)
−0.884701 + 0.466159i \(0.845637\pi\)
\(192\) −9.84223 6.15306i −0.710302 0.444059i
\(193\) −10.8423 10.8423i −0.780448 0.780448i 0.199458 0.979906i \(-0.436082\pi\)
−0.979906 + 0.199458i \(0.936082\pi\)
\(194\) 4.16670 13.9899i 0.299152 1.00442i
\(195\) −11.2425 17.9127i −0.805092 1.28275i
\(196\) 7.62923 11.6717i 0.544945 0.833691i
\(197\) −0.823725 + 1.98865i −0.0586880 + 0.141685i −0.950503 0.310714i \(-0.899432\pi\)
0.891815 + 0.452399i \(0.149432\pi\)
\(198\) 0.122804 + 0.0997485i 0.00872734 + 0.00708882i
\(199\) −3.15196 + 3.15196i −0.223437 + 0.223437i −0.809944 0.586507i \(-0.800503\pi\)
0.586507 + 0.809944i \(0.300503\pi\)
\(200\) 24.4888 20.7268i 1.73162 1.46560i
\(201\) 8.28536 0.584405
\(202\) 12.2998 + 9.99059i 0.865413 + 0.702935i
\(203\) 0.146693 + 0.0607622i 0.0102958 + 0.00426467i
\(204\) −11.3928 + 7.78018i −0.797658 + 0.544721i
\(205\) 2.44397 5.90027i 0.170694 0.412093i
\(206\) −3.39414 + 11.3960i −0.236481 + 0.794000i
\(207\) 1.04031i 0.0723066i
\(208\) −14.1681 + 2.69553i −0.982379 + 0.186901i
\(209\) 0.355446i 0.0245867i
\(210\) 1.33118 + 0.396471i 0.0918599 + 0.0273591i
\(211\) −5.28688 + 12.7637i −0.363964 + 0.878687i 0.630748 + 0.775987i \(0.282748\pi\)
−0.994712 + 0.102699i \(0.967252\pi\)
\(212\) 4.88977 + 0.921349i 0.335831 + 0.0632785i
\(213\) −16.6795 6.90887i −1.14286 0.473388i
\(214\) 16.8600 20.7570i 1.15253 1.41892i
\(215\) 31.6509 2.15857
\(216\) 15.2233 4.87122i 1.03582 0.331444i
\(217\) 0.268072 0.268072i 0.0181979 0.0181979i
\(218\) 2.18360 2.68831i 0.147892 0.182076i
\(219\) −4.95997 + 11.9744i −0.335164 + 0.809157i
\(220\) −0.207210 0.989338i −0.0139701 0.0667012i
\(221\) −3.82290 + 16.7099i −0.257156 + 1.12403i
\(222\) −21.1627 6.30300i −1.42035 0.423030i
\(223\) −11.4720 11.4720i −0.768222 0.768222i 0.209571 0.977793i \(-0.432793\pi\)
−0.977793 + 0.209571i \(0.932793\pi\)
\(224\) 0.582205 0.747150i 0.0389002 0.0499211i
\(225\) 10.1502i 0.676682i
\(226\) −0.571890 1.05704i −0.0380415 0.0703135i
\(227\) 13.0739 5.41538i 0.867744 0.359431i 0.0960125 0.995380i \(-0.469391\pi\)
0.771731 + 0.635949i \(0.219391\pi\)
\(228\) 6.90592 + 4.51408i 0.457356 + 0.298952i
\(229\) 9.83077 + 4.07204i 0.649635 + 0.269088i 0.683070 0.730353i \(-0.260644\pi\)
−0.0334344 + 0.999441i \(0.510644\pi\)
\(230\) 4.19048 5.15907i 0.276312 0.340179i
\(231\) 0.0214767 0.0214767i 0.00141306 0.00141306i
\(232\) −2.38427 1.22831i −0.156535 0.0806423i
\(233\) 7.99196 7.99196i 0.523571 0.523571i −0.395077 0.918648i \(-0.629282\pi\)
0.918648 + 0.395077i \(0.129282\pi\)
\(234\) 2.24490 3.97241i 0.146754 0.259684i
\(235\) 27.1556 11.2482i 1.77144 0.733754i
\(236\) −14.1756 20.7580i −0.922756 1.35123i
\(237\) 19.2803 + 7.98617i 1.25239 + 0.518758i
\(238\) −0.535712 0.990176i −0.0347251 0.0641836i
\(239\) −0.518131 + 0.518131i −0.0335151 + 0.0335151i −0.723666 0.690151i \(-0.757544\pi\)
0.690151 + 0.723666i \(0.257544\pi\)
\(240\) −21.8532 8.53850i −1.41062 0.551158i
\(241\) −10.3809 + 10.3809i −0.668691 + 0.668691i −0.957413 0.288722i \(-0.906770\pi\)
0.288722 + 0.957413i \(0.406770\pi\)
\(242\) 14.8879 + 4.43416i 0.957034 + 0.285038i
\(243\) −3.42575 + 8.27049i −0.219762 + 0.530552i
\(244\) 4.12268 + 6.03701i 0.263928 + 0.386480i
\(245\) 10.7860 26.0397i 0.689092 1.66361i
\(246\) −3.22426 + 0.334026i −0.205571 + 0.0212967i
\(247\) 10.1072 1.71197i 0.643107 0.108930i
\(248\) −4.88809 + 4.13717i −0.310394 + 0.262710i
\(249\) 16.0802i 1.01904i
\(250\) 22.8635 28.1481i 1.44601 1.78024i
\(251\) −26.6225 + 11.0274i −1.68040 + 0.696044i −0.999345 0.0361906i \(-0.988478\pi\)
−0.681053 + 0.732234i \(0.738478\pi\)
\(252\) 0.0614316 + 0.293309i 0.00386983 + 0.0184768i
\(253\) −0.0556192 0.134277i −0.00349675 0.00844190i
\(254\) −17.5759 + 9.50903i −1.10281 + 0.596650i
\(255\) −19.7184 + 19.7184i −1.23481 + 1.23481i
\(256\) −10.8471 + 11.7618i −0.677943 + 0.735114i
\(257\) 1.49040i 0.0929688i 0.998919 + 0.0464844i \(0.0148018\pi\)
−0.998919 + 0.0464844i \(0.985198\pi\)
\(258\) −7.64444 14.1295i −0.475922 0.879664i
\(259\) 0.689570 1.66477i 0.0428478 0.103444i
\(260\) −27.1341 + 10.6571i −1.68279 + 0.660926i
\(261\) 0.783953 0.324724i 0.0485255 0.0200999i
\(262\) 25.8284 2.67577i 1.59569 0.165309i
\(263\) 20.6831 + 20.6831i 1.27537 + 1.27537i 0.943228 + 0.332146i \(0.107773\pi\)
0.332146 + 0.943228i \(0.392227\pi\)
\(264\) −0.391611 + 0.331451i −0.0241020 + 0.0203994i
\(265\) 10.0577 0.617840
\(266\) −0.424479 + 0.522593i −0.0260265 + 0.0320422i
\(267\) 8.49820 + 3.52007i 0.520081 + 0.215425i
\(268\) 2.11476 11.2234i 0.129179 0.685578i
\(269\) 6.23575 + 2.58293i 0.380200 + 0.157484i 0.564595 0.825368i \(-0.309032\pi\)
−0.184395 + 0.982852i \(0.559032\pi\)
\(270\) 28.4159 15.3738i 1.72934 0.935620i
\(271\) −13.7184 13.7184i −0.833333 0.833333i 0.154638 0.987971i \(-0.450579\pi\)
−0.987971 + 0.154638i \(0.950579\pi\)
\(272\) 7.63116 + 17.4186i 0.462707 + 1.05616i
\(273\) −0.714136 0.507255i −0.0432215 0.0307005i
\(274\) 7.74526 + 14.3158i 0.467908 + 0.864852i
\(275\) −0.542672 1.31013i −0.0327244 0.0790036i
\(276\) −3.31519 0.624662i −0.199551 0.0376002i
\(277\) 24.3471 10.0849i 1.46287 0.605942i 0.497652 0.867377i \(-0.334196\pi\)
0.965221 + 0.261435i \(0.0841957\pi\)
\(278\) −0.944882 + 1.16328i −0.0566702 + 0.0697690i
\(279\) 2.02604i 0.121296i
\(280\) 0.876831 1.70202i 0.0524007 0.101715i
\(281\) 31.9260 1.90455 0.952274 0.305245i \(-0.0987383\pi\)
0.952274 + 0.305245i \(0.0987383\pi\)
\(282\) −11.5801 9.40602i −0.689587 0.560121i
\(283\) −16.4236 + 6.80289i −0.976283 + 0.404390i −0.813047 0.582198i \(-0.802193\pi\)
−0.163235 + 0.986587i \(0.552193\pi\)
\(284\) −13.6161 + 20.8307i −0.807965 + 1.23607i
\(285\) 15.4072 + 6.38188i 0.912645 + 0.378030i
\(286\) −0.0773767 + 0.632755i −0.00457538 + 0.0374156i
\(287\) 0.264521i 0.0156142i
\(288\) −0.623310 5.02351i −0.0367289 0.296013i
\(289\) 5.60262 0.329566
\(290\) −5.19577 1.54748i −0.305106 0.0908714i
\(291\) −13.8361 + 5.73109i −0.811085 + 0.335963i
\(292\) 14.9546 + 9.77516i 0.875154 + 0.572048i
\(293\) −5.33878 2.21139i −0.311895 0.129191i 0.221245 0.975218i \(-0.428988\pi\)
−0.533140 + 0.846027i \(0.678988\pi\)
\(294\) −14.2296 + 1.47416i −0.829889 + 0.0859745i
\(295\) −35.9273 35.9273i −2.09177 2.09177i
\(296\) −13.9396 + 27.0583i −0.810225 + 1.57273i
\(297\) 0.706487i 0.0409945i
\(298\) 2.85487 0.295758i 0.165378 0.0171328i
\(299\) −3.55031 + 2.22828i −0.205320 + 0.128865i
\(300\) −32.3461 6.09478i −1.86750 0.351882i
\(301\) 1.21117 0.501682i 0.0698106 0.0289165i
\(302\) −18.8831 + 10.2163i −1.08660 + 0.587880i
\(303\) 16.2573i 0.933956i
\(304\) 7.87747 8.20262i 0.451804 0.470453i
\(305\) 10.4487 + 10.4487i 0.598290 + 0.598290i
\(306\) −5.76619 1.71737i −0.329631 0.0981758i
\(307\) −21.9239 + 9.08120i −1.25127 + 0.518291i −0.907218 0.420661i \(-0.861798\pi\)
−0.344048 + 0.938952i \(0.611798\pi\)
\(308\) −0.0236107 0.0345741i −0.00134535 0.00197004i
\(309\) 11.2707 4.66848i 0.641168 0.265581i
\(310\) −8.16108 + 10.0474i −0.463518 + 0.570656i
\(311\) −16.0453 16.0453i −0.909848 0.909848i 0.0864119 0.996259i \(-0.472460\pi\)
−0.996259 + 0.0864119i \(0.972460\pi\)
\(312\) 11.3111 + 9.53917i 0.640362 + 0.540049i
\(313\) 3.40491 3.40491i 0.192457 0.192457i −0.604300 0.796757i \(-0.706547\pi\)
0.796757 + 0.604300i \(0.206547\pi\)
\(314\) −0.448300 4.32732i −0.0252990 0.244205i
\(315\) 0.231805 + 0.559628i 0.0130608 + 0.0315314i
\(316\) 15.7392 24.0788i 0.885400 1.35454i
\(317\) 10.0593 + 24.2852i 0.564984 + 1.36399i 0.905737 + 0.423840i \(0.139318\pi\)
−0.340753 + 0.940153i \(0.610682\pi\)
\(318\) −2.42918 4.48993i −0.136222 0.251783i
\(319\) −0.0838266 + 0.0838266i −0.00469339 + 0.00469339i
\(320\) −17.1441 + 27.4231i −0.958385 + 1.53300i
\(321\) −27.4356 −1.53130
\(322\) 0.0785811 0.263841i 0.00437915 0.0147033i
\(323\) −5.17275 12.4881i −0.287819 0.694857i
\(324\) −9.23208 6.03459i −0.512894 0.335255i
\(325\) −34.6401 + 21.7411i −1.92149 + 1.20598i
\(326\) −12.1786 9.89215i −0.674512 0.547876i
\(327\) −3.55328 −0.196497
\(328\) −0.370487 + 4.45285i −0.0204567 + 0.245868i
\(329\) 0.860862 0.860862i 0.0474608 0.0474608i
\(330\) −0.653828 + 0.804955i −0.0359921 + 0.0443113i
\(331\) −5.20508 + 12.5662i −0.286097 + 0.690700i −0.999954 0.00959195i \(-0.996947\pi\)
0.713857 + 0.700292i \(0.246947\pi\)
\(332\) 21.7823 + 4.10431i 1.19546 + 0.225253i
\(333\) −3.68518 8.89682i −0.201947 0.487543i
\(334\) −1.09946 2.03217i −0.0601598 0.111196i
\(335\) 23.0853i 1.26128i
\(336\) −0.971587 + 0.0196466i −0.0530044 + 0.00107181i
\(337\) −4.69307 −0.255648 −0.127824 0.991797i \(-0.540799\pi\)
−0.127824 + 0.991797i \(0.540799\pi\)
\(338\) 18.3652 0.847369i 0.998937 0.0460908i
\(339\) −0.471856 + 1.13916i −0.0256277 + 0.0618708i
\(340\) 21.6777 + 31.7435i 1.17564 + 1.72153i
\(341\) 0.108320 + 0.261508i 0.00586586 + 0.0141614i
\(342\) 0.370765 + 3.57889i 0.0200487 + 0.193524i
\(343\) 2.33952i 0.126322i
\(344\) −21.0910 + 6.74879i −1.13715 + 0.363870i
\(345\) −6.81899 −0.367122
\(346\) −1.24486 12.0163i −0.0669240 0.645999i
\(347\) 11.0734 + 26.7334i 0.594449 + 1.43513i 0.879167 + 0.476515i \(0.158100\pi\)
−0.284718 + 0.958611i \(0.591900\pi\)
\(348\) 0.564079 + 2.69323i 0.0302378 + 0.144373i
\(349\) 13.3561 5.53227i 0.714934 0.296135i 0.00458953 0.999989i \(-0.498539\pi\)
0.710345 + 0.703854i \(0.248539\pi\)
\(350\) 0.766710 2.57427i 0.0409824 0.137601i
\(351\) −20.0892 + 3.40272i −1.07228 + 0.181624i
\(352\) 0.349030 + 0.615078i 0.0186034 + 0.0327837i
\(353\) −15.0043 + 15.0043i −0.798600 + 0.798600i −0.982875 0.184275i \(-0.941006\pi\)
0.184275 + 0.982875i \(0.441006\pi\)
\(354\) −7.36125 + 24.7159i −0.391246 + 1.31363i
\(355\) −19.2500 + 46.4736i −1.02168 + 2.46656i
\(356\) 6.93738 10.6132i 0.367681 0.562501i
\(357\) −0.442007 + 1.06710i −0.0233935 + 0.0564769i
\(358\) 4.10160 0.424916i 0.216776 0.0224575i
\(359\) 6.78539i 0.358119i 0.983838 + 0.179060i \(0.0573055\pi\)
−0.983838 + 0.179060i \(0.942694\pi\)
\(360\) −3.11832 9.74524i −0.164350 0.513619i
\(361\) 7.71907 7.71907i 0.406267 0.406267i
\(362\) 13.6832 16.8459i 0.719171 0.885400i
\(363\) −6.09897 14.7242i −0.320113 0.772821i
\(364\) −0.869407 + 0.837900i −0.0455693 + 0.0439179i
\(365\) 33.3640 + 13.8198i 1.74635 + 0.723363i
\(366\) 2.14086 7.18808i 0.111905 0.375727i
\(367\) 7.20556 0.376127 0.188064 0.982157i \(-0.439779\pi\)
0.188064 + 0.982157i \(0.439779\pi\)
\(368\) −1.69234 + 4.33134i −0.0882193 + 0.225787i
\(369\) −0.999600 0.999600i −0.0520371 0.0520371i
\(370\) −17.5619 + 58.9651i −0.912999 + 3.06545i
\(371\) 0.384874 0.159420i 0.0199816 0.00827667i
\(372\) 6.45644 + 1.21655i 0.334751 + 0.0630751i
\(373\) −12.2576 29.5926i −0.634677 1.53225i −0.833681 0.552246i \(-0.813771\pi\)
0.199004 0.979999i \(-0.436229\pi\)
\(374\) 0.836081 0.0866160i 0.0432327 0.00447880i
\(375\) −37.2048 −1.92125
\(376\) −15.6972 + 13.2857i −0.809519 + 0.685159i
\(377\) 2.78738 + 1.97989i 0.143557 + 0.101970i
\(378\) 0.843696 1.03871i 0.0433950 0.0534254i
\(379\) −13.1898 5.46338i −0.677513 0.280635i 0.0172737 0.999851i \(-0.494501\pi\)
−0.694787 + 0.719216i \(0.744501\pi\)
\(380\) 12.5775 19.2418i 0.645210 0.987083i
\(381\) 18.9413 + 7.84574i 0.970392 + 0.401950i
\(382\) −8.67090 16.0267i −0.443642 0.819999i
\(383\) −2.96879 2.96879i −0.151698 0.151698i 0.627178 0.778876i \(-0.284210\pi\)
−0.778876 + 0.627178i \(0.784210\pi\)
\(384\) 16.3829 + 1.03008i 0.836035 + 0.0525659i
\(385\) −0.0598399 0.0598399i −0.00304972 0.00304972i
\(386\) 20.7825 + 6.18976i 1.05780 + 0.315050i
\(387\) 2.68108 6.47270i 0.136287 0.329026i
\(388\) 4.23184 + 20.2052i 0.214839 + 1.02576i
\(389\) −14.2653 34.4396i −0.723281 1.74616i −0.663781 0.747927i \(-0.731049\pi\)
−0.0595006 0.998228i \(-0.518951\pi\)
\(390\) 26.0382 + 14.7148i 1.31850 + 0.745114i
\(391\) 3.90821 + 3.90821i 0.197647 + 0.197647i
\(392\) −1.63507 + 19.6518i −0.0825836 + 0.992565i
\(393\) −18.8377 18.8377i −0.950236 0.950236i
\(394\) −0.313682 3.02789i −0.0158031 0.152543i
\(395\) 22.2517 53.7203i 1.11960 2.70296i
\(396\) −0.219875 0.0414297i −0.0110491 0.00208192i
\(397\) −0.839703 2.02722i −0.0421435 0.101743i 0.901406 0.432975i \(-0.142536\pi\)
−0.943550 + 0.331231i \(0.892536\pi\)
\(398\) 1.79942 6.04165i 0.0901966 0.302840i
\(399\) 0.690737 0.0345801
\(400\) −16.5120 + 42.2606i −0.825602 + 2.11303i
\(401\) 1.35223 1.35223i 0.0675272 0.0675272i −0.672537 0.740064i \(-0.734795\pi\)
0.740064 + 0.672537i \(0.234795\pi\)
\(402\) −10.3057 + 5.57565i −0.514000 + 0.278088i
\(403\) 6.91434 4.33964i 0.344428 0.216173i
\(404\) −22.0222 4.14951i −1.09564 0.206446i
\(405\) −20.5969 8.53153i −1.02347 0.423935i
\(406\) −0.223352 + 0.0231388i −0.0110848 + 0.00114836i
\(407\) 0.951320 + 0.951320i 0.0471552 + 0.0471552i
\(408\) 8.93517 17.3441i 0.442357 0.858661i
\(409\) 23.2371i 1.14900i −0.818504 0.574501i \(-0.805196\pi\)
0.818504 0.574501i \(-0.194804\pi\)
\(410\) 0.930686 + 8.98367i 0.0459633 + 0.443672i
\(411\) 6.39049 15.4280i 0.315219 0.761007i
\(412\) −3.44721 16.4589i −0.169832 0.810874i
\(413\) −1.94428 0.805346i −0.0956717 0.0396285i
\(414\) −0.700078 1.29398i −0.0344070 0.0635956i
\(415\) 44.8038 2.19933
\(416\) 15.8088 12.8872i 0.775092 0.631848i
\(417\) 1.53757 0.0752950
\(418\) −0.239198 0.442118i −0.0116996 0.0216247i
\(419\) 5.64401 + 2.33783i 0.275728 + 0.114210i 0.516263 0.856430i \(-0.327323\pi\)
−0.240535 + 0.970641i \(0.577323\pi\)
\(420\) −1.92257 + 0.402670i −0.0938120 + 0.0196483i
\(421\) 6.61577 15.9719i 0.322433 0.778422i −0.676679 0.736279i \(-0.736581\pi\)
0.999112 0.0421436i \(-0.0134187\pi\)
\(422\) −2.01329 19.4338i −0.0980055 0.946021i
\(423\) 6.50623i 0.316344i
\(424\) −6.70211 + 2.14456i −0.325483 + 0.104149i
\(425\) 38.1321 + 38.1321i 1.84968 + 1.84968i
\(426\) 25.3959 2.63096i 1.23044 0.127470i
\(427\) 0.565452 + 0.234218i 0.0273641 + 0.0113346i
\(428\) −7.00265 + 37.1644i −0.338486 + 1.79641i
\(429\) 0.553945 0.347672i 0.0267447 0.0167858i
\(430\) −39.3686 + 21.2995i −1.89852 + 1.02715i
\(431\) −4.74711 + 4.74711i −0.228660 + 0.228660i −0.812133 0.583472i \(-0.801694\pi\)
0.583472 + 0.812133i \(0.301694\pi\)
\(432\) −15.6573 + 16.3036i −0.753312 + 0.784406i
\(433\) −35.3538 −1.69899 −0.849497 0.527593i \(-0.823094\pi\)
−0.849497 + 0.527593i \(0.823094\pi\)
\(434\) −0.153039 + 0.513838i −0.00734611 + 0.0246650i
\(435\) 2.12849 + 5.13863i 0.102053 + 0.246378i
\(436\) −0.906938 + 4.81329i −0.0434345 + 0.230515i
\(437\) 1.26490 3.05373i 0.0605082 0.146080i
\(438\) −1.88880 18.2321i −0.0902504 0.871163i
\(439\) −21.1592 21.1592i −1.00988 1.00988i −0.999951 0.00992460i \(-0.996841\pi\)
−0.00992460 0.999951i \(-0.503159\pi\)
\(440\) 0.923512 + 1.09114i 0.0440267 + 0.0520178i
\(441\) −4.41154 4.41154i −0.210073 0.210073i
\(442\) −6.48984 23.3570i −0.308690 1.11098i
\(443\) 7.27080 + 17.5533i 0.345446 + 0.833980i 0.997146 + 0.0755033i \(0.0240563\pi\)
−0.651700 + 0.758477i \(0.725944\pi\)
\(444\) 30.5646 6.40155i 1.45053 0.303804i
\(445\) 9.80788 23.6783i 0.464938 1.12246i
\(446\) 21.9894 + 6.54923i 1.04123 + 0.310115i
\(447\) −2.08217 2.08217i −0.0984832 0.0984832i
\(448\) −0.221374 + 1.32113i −0.0104590 + 0.0624176i
\(449\) −10.5786 10.5786i −0.499236 0.499236i 0.411964 0.911200i \(-0.364843\pi\)
−0.911200 + 0.411964i \(0.864843\pi\)
\(450\) −6.83061 12.6253i −0.321998 0.595160i
\(451\) 0.182465 + 0.0755793i 0.00859192 + 0.00355889i
\(452\) 1.42268 + 0.929939i 0.0669171 + 0.0437406i
\(453\) 20.3501 + 8.42927i 0.956129 + 0.396042i
\(454\) −12.6175 + 15.5339i −0.592169 + 0.729044i
\(455\) −1.41335 + 1.98978i −0.0662590 + 0.0932822i
\(456\) −11.6276 0.967443i −0.544513 0.0453047i
\(457\) −8.47358 −0.396377 −0.198189 0.980164i \(-0.563506\pi\)
−0.198189 + 0.980164i \(0.563506\pi\)
\(458\) −14.9682 + 1.55067i −0.699417 + 0.0724579i
\(459\) 10.2814 + 24.8214i 0.479894 + 1.15857i
\(460\) −1.74048 + 9.23704i −0.0811502 + 0.430679i
\(461\) 19.6702 8.14766i 0.916132 0.379474i 0.125731 0.992064i \(-0.459872\pi\)
0.790401 + 0.612590i \(0.209872\pi\)
\(462\) −0.0122608 + 0.0411663i −0.000570423 + 0.00191523i
\(463\) 18.4109 + 18.4109i 0.855627 + 0.855627i 0.990819 0.135193i \(-0.0431653\pi\)
−0.135193 + 0.990819i \(0.543165\pi\)
\(464\) 3.79224 0.0766835i 0.176050 0.00355994i
\(465\) 13.2802 0.615854
\(466\) −4.56251 + 15.3189i −0.211354 + 0.709635i
\(467\) 33.8363 + 14.0155i 1.56576 + 0.648559i 0.986078 0.166285i \(-0.0531772\pi\)
0.579681 + 0.814844i \(0.303177\pi\)
\(468\) −0.119061 + 6.45175i −0.00550359 + 0.298232i
\(469\) −0.365913 0.883393i −0.0168963 0.0407913i
\(470\) −26.2078 + 32.2654i −1.20887 + 1.48829i
\(471\) −3.15608 + 3.15608i −0.145425 + 0.145425i
\(472\) 31.6013 + 16.2801i 1.45457 + 0.749351i
\(473\) 0.978796i 0.0450051i
\(474\) −29.3559 + 3.04120i −1.34836 + 0.139687i
\(475\) 12.3415 29.7950i 0.566267 1.36709i
\(476\) 1.33268 + 0.871112i 0.0610833 + 0.0399273i
\(477\) 0.851968 2.05683i 0.0390089 0.0941759i
\(478\) 0.295795 0.993149i 0.0135293 0.0454256i
\(479\) −8.74720 + 8.74720i −0.399670 + 0.399670i −0.878117 0.478447i \(-0.841200\pi\)
0.478447 + 0.878117i \(0.341200\pi\)
\(480\) 32.9279 4.08565i 1.50295 0.186484i
\(481\) 22.4691 31.6330i 1.02450 1.44234i
\(482\) 5.92631 19.8980i 0.269936 0.906327i
\(483\) −0.260939 + 0.108084i −0.0118731 + 0.00491801i
\(484\) −21.5022 + 4.50348i −0.977372 + 0.204704i
\(485\) 15.9684 + 38.5511i 0.725087 + 1.75052i
\(486\) −1.30456 12.5925i −0.0591759 0.571209i
\(487\) 25.0041 1.13304 0.566522 0.824047i \(-0.308289\pi\)
0.566522 + 0.824047i \(0.308289\pi\)
\(488\) −9.19057 4.73471i −0.416037 0.214330i
\(489\) 16.0971i 0.727936i
\(490\) 4.10740 + 39.6476i 0.185553 + 1.79110i
\(491\) −8.43661 20.3678i −0.380739 0.919184i −0.991823 0.127619i \(-0.959266\pi\)
0.611085 0.791565i \(-0.290734\pi\)
\(492\) 3.78568 2.58524i 0.170672 0.116552i
\(493\) 1.72522 4.16505i 0.0776999 0.187584i
\(494\) −11.4197 + 8.93108i −0.513796 + 0.401828i
\(495\) −0.452259 −0.0203275
\(496\) 3.29588 8.43542i 0.147990 0.378761i
\(497\) 2.08351i 0.0934580i
\(498\) −10.8212 20.0012i −0.484909 0.896274i
\(499\) 3.20391 + 7.73492i 0.143427 + 0.346263i 0.979226 0.202773i \(-0.0649952\pi\)
−0.835799 + 0.549035i \(0.814995\pi\)
\(500\) −9.49614 + 50.3978i −0.424680 + 2.25386i
\(501\) −0.907147 + 2.19005i −0.0405283 + 0.0978440i
\(502\) 25.6932 31.6320i 1.14674 1.41180i
\(503\) 4.00991 4.00991i 0.178793 0.178793i −0.612036 0.790830i \(-0.709649\pi\)
0.790830 + 0.612036i \(0.209649\pi\)
\(504\) −0.273794 0.323489i −0.0121958 0.0144094i
\(505\) −45.2972 −2.01570
\(506\) 0.159543 + 0.129590i 0.00709255 + 0.00576096i
\(507\) −12.5542 14.0771i −0.557550 0.625184i
\(508\) 15.4625 23.6554i 0.686035 1.04954i
\(509\) −10.1900 24.6008i −0.451664 1.09041i −0.971689 0.236262i \(-0.924078\pi\)
0.520026 0.854151i \(-0.325922\pi\)
\(510\) 11.2570 37.7960i 0.498468 1.67364i
\(511\) 1.49578 0.0661693
\(512\) 5.57691 21.9294i 0.246467 0.969151i
\(513\) 11.3611 11.3611i 0.501604 0.501604i
\(514\) −1.00297 1.85382i −0.0442391 0.0817686i
\(515\) −13.0077 31.4033i −0.573186 1.38379i
\(516\) 19.0169 + 12.4305i 0.837173 + 0.547221i
\(517\) 0.347849 + 0.839782i 0.0152984 + 0.0369336i
\(518\) 0.262594 + 2.53475i 0.0115377 + 0.111371i
\(519\) −8.76395 + 8.76395i −0.384695 + 0.384695i
\(520\) 26.5787 31.5157i 1.16556 1.38205i
\(521\) 23.9151 + 23.9151i 1.04774 + 1.04774i 0.998802 + 0.0489379i \(0.0155836\pi\)
0.0489379 + 0.998802i \(0.484416\pi\)
\(522\) −0.756588 + 0.931467i −0.0331150 + 0.0407692i
\(523\) −15.2407 + 6.31292i −0.666431 + 0.276045i −0.690142 0.723674i \(-0.742452\pi\)
0.0237112 + 0.999719i \(0.492452\pi\)
\(524\) −30.3258 + 20.7095i −1.32479 + 0.904699i
\(525\) −2.54596 + 1.05457i −0.111115 + 0.0460253i
\(526\) −39.6451 11.8077i −1.72861 0.514841i
\(527\) −7.61136 7.61136i −0.331556 0.331556i
\(528\) 0.264051 0.675807i 0.0114913 0.0294107i
\(529\) 21.6485i 0.941238i
\(530\) −12.5102 + 6.76835i −0.543408 + 0.293998i
\(531\) −10.3906 + 4.30391i −0.450912 + 0.186774i
\(532\) 0.176304 0.935675i 0.00764373 0.0405667i
\(533\) 1.27030 5.55245i 0.0550227 0.240503i
\(534\) −12.9392 + 1.34047i −0.559935 + 0.0580080i
\(535\) 76.4430i 3.30492i
\(536\) 4.92238 + 15.3832i 0.212614 + 0.664454i
\(537\) −2.99146 2.99146i −0.129091 0.129091i
\(538\) −9.49446 + 0.983603i −0.409335 + 0.0424061i
\(539\) 0.805271 + 0.333554i 0.0346855 + 0.0143672i
\(540\) −24.9990 + 38.2451i −1.07579 + 1.64581i
\(541\) −15.3040 + 6.33914i −0.657972 + 0.272541i −0.686585 0.727050i \(-0.740891\pi\)
0.0286128 + 0.999591i \(0.490891\pi\)
\(542\) 26.2953 + 7.83167i 1.12948 + 0.336399i
\(543\) −22.2660 −0.955527
\(544\) −21.2138 16.5305i −0.909534 0.708741i
\(545\) 9.90040i 0.424087i
\(546\) 1.22963 + 0.150366i 0.0526232 + 0.00643506i
\(547\) 14.7496 + 6.10949i 0.630648 + 0.261223i 0.675028 0.737792i \(-0.264131\pi\)
−0.0443805 + 0.999015i \(0.514131\pi\)
\(548\) −19.2677 12.5944i −0.823077 0.538007i
\(549\) 3.02187 1.25170i 0.128970 0.0534213i
\(550\) 1.55665 + 1.26440i 0.0663757 + 0.0539140i
\(551\) −2.69605 −0.114855
\(552\) 4.54394 1.45399i 0.193403 0.0618857i
\(553\) 2.40839i 0.102415i
\(554\) −23.4972 + 28.9284i −0.998300 + 1.22905i
\(555\) 58.3166 24.1555i 2.47540 1.02534i
\(556\) 0.392449 2.08280i 0.0166435 0.0883302i
\(557\) −14.5724 35.1809i −0.617453 1.49066i −0.854651 0.519202i \(-0.826229\pi\)
0.237198 0.971461i \(-0.423771\pi\)
\(558\) 1.36342 + 2.52006i 0.0577184 + 0.106683i
\(559\) 27.8324 4.71427i 1.17718 0.199392i
\(560\) 0.0547408 + 2.70711i 0.00231322 + 0.114396i
\(561\) −0.609787 0.609787i −0.0257452 0.0257452i
\(562\) −39.7109 + 21.4847i −1.67510 + 0.906276i
\(563\) −19.8298 8.21375i −0.835725 0.346168i −0.0765582 0.997065i \(-0.524393\pi\)
−0.759166 + 0.650897i \(0.774393\pi\)
\(564\) 20.7336 + 3.90671i 0.873043 + 0.164502i
\(565\) 3.17402 + 1.31472i 0.133532 + 0.0553107i
\(566\) 15.8503 19.5140i 0.666239 0.820234i
\(567\) −0.923401 −0.0387792
\(568\) 2.91815 35.0730i 0.122443 1.47163i
\(569\) 19.2787 + 19.2787i 0.808204 + 0.808204i 0.984362 0.176158i \(-0.0563669\pi\)
−0.176158 + 0.984362i \(0.556367\pi\)
\(570\) −23.4588 + 2.43028i −0.982582 + 0.101793i
\(571\) −9.20125 + 3.81128i −0.385060 + 0.159497i −0.566812 0.823847i \(-0.691823\pi\)
0.181752 + 0.983344i \(0.441823\pi\)
\(572\) −0.329569 0.839116i −0.0137800 0.0350852i
\(573\) −7.15422 + 17.2718i −0.298872 + 0.721540i
\(574\) 0.178010 + 0.329022i 0.00742998 + 0.0137331i
\(575\) 13.1868i 0.549928i
\(576\) 4.15587 + 5.82898i 0.173161 + 0.242874i
\(577\) −13.8986 + 13.8986i −0.578607 + 0.578607i −0.934519 0.355912i \(-0.884170\pi\)
0.355912 + 0.934519i \(0.384170\pi\)
\(578\) −6.96876 + 3.77029i −0.289862 + 0.156823i
\(579\) −8.51372 20.5539i −0.353818 0.854192i
\(580\) 7.50409 1.57168i 0.311590 0.0652604i
\(581\) 1.71449 0.710163i 0.0711288 0.0294625i
\(582\) 13.3531 16.4396i 0.553505 0.681442i
\(583\) 0.311033i 0.0128817i
\(584\) −25.1794 2.09498i −1.04193 0.0866909i
\(585\) 2.17826 + 12.8601i 0.0900598 + 0.531700i
\(586\) 8.12874 0.842118i 0.335795 0.0347876i
\(587\) −5.99353 + 14.4697i −0.247379 + 0.597226i −0.997980 0.0635297i \(-0.979764\pi\)
0.750601 + 0.660756i \(0.229764\pi\)
\(588\) 16.7073 11.4095i 0.688999 0.470518i
\(589\) −2.46343 + 5.94724i −0.101504 + 0.245052i
\(590\) 68.8651 + 20.5105i 2.83513 + 0.844403i
\(591\) −2.20836 + 2.20836i −0.0908396 + 0.0908396i
\(592\) −0.870255 43.0369i −0.0357673 1.76881i
\(593\) 33.8721 33.8721i 1.39096 1.39096i 0.567783 0.823178i \(-0.307801\pi\)
0.823178 0.567783i \(-0.192199\pi\)
\(594\) 0.475431 + 0.878756i 0.0195072 + 0.0360558i
\(595\) 2.97323 + 1.23155i 0.121891 + 0.0504887i
\(596\) −3.35197 + 2.28906i −0.137302 + 0.0937637i
\(597\) −5.97520 + 2.47501i −0.244549 + 0.101295i
\(598\) 2.91649 5.16080i 0.119264 0.211041i
\(599\) 24.6953 24.6953i 1.00902 1.00902i 0.00906172 0.999959i \(-0.497116\pi\)
0.999959 0.00906172i \(-0.00288448\pi\)
\(600\) 44.3349 14.1864i 1.80996 0.579159i
\(601\) −20.4462 + 20.4462i −0.834017 + 0.834017i −0.988064 0.154047i \(-0.950769\pi\)
0.154047 + 0.988064i \(0.450769\pi\)
\(602\) −1.16889 + 1.43907i −0.0476405 + 0.0586521i
\(603\) −4.72101 1.95551i −0.192254 0.0796344i
\(604\) 16.6125 25.4148i 0.675952 1.03411i
\(605\) −41.0257 + 16.9934i −1.66793 + 0.690880i
\(606\) 10.9404 + 20.2214i 0.444422 + 0.821440i
\(607\) 27.1619i 1.10247i −0.834351 0.551234i \(-0.814157\pi\)
0.834351 0.551234i \(-0.185843\pi\)
\(608\) −4.27834 + 15.5039i −0.173509 + 0.628766i
\(609\) 0.162900 + 0.162900i 0.00660103 + 0.00660103i
\(610\) −20.0279 5.96503i −0.810908 0.241517i
\(611\) 22.2041 13.9359i 0.898281 0.563787i
\(612\) 8.32792 1.74423i 0.336636 0.0705061i
\(613\) 8.81016 21.2696i 0.355839 0.859071i −0.640037 0.768344i \(-0.721081\pi\)
0.995876 0.0907270i \(-0.0289191\pi\)
\(614\) 21.1587 26.0493i 0.853894 1.05126i
\(615\) 6.55214 6.55214i 0.264208 0.264208i
\(616\) 0.0526346 + 0.0271158i 0.00212071 + 0.00109253i
\(617\) −21.2107 −0.853909 −0.426954 0.904273i \(-0.640414\pi\)
−0.426954 + 0.904273i \(0.640414\pi\)
\(618\) −10.8773 + 13.3915i −0.437549 + 0.538684i
\(619\) 34.0488 + 14.1035i 1.36854 + 0.566866i 0.941391 0.337317i \(-0.109519\pi\)
0.427145 + 0.904183i \(0.359519\pi\)
\(620\) 3.38964 17.9894i 0.136131 0.722472i
\(621\) −2.51411 + 6.06961i −0.100888 + 0.243565i
\(622\) 30.7556 + 9.16009i 1.23319 + 0.367286i
\(623\) 1.06155i 0.0425299i
\(624\) −20.4885 4.25342i −0.820198 0.170273i
\(625\) 46.9479i 1.87791i
\(626\) −1.94382 + 6.52650i −0.0776907 + 0.260851i
\(627\) −0.197358 + 0.476465i −0.00788173 + 0.0190282i
\(628\) 3.46969 + 5.08080i 0.138456 + 0.202746i
\(629\) −47.2677 19.5789i −1.88469 0.780663i
\(630\) −0.664931 0.540093i −0.0264915 0.0215178i
\(631\) −17.1976 −0.684626 −0.342313 0.939586i \(-0.611210\pi\)
−0.342313 + 0.939586i \(0.611210\pi\)
\(632\) −3.37318 + 40.5419i −0.134178 + 1.61267i
\(633\) −14.1738 + 14.1738i −0.563358 + 0.563358i
\(634\) −28.8549 23.4375i −1.14597 0.930822i
\(635\) 21.8604 52.7756i 0.867503 2.09434i
\(636\) 6.04301 + 3.95004i 0.239621 + 0.156629i
\(637\) 5.60621 24.5046i 0.222126 0.970910i
\(638\) 0.0478556 0.160678i 0.00189462 0.00636131i
\(639\) 7.87337 + 7.87337i 0.311466 + 0.311466i
\(640\) 2.87008 45.6471i 0.113450 1.80436i
\(641\) 30.1213i 1.18972i 0.803830 + 0.594859i \(0.202792\pi\)
−0.803830 + 0.594859i \(0.797208\pi\)
\(642\) 34.1254 18.4628i 1.34682 0.728669i
\(643\) 28.2104 11.6851i 1.11251 0.460817i 0.250709 0.968062i \(-0.419336\pi\)
0.861802 + 0.507245i \(0.169336\pi\)
\(644\) 0.0798097 + 0.381057i 0.00314494 + 0.0150157i
\(645\) 42.4270 + 17.5739i 1.67056 + 0.691970i
\(646\) 14.8380 + 12.0522i 0.583792 + 0.474188i
\(647\) −13.9589 + 13.9589i −0.548781 + 0.548781i −0.926088 0.377307i \(-0.876850\pi\)
0.377307 + 0.926088i \(0.376850\pi\)
\(648\) 15.5442 + 1.29331i 0.610634 + 0.0508061i
\(649\) 1.11104 1.11104i 0.0436123 0.0436123i
\(650\) 28.4560 50.3536i 1.11614 1.97503i
\(651\) 0.508187 0.210498i 0.0199174 0.00825006i
\(652\) 21.8052 + 4.10862i 0.853957 + 0.160906i
\(653\) −3.10496 1.28612i −0.121507 0.0503297i 0.321102 0.947045i \(-0.395947\pi\)
−0.442608 + 0.896715i \(0.645947\pi\)
\(654\) 4.41971 2.39118i 0.172824 0.0935026i
\(655\) −52.4870 + 52.4870i −2.05084 + 2.05084i
\(656\) −2.53573 5.78795i −0.0990035 0.225982i
\(657\) 5.65240 5.65240i 0.220521 0.220521i
\(658\) −0.491456 + 1.65009i −0.0191589 + 0.0643273i
\(659\) −8.54734 + 20.6351i −0.332957 + 0.803830i 0.665398 + 0.746489i \(0.268262\pi\)
−0.998355 + 0.0573404i \(0.981738\pi\)
\(660\) 0.271562 1.44123i 0.0105705 0.0560998i
\(661\) −1.83372 + 4.42699i −0.0713234 + 0.172190i −0.955521 0.294923i \(-0.904706\pi\)
0.884198 + 0.467113i \(0.154706\pi\)
\(662\) −1.98214 19.1331i −0.0770381 0.743628i
\(663\) −14.4025 + 20.2764i −0.559346 + 0.787471i
\(664\) −29.8557 + 9.55333i −1.15863 + 0.370741i
\(665\) 1.92458i 0.0746321i
\(666\) 10.5709 + 8.58627i 0.409614 + 0.332711i
\(667\) 1.01848 0.421869i 0.0394358 0.0163348i
\(668\) 2.73511 + 1.78781i 0.105824 + 0.0691725i
\(669\) −9.00815 21.7476i −0.348275 0.840811i
\(670\) 15.5353 + 28.7144i 0.600180 + 1.10933i
\(671\) −0.323123 + 0.323123i −0.0124740 + 0.0124740i
\(672\) 1.19528 0.678268i 0.0461088 0.0261647i
\(673\) 13.4817i 0.519680i 0.965652 + 0.259840i \(0.0836699\pi\)
−0.965652 + 0.259840i \(0.916330\pi\)
\(674\) 5.83743 3.15821i 0.224849 0.121650i
\(675\) −24.5300 + 59.2207i −0.944161 + 2.27941i
\(676\) −22.2732 + 13.4129i −0.856660 + 0.515881i
\(677\) −3.00640 + 1.24529i −0.115545 + 0.0478605i −0.439707 0.898141i \(-0.644918\pi\)
0.324162 + 0.946002i \(0.394918\pi\)
\(678\) −0.179687 1.73447i −0.00690084 0.0666120i
\(679\) 1.22211 + 1.22211i 0.0469002 + 0.0469002i
\(680\) −48.3254 24.8958i −1.85320 0.954711i
\(681\) 20.5320 0.786787
\(682\) −0.310715 0.252380i −0.0118979 0.00966412i
\(683\) −41.3661 17.1344i −1.58283 0.655629i −0.593970 0.804487i \(-0.702440\pi\)
−0.988859 + 0.148858i \(0.952440\pi\)
\(684\) −2.86959 4.20206i −0.109722 0.160670i
\(685\) −42.9866 17.8056i −1.64243 0.680318i
\(686\) 1.57438 + 2.90998i 0.0601101 + 0.111104i
\(687\) 10.9169 + 10.9169i 0.416505 + 0.416505i
\(688\) 21.6923 22.5876i 0.827010 0.861146i
\(689\) 8.84430 1.49806i 0.336941 0.0570714i
\(690\) 8.48173 4.58885i 0.322894 0.174694i
\(691\) 0.000934320 0.00225565i 3.55432e−5 8.58089e-5i 0.923897 0.382641i \(-0.124985\pi\)
−0.923862 + 0.382726i \(0.874985\pi\)
\(692\) 9.63477 + 14.1086i 0.366259 + 0.536328i
\(693\) −0.0173064 + 0.00716853i −0.000657414 + 0.000272310i
\(694\) −31.7638 25.8003i −1.20574 0.979365i
\(695\) 4.28408i 0.162504i
\(696\) −2.51404 2.97035i −0.0952944 0.112591i
\(697\) −7.51053 −0.284482
\(698\) −12.8899 + 15.8692i −0.487889 + 0.600659i
\(699\) 15.1504 6.27552i 0.573042 0.237362i
\(700\) 0.778697 + 3.71794i 0.0294320 + 0.140525i
\(701\) 11.2131 + 4.64462i 0.423513 + 0.175425i 0.584252 0.811572i \(-0.301388\pi\)
−0.160739 + 0.986997i \(0.551388\pi\)
\(702\) 22.6978 17.7515i 0.856674 0.669986i
\(703\) 30.5965i 1.15397i
\(704\) −0.848055 0.530178i −0.0319623 0.0199818i
\(705\) 42.6468 1.60617
\(706\) 8.56579 28.7602i 0.322378 1.08240i
\(707\) −1.73337 + 0.717984i −0.0651899 + 0.0270026i
\(708\) −7.47635 35.6963i −0.280978 1.34155i
\(709\) −30.7731 12.7466i −1.15571 0.478709i −0.279263 0.960215i \(-0.590090\pi\)
−0.876443 + 0.481505i \(0.840090\pi\)
\(710\) −7.33057 70.7600i −0.275111 2.65558i
\(711\) −9.10106 9.10106i −0.341317 0.341317i
\(712\) −1.48680 + 17.8697i −0.0557201 + 0.669695i
\(713\) 2.63215i 0.0985748i
\(714\) −0.168320 1.62475i −0.00629923 0.0608048i
\(715\) −0.968709 1.54344i −0.0362276 0.0577214i
\(716\) −4.81579 + 3.28871i −0.179974 + 0.122905i
\(717\) −0.982227 + 0.406852i −0.0366819 + 0.0151942i
\(718\) −4.56624 8.43994i −0.170411 0.314976i
\(719\) 39.5495i 1.47495i −0.675376 0.737474i \(-0.736018\pi\)
0.675376 0.737474i \(-0.263982\pi\)
\(720\) 10.4368 + 10.0230i 0.388955 + 0.373537i
\(721\) −0.995515 0.995515i −0.0370749 0.0370749i
\(722\) −4.40672 + 14.7958i −0.164001 + 0.550644i
\(723\) −19.6791 + 8.15136i −0.731874 + 0.303152i
\(724\) −5.68318 + 30.1617i −0.211214 + 1.12095i
\(725\) 9.93726 4.11615i 0.369061 0.152870i
\(726\) 17.4948 + 14.2102i 0.649294 + 0.527392i
\(727\) −2.37508 2.37508i −0.0880869 0.0880869i 0.661690 0.749777i \(-0.269839\pi\)
−0.749777 + 0.661690i \(0.769839\pi\)
\(728\) 0.517536 1.62728i 0.0191812 0.0603111i
\(729\) −20.8827 + 20.8827i −0.773432 + 0.773432i
\(730\) −50.7996 + 5.26272i −1.88018 + 0.194782i
\(731\) −14.2442 34.3887i −0.526843 1.27191i
\(732\) 2.17434 + 10.3815i 0.0803657 + 0.383712i
\(733\) 5.27301 + 12.7302i 0.194763 + 0.470200i 0.990848 0.134986i \(-0.0430989\pi\)
−0.796084 + 0.605186i \(0.793099\pi\)
\(734\) −8.96256 + 4.84899i −0.330814 + 0.178979i
\(735\) 28.9166 28.9166i 1.06660 1.06660i
\(736\) −0.809781 6.52635i −0.0298489 0.240565i
\(737\) 0.713907 0.0262971
\(738\) 1.91602 + 0.570660i 0.0705298 + 0.0210063i
\(739\) 14.5255 + 35.0677i 0.534329 + 1.28998i 0.928631 + 0.371004i \(0.120986\pi\)
−0.394302 + 0.918981i \(0.629014\pi\)
\(740\) −17.8365 85.1614i −0.655681 3.13059i
\(741\) 14.4990 + 3.31710i 0.532633 + 0.121857i
\(742\) −0.371439 + 0.457294i −0.0136360 + 0.0167878i
\(743\) 11.2363 0.412219 0.206109 0.978529i \(-0.433920\pi\)
0.206109 + 0.978529i \(0.433920\pi\)
\(744\) −8.84946 + 2.83168i −0.324437 + 0.103814i
\(745\) −5.80149 + 5.80149i −0.212550 + 0.212550i
\(746\) 35.1609 + 28.5596i 1.28733 + 1.04564i
\(747\) 3.79524 9.16252i 0.138861 0.335239i
\(748\) −0.981662 + 0.670378i −0.0358931 + 0.0245114i
\(749\) 1.21166 + 2.92521i 0.0442731 + 0.106885i
\(750\) 46.2768 25.0370i 1.68979 0.914222i
\(751\) 3.24205i 0.118304i 0.998249 + 0.0591520i \(0.0188396\pi\)
−0.998249 + 0.0591520i \(0.981160\pi\)
\(752\) 10.5841 27.0887i 0.385962 0.987824i
\(753\) −41.8095 −1.52362
\(754\) −4.79942 0.586899i −0.174784 0.0213736i
\(755\) 23.4863 56.7008i 0.854752 2.06355i
\(756\) −0.350422 + 1.85975i −0.0127447 + 0.0676386i
\(757\) 9.49906 + 22.9328i 0.345249 + 0.833505i 0.997167 + 0.0752157i \(0.0239645\pi\)
−0.651918 + 0.758289i \(0.726035\pi\)
\(758\) 20.0826 2.08050i 0.729431 0.0755673i
\(759\) 0.210876i 0.00765431i
\(760\) −2.69556 + 32.3977i −0.0977783 + 1.17519i
\(761\) 6.33846 0.229769 0.114884 0.993379i \(-0.463350\pi\)
0.114884 + 0.993379i \(0.463350\pi\)
\(762\) −28.8397 + 2.98773i −1.04475 + 0.108234i
\(763\) 0.156926 + 0.378854i 0.00568111 + 0.0137154i
\(764\) 21.5704 + 14.0996i 0.780391 + 0.510105i
\(765\) 15.8895 6.58164i 0.574485 0.237960i
\(766\) 5.69054 + 1.69484i 0.205608 + 0.0612372i
\(767\) −36.9441 26.2416i −1.33397 0.947530i
\(768\) −21.0708 + 9.74362i −0.760329 + 0.351593i
\(769\) 5.25446