Properties

Label 416.2.bd.a.83.20
Level $416$
Weight $2$
Character 416.83
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 83.20
Character \(\chi\) \(=\) 416.83
Dual form 416.2.bd.a.411.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.649485 + 1.25625i) q^{2} +(-2.66851 - 1.10533i) q^{3} +(-1.15634 - 1.63183i) q^{4} +(1.60908 - 3.88465i) q^{5} +(3.12173 - 2.63443i) q^{6} -1.17091i q^{7} +(2.80102 - 0.392804i) q^{8} +(3.77787 + 3.77787i) q^{9} +O(q^{10})\) \(q+(-0.649485 + 1.25625i) q^{2} +(-2.66851 - 1.10533i) q^{3} +(-1.15634 - 1.63183i) q^{4} +(1.60908 - 3.88465i) q^{5} +(3.12173 - 2.63443i) q^{6} -1.17091i q^{7} +(2.80102 - 0.392804i) q^{8} +(3.77787 + 3.77787i) q^{9} +(3.83503 + 4.54443i) q^{10} +(-3.31067 - 1.37133i) q^{11} +(1.28199 + 5.63270i) q^{12} +(-3.33290 - 1.37543i) q^{13} +(1.47096 + 0.760488i) q^{14} +(-8.58767 + 8.58767i) q^{15} +(-1.32576 + 3.77391i) q^{16} +6.08573 q^{17} +(-7.19962 + 2.29229i) q^{18} +(-0.319274 - 0.770796i) q^{19} +(-8.19974 + 1.86623i) q^{20} +(-1.29425 + 3.12459i) q^{21} +(3.87296 - 3.26839i) q^{22} +(-0.578255 - 0.578255i) q^{23} +(-7.90873 - 2.04786i) q^{24} +(-8.96587 - 8.96587i) q^{25} +(3.89255 - 3.29364i) q^{26} +(-2.58948 - 6.25155i) q^{27} +(-1.91073 + 1.35397i) q^{28} +(-1.30968 + 3.16185i) q^{29} +(-5.21072 - 16.3658i) q^{30} +(4.38495 + 4.38495i) q^{31} +(-3.87992 - 4.11658i) q^{32} +(7.31880 + 7.31880i) q^{33} +(-3.95259 + 7.64522i) q^{34} +(-4.54858 - 1.88408i) q^{35} +(1.79635 - 10.5333i) q^{36} +(-4.91174 - 2.03451i) q^{37} +(1.17568 + 0.0995312i) q^{38} +(7.37357 + 7.35430i) q^{39} +(2.98114 - 11.5130i) q^{40} -8.78281 q^{41} +(-3.08468 - 3.65527i) q^{42} +(-2.06989 - 4.99717i) q^{43} +(1.59049 + 6.98819i) q^{44} +(20.7546 - 8.59683i) q^{45} +(1.10200 - 0.350866i) q^{46} +(-1.27536 - 1.27536i) q^{47} +(7.70922 - 8.60531i) q^{48} +5.62897 q^{49} +(17.0866 - 5.44020i) q^{50} +(-16.2398 - 6.72676i) q^{51} +(1.60950 + 7.02919i) q^{52} +(2.81667 + 6.80004i) q^{53} +(9.53535 + 0.807250i) q^{54} +(-10.6543 + 10.6543i) q^{55} +(-0.459938 - 3.27974i) q^{56} +2.40978i q^{57} +(-3.12147 - 3.69887i) q^{58} +(-3.05374 + 7.37238i) q^{59} +(23.9439 + 4.08338i) q^{60} +(-2.37361 + 5.73039i) q^{61} +(-8.35657 + 2.66065i) q^{62} +(4.42355 - 4.42355i) q^{63} +(7.69141 - 2.20050i) q^{64} +(-10.7059 + 10.7340i) q^{65} +(-13.9477 + 4.44081i) q^{66} +(10.8065 - 4.47619i) q^{67} +(-7.03717 - 9.93090i) q^{68} +(0.903915 + 2.18224i) q^{69} +(5.32112 - 4.49048i) q^{70} -13.1613 q^{71} +(12.0658 + 9.09792i) q^{72} -4.94824i q^{73} +(5.74596 - 4.84900i) q^{74} +(14.0152 + 33.8358i) q^{75} +(-0.888621 + 1.41230i) q^{76} +(-1.60570 + 3.87650i) q^{77} +(-14.0279 + 4.48656i) q^{78} -1.13679 q^{79} +(12.5271 + 11.2226i) q^{80} +3.51644i q^{81} +(5.70430 - 11.0334i) q^{82} +(1.90343 + 4.59529i) q^{83} +(6.59539 - 1.50109i) q^{84} +(9.79241 - 23.6410i) q^{85} +(7.62206 + 0.645273i) q^{86} +(6.98981 - 6.98981i) q^{87} +(-9.81192 - 2.54066i) q^{88} -2.57921 q^{89} +(-2.67999 + 31.6565i) q^{90} +(-1.61050 + 3.90252i) q^{91} +(-0.274956 + 1.61227i) q^{92} +(-6.85446 - 16.5481i) q^{93} +(2.43050 - 0.773848i) q^{94} -3.50801 q^{95} +(5.80341 + 15.2737i) q^{96} +(1.72686 - 1.72686i) q^{97} +(-3.65593 + 7.07140i) q^{98} +(-7.32660 - 17.6880i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24} - 4 q^{26} - 8 q^{27} + 56 q^{28} - 8 q^{29} - 16 q^{30} - 44 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} - 28 q^{39} - 8 q^{40} - 8 q^{41} - 48 q^{42} - 32 q^{43} + 12 q^{44} - 36 q^{45} - 48 q^{46} - 8 q^{47} - 8 q^{48} - 168 q^{49} + 76 q^{50} - 4 q^{52} - 8 q^{53} - 28 q^{54} - 40 q^{55} + 56 q^{56} + 32 q^{58} + 52 q^{59} - 36 q^{60} - 8 q^{61} + 72 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} + 20 q^{70} + 56 q^{71} + 8 q^{72} - 8 q^{74} - 68 q^{76} + 56 q^{77} - 48 q^{78} - 16 q^{79} + 28 q^{80} - 88 q^{82} + 36 q^{83} + 100 q^{84} - 24 q^{85} + 96 q^{86} - 8 q^{87} + 64 q^{88} - 8 q^{89} - 64 q^{90} + 72 q^{91} - 8 q^{92} - 40 q^{93} - 56 q^{94} + 36 q^{96} - 8 q^{97} + 52 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.649485 + 1.25625i −0.459255 + 0.888305i
\(3\) −2.66851 1.10533i −1.54067 0.638165i −0.559067 0.829122i \(-0.688841\pi\)
−0.981598 + 0.190958i \(0.938841\pi\)
\(4\) −1.15634 1.63183i −0.578170 0.815916i
\(5\) 1.60908 3.88465i 0.719601 1.73727i 0.0451150 0.998982i \(-0.485635\pi\)
0.674486 0.738288i \(-0.264365\pi\)
\(6\) 3.12173 2.63443i 1.27444 1.07550i
\(7\) 1.17091i 0.442563i −0.975210 0.221281i \(-0.928976\pi\)
0.975210 0.221281i \(-0.0710239\pi\)
\(8\) 2.80102 0.392804i 0.990310 0.138877i
\(9\) 3.77787 + 3.77787i 1.25929 + 1.25929i
\(10\) 3.83503 + 4.54443i 1.21274 + 1.43707i
\(11\) −3.31067 1.37133i −0.998206 0.413470i −0.177067 0.984199i \(-0.556661\pi\)
−0.821139 + 0.570728i \(0.806661\pi\)
\(12\) 1.28199 + 5.63270i 0.370077 + 1.62602i
\(13\) −3.33290 1.37543i −0.924379 0.381474i
\(14\) 1.47096 + 0.760488i 0.393130 + 0.203249i
\(15\) −8.58767 + 8.58767i −2.21733 + 2.21733i
\(16\) −1.32576 + 3.77391i −0.331439 + 0.943477i
\(17\) 6.08573 1.47601 0.738004 0.674797i \(-0.235769\pi\)
0.738004 + 0.674797i \(0.235769\pi\)
\(18\) −7.19962 + 2.29229i −1.69697 + 0.540298i
\(19\) −0.319274 0.770796i −0.0732465 0.176833i 0.883016 0.469343i \(-0.155509\pi\)
−0.956262 + 0.292511i \(0.905509\pi\)
\(20\) −8.19974 + 1.86623i −1.83352 + 0.417303i
\(21\) −1.29425 + 3.12459i −0.282428 + 0.681841i
\(22\) 3.87296 3.26839i 0.825719 0.696823i
\(23\) −0.578255 0.578255i −0.120574 0.120574i 0.644245 0.764819i \(-0.277172\pi\)
−0.764819 + 0.644245i \(0.777172\pi\)
\(24\) −7.90873 2.04786i −1.61436 0.418017i
\(25\) −8.96587 8.96587i −1.79317 1.79317i
\(26\) 3.89255 3.29364i 0.763391 0.645936i
\(27\) −2.58948 6.25155i −0.498345 1.20311i
\(28\) −1.91073 + 1.35397i −0.361094 + 0.255876i
\(29\) −1.30968 + 3.16185i −0.243202 + 0.587142i −0.997597 0.0692788i \(-0.977930\pi\)
0.754395 + 0.656420i \(0.227930\pi\)
\(30\) −5.21072 16.3658i −0.951344 2.98798i
\(31\) 4.38495 + 4.38495i 0.787561 + 0.787561i 0.981094 0.193533i \(-0.0619947\pi\)
−0.193533 + 0.981094i \(0.561995\pi\)
\(32\) −3.87992 4.11658i −0.685879 0.727715i
\(33\) 7.31880 + 7.31880i 1.27404 + 1.27404i
\(34\) −3.95259 + 7.64522i −0.677864 + 1.31114i
\(35\) −4.54858 1.88408i −0.768851 0.318468i
\(36\) 1.79635 10.5333i 0.299392 1.75556i
\(37\) −4.91174 2.03451i −0.807485 0.334471i −0.0595350 0.998226i \(-0.518962\pi\)
−0.747950 + 0.663755i \(0.768962\pi\)
\(38\) 1.17568 + 0.0995312i 0.190720 + 0.0161461i
\(39\) 7.37357 + 7.35430i 1.18072 + 1.17763i
\(40\) 2.98114 11.5130i 0.471360 1.82037i
\(41\) −8.78281 −1.37164 −0.685822 0.727769i \(-0.740557\pi\)
−0.685822 + 0.727769i \(0.740557\pi\)
\(42\) −3.08468 3.65527i −0.475976 0.564021i
\(43\) −2.06989 4.99717i −0.315656 0.762061i −0.999475 0.0324088i \(-0.989682\pi\)
0.683819 0.729652i \(-0.260318\pi\)
\(44\) 1.59049 + 6.98819i 0.239775 + 1.05351i
\(45\) 20.7546 8.59683i 3.09391 1.28154i
\(46\) 1.10200 0.350866i 0.162481 0.0517324i
\(47\) −1.27536 1.27536i −0.186030 0.186030i 0.607947 0.793978i \(-0.291993\pi\)
−0.793978 + 0.607947i \(0.791993\pi\)
\(48\) 7.70922 8.60531i 1.11273 1.24207i
\(49\) 5.62897 0.804138
\(50\) 17.0866 5.44020i 2.41641 0.769361i
\(51\) −16.2398 6.72676i −2.27403 0.941935i
\(52\) 1.60950 + 7.02919i 0.223197 + 0.974773i
\(53\) 2.81667 + 6.80004i 0.386899 + 0.934057i 0.990593 + 0.136841i \(0.0436949\pi\)
−0.603694 + 0.797216i \(0.706305\pi\)
\(54\) 9.53535 + 0.807250i 1.29760 + 0.109853i
\(55\) −10.6543 + 10.6543i −1.43662 + 1.43662i
\(56\) −0.459938 3.27974i −0.0614618 0.438274i
\(57\) 2.40978i 0.319183i
\(58\) −3.12147 3.69887i −0.409869 0.485685i
\(59\) −3.05374 + 7.37238i −0.397563 + 0.959801i 0.590680 + 0.806906i \(0.298860\pi\)
−0.988242 + 0.152895i \(0.951140\pi\)
\(60\) 23.9439 + 4.08338i 3.09115 + 0.527162i
\(61\) −2.37361 + 5.73039i −0.303909 + 0.733701i 0.695969 + 0.718072i \(0.254975\pi\)
−0.999878 + 0.0156294i \(0.995025\pi\)
\(62\) −8.35657 + 2.66065i −1.06128 + 0.337903i
\(63\) 4.42355 4.42355i 0.557314 0.557314i
\(64\) 7.69141 2.20050i 0.961426 0.275063i
\(65\) −10.7059 + 10.7340i −1.32791 + 1.33139i
\(66\) −13.9477 + 4.44081i −1.71684 + 0.546626i
\(67\) 10.8065 4.47619i 1.32022 0.546853i 0.392371 0.919807i \(-0.371655\pi\)
0.927850 + 0.372954i \(0.121655\pi\)
\(68\) −7.03717 9.93090i −0.853383 1.20430i
\(69\) 0.903915 + 2.18224i 0.108819 + 0.262711i
\(70\) 5.32112 4.49048i 0.635995 0.536715i
\(71\) −13.1613 −1.56196 −0.780980 0.624556i \(-0.785280\pi\)
−0.780980 + 0.624556i \(0.785280\pi\)
\(72\) 12.0658 + 9.09792i 1.42197 + 1.07220i
\(73\) 4.94824i 0.579148i −0.957156 0.289574i \(-0.906486\pi\)
0.957156 0.289574i \(-0.0935136\pi\)
\(74\) 5.74596 4.84900i 0.667954 0.563685i
\(75\) 14.0152 + 33.8358i 1.61834 + 3.90702i
\(76\) −0.888621 + 1.41230i −0.101932 + 0.162002i
\(77\) −1.60570 + 3.87650i −0.182987 + 0.441769i
\(78\) −14.0279 + 4.48656i −1.58834 + 0.508003i
\(79\) −1.13679 −0.127899 −0.0639494 0.997953i \(-0.520370\pi\)
−0.0639494 + 0.997953i \(0.520370\pi\)
\(80\) 12.5271 + 11.2226i 1.40057 + 1.25473i
\(81\) 3.51644i 0.390715i
\(82\) 5.70430 11.0334i 0.629934 1.21844i
\(83\) 1.90343 + 4.59529i 0.208929 + 0.504399i 0.993255 0.115950i \(-0.0369911\pi\)
−0.784326 + 0.620349i \(0.786991\pi\)
\(84\) 6.59539 1.50109i 0.719616 0.163782i
\(85\) 9.79241 23.6410i 1.06214 2.56422i
\(86\) 7.62206 + 0.645273i 0.821908 + 0.0695816i
\(87\) 6.98981 6.98981i 0.749386 0.749386i
\(88\) −9.81192 2.54066i −1.04595 0.270836i
\(89\) −2.57921 −0.273396 −0.136698 0.990613i \(-0.543649\pi\)
−0.136698 + 0.990613i \(0.543649\pi\)
\(90\) −2.67999 + 31.6565i −0.282496 + 3.33689i
\(91\) −1.61050 + 3.90252i −0.168826 + 0.409096i
\(92\) −0.274956 + 1.61227i −0.0286662 + 0.168091i
\(93\) −6.85446 16.5481i −0.710774 1.71596i
\(94\) 2.43050 0.773848i 0.250687 0.0798163i
\(95\) −3.50801 −0.359914
\(96\) 5.80341 + 15.2737i 0.592308 + 1.55887i
\(97\) 1.72686 1.72686i 0.175336 0.175336i −0.613983 0.789319i \(-0.710434\pi\)
0.789319 + 0.613983i \(0.210434\pi\)
\(98\) −3.65593 + 7.07140i −0.369305 + 0.714320i
\(99\) −7.32660 17.6880i −0.736351 1.77771i
\(100\) −4.26321 + 24.9984i −0.426321 + 2.49984i
\(101\) 0.728280 + 1.75822i 0.0724666 + 0.174950i 0.955962 0.293489i \(-0.0948165\pi\)
−0.883496 + 0.468439i \(0.844817\pi\)
\(102\) 18.9980 16.0324i 1.88109 1.58745i
\(103\) 8.20901 8.20901i 0.808858 0.808858i −0.175603 0.984461i \(-0.556187\pi\)
0.984461 + 0.175603i \(0.0561875\pi\)
\(104\) −9.87578 2.54342i −0.968400 0.249402i
\(105\) 10.0554 + 10.0554i 0.981306 + 0.981306i
\(106\) −10.3719 0.878074i −1.00741 0.0852861i
\(107\) 8.64845 3.58231i 0.836077 0.346315i 0.0767717 0.997049i \(-0.475539\pi\)
0.759306 + 0.650734i \(0.225539\pi\)
\(108\) −7.20717 + 11.4545i −0.693511 + 1.10221i
\(109\) 4.92636 2.04056i 0.471860 0.195451i −0.134065 0.990972i \(-0.542803\pi\)
0.605925 + 0.795522i \(0.292803\pi\)
\(110\) −6.46466 20.3042i −0.616381 1.93593i
\(111\) 10.8582 + 10.8582i 1.03062 + 1.03062i
\(112\) 4.41891 + 1.55234i 0.417547 + 0.146683i
\(113\) 7.38227i 0.694466i −0.937779 0.347233i \(-0.887121\pi\)
0.937779 0.347233i \(-0.112879\pi\)
\(114\) −3.02729 1.56512i −0.283532 0.146587i
\(115\) −3.17678 + 1.31586i −0.296236 + 0.122705i
\(116\) 6.67406 1.51899i 0.619670 0.141035i
\(117\) −7.39507 17.7874i −0.683675 1.64445i
\(118\) −7.27821 8.62451i −0.670013 0.793950i
\(119\) 7.12585i 0.653226i
\(120\) −20.6810 + 27.4275i −1.88790 + 2.50378i
\(121\) 1.30186 + 1.30186i 0.118351 + 0.118351i
\(122\) −5.65720 6.70365i −0.512179 0.606920i
\(123\) 23.4370 + 9.70793i 2.11324 + 0.875334i
\(124\) 2.08502 12.2260i 0.187240 1.09793i
\(125\) −29.8328 + 12.3572i −2.66833 + 1.10526i
\(126\) 2.68406 + 8.43011i 0.239115 + 0.751014i
\(127\) −14.5896 −1.29461 −0.647307 0.762230i \(-0.724105\pi\)
−0.647307 + 0.762230i \(0.724105\pi\)
\(128\) −2.23107 + 11.0915i −0.197200 + 0.980363i
\(129\) 15.6229i 1.37552i
\(130\) −6.53126 20.4209i −0.572829 1.79103i
\(131\) −2.12109 0.878586i −0.185321 0.0767624i 0.288093 0.957602i \(-0.406979\pi\)
−0.473414 + 0.880840i \(0.656979\pi\)
\(132\) 3.48004 20.4061i 0.302899 1.77612i
\(133\) −0.902533 + 0.373841i −0.0782595 + 0.0324162i
\(134\) −1.39542 + 16.4829i −0.120546 + 1.42390i
\(135\) −28.4518 −2.44874
\(136\) 17.0463 2.39050i 1.46170 0.204984i
\(137\) 0.877245i 0.0749481i −0.999298 0.0374740i \(-0.988069\pi\)
0.999298 0.0374740i \(-0.0119312\pi\)
\(138\) −3.32853 0.281788i −0.283343 0.0239874i
\(139\) 13.9638 5.78398i 1.18439 0.490591i 0.298466 0.954420i \(-0.403525\pi\)
0.885924 + 0.463830i \(0.153525\pi\)
\(140\) 2.18519 + 9.60117i 0.184683 + 0.811447i
\(141\) 1.99362 + 4.81301i 0.167893 + 0.405329i
\(142\) 8.54807 16.5339i 0.717338 1.38750i
\(143\) 9.14798 + 9.12408i 0.764993 + 0.762994i
\(144\) −19.2659 + 9.24878i −1.60549 + 0.770732i
\(145\) 10.1753 + 10.1753i 0.845015 + 0.845015i
\(146\) 6.21624 + 3.21381i 0.514460 + 0.265977i
\(147\) −15.0210 6.22189i −1.23891 0.513173i
\(148\) 2.35966 + 10.3677i 0.193963 + 0.852222i
\(149\) 3.80070 + 1.57430i 0.311365 + 0.128972i 0.532894 0.846182i \(-0.321105\pi\)
−0.221528 + 0.975154i \(0.571105\pi\)
\(150\) −51.6090 4.36914i −4.21386 0.356739i
\(151\) 1.81108 0.147384 0.0736919 0.997281i \(-0.476522\pi\)
0.0736919 + 0.997281i \(0.476522\pi\)
\(152\) −1.19706 2.03360i −0.0970947 0.164947i
\(153\) 22.9911 + 22.9911i 1.85872 + 1.85872i
\(154\) −3.82699 4.53489i −0.308388 0.365432i
\(155\) 24.0897 9.97830i 1.93493 0.801476i
\(156\) 3.47464 20.5365i 0.278194 1.64424i
\(157\) 7.07948 17.0914i 0.565004 1.36404i −0.340716 0.940166i \(-0.610670\pi\)
0.905721 0.423875i \(-0.139330\pi\)
\(158\) 0.738327 1.42809i 0.0587382 0.113613i
\(159\) 21.2593i 1.68597i
\(160\) −22.2346 + 8.44825i −1.75780 + 0.667893i
\(161\) −0.677085 + 0.677085i −0.0533618 + 0.0533618i
\(162\) −4.41753 2.28387i −0.347074 0.179438i
\(163\) −9.66615 23.3361i −0.757111 1.82783i −0.513887 0.857858i \(-0.671795\pi\)
−0.243225 0.969970i \(-0.578205\pi\)
\(164\) 10.1559 + 14.3321i 0.793043 + 1.11915i
\(165\) 40.2075 16.6545i 3.13015 1.29655i
\(166\) −7.00910 0.593380i −0.544011 0.0460552i
\(167\) 7.31826i 0.566304i −0.959075 0.283152i \(-0.908620\pi\)
0.959075 0.283152i \(-0.0913801\pi\)
\(168\) −2.39786 + 9.26041i −0.184999 + 0.714456i
\(169\) 9.21641 + 9.16830i 0.708955 + 0.705254i
\(170\) 23.3390 + 27.6562i 1.79002 + 2.12113i
\(171\) 1.70579 4.11814i 0.130445 0.314922i
\(172\) −5.76104 + 9.15614i −0.439275 + 0.698149i
\(173\) −2.97042 + 7.17124i −0.225837 + 0.545219i −0.995663 0.0930351i \(-0.970343\pi\)
0.769826 + 0.638254i \(0.220343\pi\)
\(174\) 4.24119 + 13.3207i 0.321524 + 1.00984i
\(175\) −10.4982 + 10.4982i −0.793592 + 0.793592i
\(176\) 9.56441 10.6761i 0.720944 0.804744i
\(177\) 16.2979 16.2979i 1.22502 1.22502i
\(178\) 1.67516 3.24014i 0.125558 0.242859i
\(179\) 21.8964 + 9.06977i 1.63661 + 0.677906i 0.995949 0.0899172i \(-0.0286603\pi\)
0.640661 + 0.767824i \(0.278660\pi\)
\(180\) −38.0279 23.9272i −2.83444 1.78343i
\(181\) −9.22181 + 3.81980i −0.685452 + 0.283923i −0.698104 0.715997i \(-0.745973\pi\)
0.0126520 + 0.999920i \(0.495973\pi\)
\(182\) −3.85656 4.55782i −0.285867 0.337848i
\(183\) 12.6680 12.6680i 0.936445 0.936445i
\(184\) −1.84684 1.39256i −0.136151 0.102661i
\(185\) −15.8067 + 15.8067i −1.16213 + 1.16213i
\(186\) 25.2405 + 2.13682i 1.85072 + 0.156680i
\(187\) −20.1479 8.34553i −1.47336 0.610285i
\(188\) −0.606426 + 3.55593i −0.0442281 + 0.259343i
\(189\) −7.32001 + 3.03205i −0.532452 + 0.220549i
\(190\) 2.27840 4.40695i 0.165292 0.319713i
\(191\) 13.4607i 0.973986i −0.873406 0.486993i \(-0.838094\pi\)
0.873406 0.486993i \(-0.161906\pi\)
\(192\) −22.9569 2.62951i −1.65677 0.189768i
\(193\) −11.1826 11.1826i −0.804942 0.804942i 0.178922 0.983863i \(-0.442739\pi\)
−0.983863 + 0.178922i \(0.942739\pi\)
\(194\) 1.04780 + 3.29093i 0.0752277 + 0.236275i
\(195\) 40.4335 16.8101i 2.89551 1.20380i
\(196\) −6.50900 9.18554i −0.464929 0.656110i
\(197\) 1.40887 3.40131i 0.100378 0.242333i −0.865711 0.500545i \(-0.833133\pi\)
0.966088 + 0.258211i \(0.0831331\pi\)
\(198\) 26.9791 + 2.28401i 1.91732 + 0.162318i
\(199\) 0.450416 0.450416i 0.0319291 0.0319291i −0.690962 0.722891i \(-0.742813\pi\)
0.722891 + 0.690962i \(0.242813\pi\)
\(200\) −28.6354 21.5917i −2.02483 1.52677i
\(201\) −33.7849 −2.38300
\(202\) −2.68178 0.227036i −0.188689 0.0159742i
\(203\) 3.70225 + 1.53352i 0.259847 + 0.107632i
\(204\) 7.80182 + 34.2791i 0.546237 + 2.40002i
\(205\) −14.1322 + 34.1182i −0.987036 + 2.38292i
\(206\) 4.98096 + 15.6442i 0.347040 + 1.08998i
\(207\) 4.36914i 0.303676i
\(208\) 9.60934 10.7546i 0.666288 0.745695i
\(209\) 2.98968i 0.206801i
\(210\) −19.1629 + 6.10129i −1.32237 + 0.421029i
\(211\) 2.99898 7.24017i 0.206458 0.498434i −0.786403 0.617714i \(-0.788059\pi\)
0.992861 + 0.119281i \(0.0380588\pi\)
\(212\) 7.83950 12.4595i 0.538419 0.855721i
\(213\) 35.1211 + 14.5476i 2.40646 + 0.996788i
\(214\) −1.11676 + 13.1913i −0.0763399 + 0.901738i
\(215\) −22.7429 −1.55105
\(216\) −9.70881 16.4936i −0.660601 1.12224i
\(217\) 5.13439 5.13439i 0.348545 0.348545i
\(218\) −0.636130 + 7.51406i −0.0430842 + 0.508917i
\(219\) −5.46946 + 13.2044i −0.369592 + 0.892273i
\(220\) 29.7059 + 5.06603i 2.00277 + 0.341552i
\(221\) −20.2831 8.37047i −1.36439 0.563059i
\(222\) −20.6929 + 6.58842i −1.38882 + 0.442186i
\(223\) −6.82353 6.82353i −0.456937 0.456937i 0.440712 0.897649i \(-0.354726\pi\)
−0.897649 + 0.440712i \(0.854726\pi\)
\(224\) −4.82015 + 4.54304i −0.322060 + 0.303544i
\(225\) 67.7438i 4.51625i
\(226\) 9.27400 + 4.79467i 0.616897 + 0.318937i
\(227\) −6.79022 + 2.81260i −0.450683 + 0.186679i −0.596467 0.802638i \(-0.703429\pi\)
0.145785 + 0.989316i \(0.453429\pi\)
\(228\) 3.93236 2.78653i 0.260427 0.184542i
\(229\) −24.2771 10.0559i −1.60428 0.664513i −0.612264 0.790654i \(-0.709741\pi\)
−0.992012 + 0.126141i \(0.959741\pi\)
\(230\) 0.410210 4.84547i 0.0270485 0.319501i
\(231\) 8.56966 8.56966i 0.563842 0.563842i
\(232\) −2.42646 + 9.37086i −0.159305 + 0.615227i
\(233\) −10.4632 + 10.4632i −0.685470 + 0.685470i −0.961227 0.275757i \(-0.911071\pi\)
0.275757 + 0.961227i \(0.411071\pi\)
\(234\) 27.1485 + 2.26258i 1.77475 + 0.147909i
\(235\) −7.00649 + 2.90218i −0.457053 + 0.189317i
\(236\) 15.5616 3.54178i 1.01298 0.230550i
\(237\) 3.03354 + 1.25653i 0.197049 + 0.0816205i
\(238\) 8.95186 + 4.62813i 0.580263 + 0.299997i
\(239\) 0.917498 0.917498i 0.0593480 0.0593480i −0.676810 0.736158i \(-0.736638\pi\)
0.736158 + 0.676810i \(0.236638\pi\)
\(240\) −21.0239 43.7942i −1.35709 2.82691i
\(241\) 2.13052 2.13052i 0.137239 0.137239i −0.635150 0.772389i \(-0.719062\pi\)
0.772389 + 0.635150i \(0.219062\pi\)
\(242\) −2.48100 + 0.789925i −0.159485 + 0.0507783i
\(243\) −3.88160 + 9.37101i −0.249005 + 0.601150i
\(244\) 12.0957 2.75295i 0.774350 0.176240i
\(245\) 9.05744 21.8666i 0.578659 1.39701i
\(246\) −27.4176 + 23.1376i −1.74808 + 1.47520i
\(247\) 0.00393580 + 3.00812i 0.000250429 + 0.191402i
\(248\) 14.0048 + 10.5599i 0.889303 + 0.670555i
\(249\) 14.3665i 0.910441i
\(250\) 3.85225 45.5033i 0.243637 2.87788i
\(251\) −11.5073 + 4.76648i −0.726335 + 0.300858i −0.715045 0.699079i \(-0.753594\pi\)
−0.0112899 + 0.999936i \(0.503594\pi\)
\(252\) −12.3336 2.10337i −0.776944 0.132500i
\(253\) 1.12144 + 2.70739i 0.0705042 + 0.170212i
\(254\) 9.47569 18.3282i 0.594558 1.15001i
\(255\) −52.2623 + 52.2623i −3.27279 + 3.27279i
\(256\) −12.4847 10.0066i −0.780296 0.625411i
\(257\) 2.72221i 0.169807i 0.996389 + 0.0849033i \(0.0270581\pi\)
−0.996389 + 0.0849033i \(0.972942\pi\)
\(258\) −19.6263 10.1468i −1.22188 0.631715i
\(259\) −2.38223 + 5.75121i −0.148024 + 0.357363i
\(260\) 29.8958 + 5.05816i 1.85406 + 0.313694i
\(261\) −16.8929 + 6.99726i −1.04564 + 0.433119i
\(262\) 2.48134 2.09400i 0.153298 0.129368i
\(263\) −5.00972 5.00972i −0.308913 0.308913i 0.535575 0.844488i \(-0.320095\pi\)
−0.844488 + 0.535575i \(0.820095\pi\)
\(264\) 23.3749 + 17.6252i 1.43863 + 1.08476i
\(265\) 30.9480 1.90112
\(266\) 0.116542 1.37661i 0.00714566 0.0844056i
\(267\) 6.88266 + 2.85089i 0.421212 + 0.174472i
\(268\) −19.8003 12.4584i −1.20950 0.761016i
\(269\) −17.0614 7.06706i −1.04025 0.430886i −0.203850 0.979002i \(-0.565345\pi\)
−0.836402 + 0.548116i \(0.815345\pi\)
\(270\) 18.4790 35.7426i 1.12460 2.17523i
\(271\) 0.151094 + 0.151094i 0.00917833 + 0.00917833i 0.711681 0.702503i \(-0.247934\pi\)
−0.702503 + 0.711681i \(0.747934\pi\)
\(272\) −8.06821 + 22.9670i −0.489207 + 1.39258i
\(273\) 8.61123 8.63379i 0.521175 0.522541i
\(274\) 1.10204 + 0.569757i 0.0665767 + 0.0344203i
\(275\) 17.3879 + 41.9782i 1.04853 + 2.53138i
\(276\) 2.51583 3.99845i 0.151435 0.240679i
\(277\) −12.1517 + 5.03339i −0.730124 + 0.302427i −0.716603 0.697481i \(-0.754304\pi\)
−0.0135211 + 0.999909i \(0.504304\pi\)
\(278\) −1.80311 + 21.2986i −0.108143 + 1.27741i
\(279\) 33.1315i 1.98353i
\(280\) −13.4807 3.49065i −0.805628 0.208606i
\(281\) 5.27521 0.314693 0.157346 0.987543i \(-0.449706\pi\)
0.157346 + 0.987543i \(0.449706\pi\)
\(282\) −7.34118 0.621494i −0.437161 0.0370094i
\(283\) 8.21222 3.40161i 0.488166 0.202205i −0.125004 0.992156i \(-0.539894\pi\)
0.613169 + 0.789951i \(0.289894\pi\)
\(284\) 15.2189 + 21.4771i 0.903078 + 1.27443i
\(285\) 9.36116 + 3.87752i 0.554508 + 0.229685i
\(286\) −17.4036 + 5.56623i −1.02910 + 0.329138i
\(287\) 10.2839i 0.607038i
\(288\) 0.894073 30.2097i 0.0526838 1.78012i
\(289\) 20.0362 1.17860
\(290\) −19.3915 + 6.17406i −1.13871 + 0.362553i
\(291\) −6.51689 + 2.69938i −0.382027 + 0.158241i
\(292\) −8.07471 + 5.72185i −0.472536 + 0.334846i
\(293\) 5.42094 + 2.24543i 0.316695 + 0.131179i 0.535368 0.844619i \(-0.320173\pi\)
−0.218673 + 0.975798i \(0.570173\pi\)
\(294\) 17.5721 14.8291i 1.02483 0.864851i
\(295\) 23.7254 + 23.7254i 1.38135 + 1.38135i
\(296\) −14.5570 3.76935i −0.846111 0.219089i
\(297\) 24.2479i 1.40700i
\(298\) −4.44621 + 3.75215i −0.257562 + 0.217356i
\(299\) 1.13192 + 2.72261i 0.0654605 + 0.157453i
\(300\) 39.0080 61.9962i 2.25213 3.57935i
\(301\) −5.85123 + 2.42366i −0.337259 + 0.139697i
\(302\) −1.17627 + 2.27518i −0.0676868 + 0.130922i
\(303\) 5.49683i 0.315785i
\(304\) 3.33219 0.183022i 0.191114 0.0104970i
\(305\) 18.4413 + 18.4413i 1.05594 + 1.05594i
\(306\) −43.8150 + 13.9503i −2.50474 + 0.797483i
\(307\) 17.2813 7.15816i 0.986298 0.408538i 0.169543 0.985523i \(-0.445771\pi\)
0.816755 + 0.576985i \(0.195771\pi\)
\(308\) 8.18254 1.86232i 0.466244 0.106116i
\(309\) −30.9795 + 12.8321i −1.76236 + 0.729995i
\(310\) −3.11066 + 36.7435i −0.176673 + 2.08689i
\(311\) −13.6718 13.6718i −0.775254 0.775254i 0.203765 0.979020i \(-0.434682\pi\)
−0.979020 + 0.203765i \(0.934682\pi\)
\(312\) 23.5423 + 17.7032i 1.33282 + 1.00224i
\(313\) 10.2646 10.2646i 0.580190 0.580190i −0.354766 0.934955i \(-0.615439\pi\)
0.934955 + 0.354766i \(0.115439\pi\)
\(314\) 16.8731 + 19.9942i 0.952203 + 1.12834i
\(315\) −10.0661 24.3018i −0.567162 1.36925i
\(316\) 1.31451 + 1.85505i 0.0739472 + 0.104355i
\(317\) −10.2802 24.8186i −0.577394 1.39395i −0.895143 0.445778i \(-0.852927\pi\)
0.317749 0.948175i \(-0.397073\pi\)
\(318\) 26.7071 + 13.8076i 1.49766 + 0.774292i
\(319\) 8.67187 8.67187i 0.485531 0.485531i
\(320\) 3.82788 33.4192i 0.213985 1.86819i
\(321\) −27.0381 −1.50912
\(322\) −0.410833 1.29035i −0.0228948 0.0719081i
\(323\) −1.94302 4.69086i −0.108112 0.261006i
\(324\) 5.73824 4.06620i 0.318791 0.225900i
\(325\) 17.5504 + 42.2142i 0.973523 + 2.34162i
\(326\) 35.5941 + 3.01335i 1.97138 + 0.166894i
\(327\) −15.4015 −0.851707
\(328\) −24.6008 + 3.44992i −1.35835 + 0.190490i
\(329\) −1.49333 + 1.49333i −0.0823301 + 0.0823301i
\(330\) −5.19191 + 61.3276i −0.285805 + 3.37597i
\(331\) −2.61129 + 6.30422i −0.143530 + 0.346511i −0.979254 0.202638i \(-0.935048\pi\)
0.835724 + 0.549150i \(0.185048\pi\)
\(332\) 5.29774 8.41980i 0.290751 0.462097i
\(333\) −10.8698 26.2420i −0.595661 1.43805i
\(334\) 9.19358 + 4.75310i 0.503050 + 0.260078i
\(335\) 49.1819i 2.68709i
\(336\) −10.0760 9.02681i −0.549693 0.492453i
\(337\) −23.8737 −1.30048 −0.650242 0.759727i \(-0.725332\pi\)
−0.650242 + 0.759727i \(0.725332\pi\)
\(338\) −17.5036 + 5.62347i −0.952071 + 0.305876i
\(339\) −8.15987 + 19.6997i −0.443184 + 1.06994i
\(340\) −49.9015 + 11.3574i −2.70629 + 0.615942i
\(341\) −8.50395 20.5304i −0.460515 1.11178i
\(342\) 4.06554 + 4.81757i 0.219839 + 0.260504i
\(343\) 14.7874i 0.798444i
\(344\) −7.76072 13.1841i −0.418430 0.710839i
\(345\) 9.93173 0.534706
\(346\) −7.07964 8.38921i −0.380604 0.451007i
\(347\) 3.65275 + 8.81852i 0.196090 + 0.473403i 0.991088 0.133209i \(-0.0425282\pi\)
−0.794998 + 0.606612i \(0.792528\pi\)
\(348\) −19.4888 3.32361i −1.04471 0.178164i
\(349\) −19.0399 + 7.88656i −1.01918 + 0.422158i −0.828796 0.559552i \(-0.810973\pi\)
−0.190384 + 0.981710i \(0.560973\pi\)
\(350\) −6.36999 20.0069i −0.340490 1.06941i
\(351\) 0.0319213 + 24.3974i 0.00170384 + 1.30224i
\(352\) 7.19998 + 18.9493i 0.383760 + 1.01000i
\(353\) 12.1301 12.1301i 0.645618 0.645618i −0.306313 0.951931i \(-0.599095\pi\)
0.951931 + 0.306313i \(0.0990955\pi\)
\(354\) 9.88902 + 31.0594i 0.525595 + 1.65079i
\(355\) −21.1775 + 51.1271i −1.12399 + 2.71355i
\(356\) 2.98245 + 4.20884i 0.158069 + 0.223068i
\(357\) −7.87644 + 19.0154i −0.416865 + 1.00640i
\(358\) −25.6153 + 21.6167i −1.35381 + 1.14248i
\(359\) 12.0535i 0.636159i −0.948064 0.318080i \(-0.896962\pi\)
0.948064 0.318080i \(-0.103038\pi\)
\(360\) 54.7571 32.2324i 2.88595 1.69879i
\(361\) 12.9428 12.9428i 0.681202 0.681202i
\(362\) 1.19079 14.0658i 0.0625867 0.739283i
\(363\) −2.03503 4.91301i −0.106812 0.257866i
\(364\) 8.23055 1.88458i 0.431398 0.0987787i
\(365\) −19.2222 7.96210i −1.00614 0.416755i
\(366\) 7.68653 + 24.1418i 0.401781 + 1.26191i
\(367\) 33.9046 1.76980 0.884902 0.465778i \(-0.154225\pi\)
0.884902 + 0.465778i \(0.154225\pi\)
\(368\) 2.94891 1.41565i 0.153722 0.0737961i
\(369\) −33.1803 33.1803i −1.72730 1.72730i
\(370\) −9.59101 30.1235i −0.498613 1.56604i
\(371\) 7.96224 3.29807i 0.413379 0.171227i
\(372\) −19.0777 + 30.3206i −0.989133 + 1.57205i
\(373\) 10.4475 + 25.2224i 0.540949 + 1.30597i 0.924054 + 0.382262i \(0.124855\pi\)
−0.383105 + 0.923705i \(0.625145\pi\)
\(374\) 23.5698 19.8905i 1.21877 1.02852i
\(375\) 93.2679 4.81633
\(376\) −4.07328 3.07134i −0.210063 0.158392i
\(377\) 8.71393 8.73676i 0.448790 0.449966i
\(378\) 0.945217 11.1650i 0.0486167 0.574268i
\(379\) −7.62534 3.15852i −0.391687 0.162242i 0.178143 0.984005i \(-0.442991\pi\)
−0.569830 + 0.821762i \(0.692991\pi\)
\(380\) 4.05645 + 5.72449i 0.208092 + 0.293660i
\(381\) 38.9324 + 16.1263i 1.99457 + 0.826176i
\(382\) 16.9101 + 8.74255i 0.865196 + 0.447308i
\(383\) 4.27322 + 4.27322i 0.218351 + 0.218351i 0.807803 0.589452i \(-0.200656\pi\)
−0.589452 + 0.807803i \(0.700656\pi\)
\(384\) 18.2135 27.1318i 0.929453 1.38457i
\(385\) 12.4752 + 12.4752i 0.635794 + 0.635794i
\(386\) 21.3111 6.78524i 1.08471 0.345360i
\(387\) 11.0588 26.6984i 0.562153 1.35716i
\(388\) −4.81477 0.821109i −0.244433 0.0416855i
\(389\) 10.4526 + 25.2347i 0.529965 + 1.27945i 0.931545 + 0.363626i \(0.118461\pi\)
−0.401580 + 0.915824i \(0.631539\pi\)
\(390\) −5.14319 + 61.7126i −0.260436 + 3.12494i
\(391\) −3.51911 3.51911i −0.177969 0.177969i
\(392\) 15.7668 2.21108i 0.796346 0.111676i
\(393\) 4.68903 + 4.68903i 0.236530 + 0.236530i
\(394\) 3.35786 + 3.97899i 0.169167 + 0.200459i
\(395\) −1.82918 + 4.41603i −0.0920361 + 0.222195i
\(396\) −20.3918 + 32.4091i −1.02473 + 1.62862i
\(397\) −0.687094 1.65879i −0.0344843 0.0832524i 0.905699 0.423921i \(-0.139347\pi\)
−0.940183 + 0.340669i \(0.889347\pi\)
\(398\) 0.273298 + 0.858374i 0.0136992 + 0.0430264i
\(399\) 2.82164 0.141259
\(400\) 45.7229 21.9498i 2.28615 1.09749i
\(401\) −5.82409 + 5.82409i −0.290841 + 0.290841i −0.837413 0.546571i \(-0.815933\pi\)
0.546571 + 0.837413i \(0.315933\pi\)
\(402\) 21.9427 42.4423i 1.09440 2.11683i
\(403\) −8.58342 20.6458i −0.427571 1.02844i
\(404\) 2.02699 3.22154i 0.100846 0.160277i
\(405\) 13.6601 + 5.65821i 0.678778 + 0.281159i
\(406\) −4.33104 + 3.65496i −0.214946 + 0.181393i
\(407\) 13.4712 + 13.4712i 0.667743 + 0.667743i
\(408\) −48.1304 12.4627i −2.38281 0.616996i
\(409\) 36.9758i 1.82834i 0.405334 + 0.914169i \(0.367155\pi\)
−0.405334 + 0.914169i \(0.632845\pi\)
\(410\) −33.6824 39.9128i −1.66345 1.97115i
\(411\) −0.969648 + 2.34094i −0.0478292 + 0.115470i
\(412\) −22.8881 3.90333i −1.12762 0.192303i
\(413\) 8.63239 + 3.57565i 0.424772 + 0.175946i
\(414\) 5.48874 + 2.83769i 0.269757 + 0.139465i
\(415\) 20.9139 1.02662
\(416\) 7.26932 + 19.0567i 0.356408 + 0.934330i
\(417\) −43.6557 −2.13783
\(418\) −3.75580 1.94175i −0.183702 0.0949743i
\(419\) 19.5129 + 8.08249i 0.953265 + 0.394855i 0.804457 0.594011i \(-0.202456\pi\)
0.148808 + 0.988866i \(0.452456\pi\)
\(420\) 4.78127 28.0362i 0.233302 1.36803i
\(421\) 6.73895 16.2693i 0.328436 0.792915i −0.670273 0.742115i \(-0.733823\pi\)
0.998709 0.0508000i \(-0.0161771\pi\)
\(422\) 7.14769 + 8.46985i 0.347944 + 0.412306i
\(423\) 9.63629i 0.468532i
\(424\) 10.5606 + 17.9406i 0.512869 + 0.871274i
\(425\) −54.5639 54.5639i −2.64674 2.64674i
\(426\) −41.0861 + 34.6725i −1.99063 + 1.67989i
\(427\) 6.70978 + 2.77928i 0.324709 + 0.134499i
\(428\) −15.8463 9.97047i −0.765959 0.481941i
\(429\) −14.3263 34.4593i −0.691683 1.66371i
\(430\) 14.7711 28.5708i 0.712328 1.37781i
\(431\) 24.1693 24.1693i 1.16419 1.16419i 0.180647 0.983548i \(-0.442181\pi\)
0.983548 0.180647i \(-0.0578191\pi\)
\(432\) 27.0258 1.48440i 1.30028 0.0714184i
\(433\) 17.0527 0.819503 0.409751 0.912197i \(-0.365615\pi\)
0.409751 + 0.912197i \(0.365615\pi\)
\(434\) 3.11538 + 9.78479i 0.149543 + 0.469685i
\(435\) −15.9058 38.4001i −0.762627 1.84114i
\(436\) −9.02640 5.67941i −0.432286 0.271994i
\(437\) −0.261095 + 0.630338i −0.0124899 + 0.0301532i
\(438\) −13.0358 15.4471i −0.622874 0.738091i
\(439\) 14.8974 + 14.8974i 0.711015 + 0.711015i 0.966748 0.255733i \(-0.0823166\pi\)
−0.255733 + 0.966748i \(0.582317\pi\)
\(440\) −25.6577 + 34.0278i −1.22318 + 1.62221i
\(441\) 21.2655 + 21.2655i 1.01264 + 1.01264i
\(442\) 23.6890 20.0442i 1.12677 0.953407i
\(443\) 8.24934 + 19.9157i 0.391938 + 0.946222i 0.989518 + 0.144413i \(0.0461293\pi\)
−0.597579 + 0.801810i \(0.703871\pi\)
\(444\) 5.16301 30.2746i 0.245026 1.43677i
\(445\) −4.15015 + 10.0193i −0.196736 + 0.474963i
\(446\) 13.0038 4.14030i 0.615750 0.196049i
\(447\) −8.40208 8.40208i −0.397405 0.397405i
\(448\) −2.57659 9.00595i −0.121732 0.425491i
\(449\) −11.8229 11.8229i −0.557959 0.557959i 0.370767 0.928726i \(-0.379095\pi\)
−0.928726 + 0.370767i \(0.879095\pi\)
\(450\) 85.1032 + 43.9985i 4.01181 + 2.07411i
\(451\) 29.0770 + 12.0441i 1.36918 + 0.567134i
\(452\) −12.0466 + 8.53642i −0.566626 + 0.401519i
\(453\) −4.83289 2.00185i −0.227069 0.0940551i
\(454\) 0.876806 10.3570i 0.0411505 0.486077i
\(455\) 12.5685 + 12.5357i 0.589222 + 0.587682i
\(456\) 0.946571 + 6.74984i 0.0443273 + 0.316090i
\(457\) 21.0769 0.985937 0.492969 0.870047i \(-0.335912\pi\)
0.492969 + 0.870047i \(0.335912\pi\)
\(458\) 28.4004 23.9670i 1.32706 1.11990i
\(459\) −15.7589 38.0453i −0.735561 1.77580i
\(460\) 5.82070 + 3.66238i 0.271392 + 0.170759i
\(461\) 30.6138 12.6806i 1.42583 0.590597i 0.469509 0.882928i \(-0.344431\pi\)
0.956317 + 0.292331i \(0.0944309\pi\)
\(462\) 5.19979 + 16.3315i 0.241916 + 0.759811i
\(463\) −8.82577 8.82577i −0.410168 0.410168i 0.471629 0.881797i \(-0.343666\pi\)
−0.881797 + 0.471629i \(0.843666\pi\)
\(464\) −10.1962 9.13447i −0.473348 0.424057i
\(465\) −75.3131 −3.49256
\(466\) −6.34876 19.9402i −0.294101 0.923711i
\(467\) 5.72180 + 2.37005i 0.264773 + 0.109673i 0.511121 0.859509i \(-0.329230\pi\)
−0.246347 + 0.969182i \(0.579230\pi\)
\(468\) −20.4749 + 32.6358i −0.946452 + 1.50859i
\(469\) −5.24121 12.6534i −0.242017 0.584280i
\(470\) 0.904733 10.6868i 0.0417322 0.492947i
\(471\) −37.7834 + 37.7834i −1.74097 + 1.74097i
\(472\) −5.65768 + 21.8497i −0.260416 + 1.00571i
\(473\) 19.3825i 0.891208i
\(474\) −3.54876 + 2.99479i −0.163000 + 0.137555i
\(475\) −4.04829 + 9.77343i −0.185748 + 0.448436i
\(476\) −11.6282 + 8.23990i −0.532977 + 0.377675i
\(477\) −15.0486 + 36.3306i −0.689030 + 1.66347i
\(478\) 0.556708 + 1.74851i 0.0254632 + 0.0799749i
\(479\) −24.3109 + 24.3109i −1.11079 + 1.11079i −0.117750 + 0.993043i \(0.537568\pi\)
−0.993043 + 0.117750i \(0.962432\pi\)
\(480\) 68.6713 + 2.03237i 3.13440 + 0.0927644i
\(481\) 13.5720 + 13.5365i 0.618830 + 0.617213i
\(482\) 1.29273 + 4.06022i 0.0588824 + 0.184938i
\(483\) 2.55521 1.05840i 0.116266 0.0481590i
\(484\) 0.619025 3.62980i 0.0281375 0.164991i
\(485\) −3.92960 9.48688i −0.178434 0.430777i
\(486\) −9.25131 10.9626i −0.419648 0.497273i
\(487\) 12.3216 0.558347 0.279173 0.960241i \(-0.409940\pi\)
0.279173 + 0.960241i \(0.409940\pi\)
\(488\) −4.39759 + 16.9833i −0.199070 + 0.768798i
\(489\) 72.9571i 3.29923i
\(490\) 21.5873 + 25.5804i 0.975214 + 1.15561i
\(491\) −10.9257 26.3770i −0.493071 1.19038i −0.953149 0.302500i \(-0.902179\pi\)
0.460079 0.887878i \(-0.347821\pi\)
\(492\) −11.2594 49.4709i −0.507614 2.23032i
\(493\) −7.97038 + 19.2422i −0.358968 + 0.866625i
\(494\) −3.78151 1.94878i −0.170138 0.0876799i
\(495\) −80.5007 −3.61824
\(496\) −22.3618 + 10.7350i −1.00407 + 0.482016i
\(497\) 15.4107i 0.691265i
\(498\) 18.0480 + 9.33083i 0.808749 + 0.418124i
\(499\) −11.2643 27.1944i −0.504260 1.21739i −0.947143 0.320811i \(-0.896044\pi\)
0.442883 0.896579i \(-0.353956\pi\)
\(500\) 54.6617 + 34.3931i 2.44454 + 1.53811i
\(501\) −8.08912 + 19.5289i −0.361395 + 0.872485i
\(502\) 1.48591 17.5518i 0.0663196 0.783377i
\(503\) −1.69822 + 1.69822i −0.0757201 + 0.0757201i −0.743953 0.668232i \(-0.767051\pi\)
0.668232 + 0.743953i \(0.267051\pi\)
\(504\) 10.6528 14.1280i 0.474516 0.629312i
\(505\) 8.00195 0.356082
\(506\) −4.12952 0.349599i −0.183580 0.0155416i
\(507\) −14.4601 34.6529i −0.642194 1.53899i
\(508\) 16.8705 + 23.8077i 0.748506 + 1.05630i
\(509\) −14.3177 34.5659i −0.634619 1.53211i −0.833755 0.552135i \(-0.813813\pi\)
0.199135 0.979972i \(-0.436187\pi\)
\(510\) −31.7111 99.5982i −1.40419 4.41028i
\(511\) −5.79395 −0.256309
\(512\) 20.6794 9.18486i 0.913910 0.405917i
\(513\) −3.99192 + 3.99192i −0.176247 + 0.176247i
\(514\) −3.41978 1.76803i −0.150840 0.0779845i
\(515\) −18.6802 45.0981i −0.823150 1.98726i
\(516\) 25.4940 18.0654i 1.12231 0.795285i
\(517\) 2.47337 + 5.97124i 0.108779 + 0.262615i
\(518\) −5.67775 6.72800i −0.249466 0.295611i
\(519\) 15.8532 15.8532i 0.695879 0.695879i
\(520\) −25.7712 + 34.2714i −1.13014 + 1.50290i
\(521\) 10.0602 + 10.0602i 0.440744 + 0.440744i 0.892262 0.451518i \(-0.149117\pi\)
−0.451518 + 0.892262i \(0.649117\pi\)
\(522\) 2.18134 25.7663i 0.0954747 1.12776i
\(523\) −37.3586 + 15.4745i −1.63358 + 0.676651i −0.995626 0.0934244i \(-0.970219\pi\)
−0.637953 + 0.770075i \(0.720219\pi\)
\(524\) 1.01900 + 4.47722i 0.0445152 + 0.195588i
\(525\) 39.6187 16.4106i 1.72910 0.716217i
\(526\) 9.54722 3.03974i 0.416278 0.132539i
\(527\) 26.6857 + 26.6857i 1.16245 + 1.16245i
\(528\) −37.3234 + 17.9175i −1.62429 + 0.779759i
\(529\) 22.3312i 0.970924i
\(530\) −20.1003 + 38.8785i −0.873100 + 1.68877i
\(531\) −39.3885 + 16.3152i −1.70931 + 0.708021i
\(532\) 1.65368 + 1.04050i 0.0716962 + 0.0451112i
\(533\) 29.2722 + 12.0801i 1.26792 + 0.523247i
\(534\) −8.05162 + 6.79475i −0.348428 + 0.294037i
\(535\) 39.3604i 1.70170i
\(536\) 28.5109 16.7827i 1.23148 0.724902i
\(537\) −48.4056 48.4056i −2.08885 2.08885i
\(538\) 19.9591 16.8435i 0.860499 0.726174i
\(539\) −18.6357 7.71915i −0.802696 0.332487i
\(540\) 32.8999 + 46.4286i 1.41579 + 1.99797i
\(541\) 24.4765 10.1385i 1.05233 0.435889i 0.211606 0.977355i \(-0.432131\pi\)
0.840723 + 0.541466i \(0.182131\pi\)
\(542\) −0.287946 + 0.0916792i −0.0123683 + 0.00393796i
\(543\) 28.8307 1.23724
\(544\) −23.6122 25.0524i −1.01236 1.07411i
\(545\) 22.4206i 0.960394i
\(546\) 5.25336 + 16.4254i 0.224823 + 0.702942i
\(547\) −29.7748 12.3331i −1.27308 0.527326i −0.359179 0.933269i \(-0.616943\pi\)
−0.913898 + 0.405943i \(0.866943\pi\)
\(548\) −1.43152 + 1.01439i −0.0611514 + 0.0433327i
\(549\) −30.6158 + 12.6815i −1.30665 + 0.541233i
\(550\) −64.0284 5.42056i −2.73018 0.231133i
\(551\) 2.85529 0.121640
\(552\) 3.38908 + 5.75745i 0.144249 + 0.245053i
\(553\) 1.33108i 0.0566032i
\(554\) 1.56912 18.5347i 0.0666656 0.787464i
\(555\) 59.6521 24.7087i 2.53209 1.04883i
\(556\) −25.5853 16.0983i −1.08506 0.682719i
\(557\) −0.740188 1.78697i −0.0313628 0.0757165i 0.907422 0.420220i \(-0.138047\pi\)
−0.938785 + 0.344504i \(0.888047\pi\)
\(558\) −41.6216 21.5184i −1.76198 0.910948i
\(559\) 0.0255163 + 19.5020i 0.00107922 + 0.824848i
\(560\) 13.1407 14.6681i 0.555295 0.619839i
\(561\) 44.5403 + 44.5403i 1.88049 + 1.88049i
\(562\) −3.42617 + 6.62700i −0.144524 + 0.279543i
\(563\) 2.45736 + 1.01787i 0.103565 + 0.0428982i 0.433865 0.900978i \(-0.357150\pi\)
−0.330299 + 0.943876i \(0.607150\pi\)
\(564\) 5.54874 8.81872i 0.233644 0.371335i
\(565\) −28.6776 11.8786i −1.20647 0.499738i
\(566\) −1.06043 + 12.5259i −0.0445730 + 0.526503i
\(567\) 4.11743 0.172916
\(568\) −36.8651 + 5.16981i −1.54682 + 0.216921i
\(569\) 14.4821 + 14.4821i 0.607123 + 0.607123i 0.942193 0.335070i \(-0.108760\pi\)
−0.335070 + 0.942193i \(0.608760\pi\)
\(570\) −10.9511 + 9.24159i −0.458690 + 0.387088i
\(571\) 9.42378 3.90346i 0.394373 0.163355i −0.176679 0.984269i \(-0.556535\pi\)
0.571052 + 0.820914i \(0.306535\pi\)
\(572\) 4.31079 25.4785i 0.180243 1.06531i
\(573\) −14.8786 + 35.9202i −0.621563 + 1.50059i
\(574\) −12.9191 6.67922i −0.539235 0.278785i
\(575\) 10.3691i 0.432422i
\(576\) 37.3703 + 20.7439i 1.55710 + 0.864330i
\(577\) −21.5632 + 21.5632i −0.897689 + 0.897689i −0.995231 0.0975428i \(-0.968902\pi\)
0.0975428 + 0.995231i \(0.468902\pi\)
\(578\) −13.0132 + 25.1705i −0.541277 + 1.04695i
\(579\) 17.4804 + 42.2014i 0.726461 + 1.75383i
\(580\) 4.83830 28.3706i 0.200899 1.17802i
\(581\) 5.38068 2.22875i 0.223228 0.0924641i
\(582\) 0.841512 9.94006i 0.0348818 0.412029i
\(583\) 26.3753i 1.09235i
\(584\) −1.94369 13.8601i −0.0804304 0.573536i
\(585\) −80.9972 + 0.105976i −3.34882 + 0.00438157i
\(586\) −6.34164 + 5.35170i −0.261971 + 0.221077i
\(587\) −13.9825 + 33.7567i −0.577119 + 1.39329i 0.318268 + 0.948001i \(0.396899\pi\)
−0.895387 + 0.445288i \(0.853101\pi\)
\(588\) 7.21625 + 31.7063i 0.297593 + 1.30755i
\(589\) 1.97990 4.77990i 0.0815804 0.196953i
\(590\) −45.2144 + 14.3958i −1.86145 + 0.592667i
\(591\) −7.51916 + 7.51916i −0.309297 + 0.309297i
\(592\) 14.1898 15.8392i 0.583198 0.650986i
\(593\) 11.7675 11.7675i 0.483234 0.483234i −0.422929 0.906163i \(-0.638998\pi\)
0.906163 + 0.422929i \(0.138998\pi\)
\(594\) −30.4615 15.7486i −1.24985 0.646174i
\(595\) −27.6815 11.4660i −1.13483 0.470062i
\(596\) −1.82590 8.02253i −0.0747918 0.328616i
\(597\) −1.69980 + 0.704080i −0.0695682 + 0.0288161i
\(598\) −4.15545 0.346319i −0.169929 0.0141620i
\(599\) −2.74020 + 2.74020i −0.111962 + 0.111962i −0.760868 0.648907i \(-0.775227\pi\)
0.648907 + 0.760868i \(0.275227\pi\)
\(600\) 52.5478 + 89.2695i 2.14525 + 3.64441i
\(601\) 15.8604 15.8604i 0.646959 0.646959i −0.305298 0.952257i \(-0.598756\pi\)
0.952257 + 0.305298i \(0.0987560\pi\)
\(602\) 0.755557 8.92476i 0.0307942 0.363746i
\(603\) 57.7359 + 23.9150i 2.35119 + 0.973893i
\(604\) −2.09423 2.95538i −0.0852129 0.120253i
\(605\) 7.15205 2.96248i 0.290772 0.120442i
\(606\) 6.90541 + 3.57011i 0.280513 + 0.145026i
\(607\) 18.5226i 0.751810i 0.926658 + 0.375905i \(0.122668\pi\)
−0.926658 + 0.375905i \(0.877332\pi\)
\(608\) −1.93428 + 4.30494i −0.0784456 + 0.174588i
\(609\) −8.18444 8.18444i −0.331650 0.331650i
\(610\) −35.1442 + 11.1896i −1.42295 + 0.453052i
\(611\) 2.49648 + 6.00481i 0.100997 + 0.242929i
\(612\) 10.9321 64.1031i 0.441905 2.59122i
\(613\) 12.8289 30.9717i 0.518155 1.25094i −0.420880 0.907116i \(-0.638279\pi\)
0.939035 0.343821i \(-0.111721\pi\)
\(614\) −2.23150 + 26.3588i −0.0900561 + 1.06376i
\(615\) 75.4239 75.4239i 3.04138 3.04138i
\(616\) −2.97489 + 11.4889i −0.119862 + 0.462900i
\(617\) −23.7726 −0.957050 −0.478525 0.878074i \(-0.658828\pi\)
−0.478525 + 0.878074i \(0.658828\pi\)
\(618\) 4.00032 47.2524i 0.160917 1.90077i
\(619\) 23.8823 + 9.89238i 0.959912 + 0.397608i 0.806947 0.590623i \(-0.201118\pi\)
0.152964 + 0.988232i \(0.451118\pi\)
\(620\) −44.1388 27.7721i −1.77266 1.11536i
\(621\) −2.11761 + 5.11237i −0.0849769 + 0.205152i
\(622\) 26.0548 8.29558i 1.04470 0.332623i
\(623\) 3.02003i 0.120995i
\(624\) −37.5300 + 18.0771i −1.50240 + 0.723665i
\(625\) 72.3754i 2.89502i
\(626\) 6.22823 + 19.5616i 0.248930 + 0.781840i
\(627\) 3.30460 7.97800i 0.131973 0.318611i
\(628\) −36.0766 + 8.21091i −1.43961 + 0.327651i
\(629\) −29.8915 12.3815i −1.19185 0.493682i
\(630\) 37.0669 + 3.13803i 1.47678 + 0.125022i
\(631\) −22.6639 −0.902237 −0.451118 0.892464i \(-0.648975\pi\)
−0.451118 + 0.892464i \(0.648975\pi\)
\(632\) −3.18417 + 0.446535i −0.126659 + 0.0177622i
\(633\) −16.0056 + 16.0056i −0.636166 + 0.636166i
\(634\) 37.8553 + 3.20478i 1.50343 + 0.127278i
\(635\) −23.4757 + 56.6753i −0.931605 + 2.24909i
\(636\) −34.6917 + 24.5830i −1.37561 + 0.974780i
\(637\) −18.7608 7.74223i −0.743329 0.306758i
\(638\) 5.26181 + 16.5263i 0.208317 + 0.654282i
\(639\) −49.7217 49.7217i −1.96696 1.96696i
\(640\) 39.4968 + 26.5141i 1.56125 + 1.04806i
\(641\) 4.19416i 0.165659i 0.996564 + 0.0828297i \(0.0263958\pi\)
−0.996564 + 0.0828297i \(0.973604\pi\)
\(642\) 17.5608 33.9667i 0.693071 1.34056i
\(643\) 5.46344 2.26303i 0.215457 0.0892453i −0.272344 0.962200i \(-0.587799\pi\)
0.487801 + 0.872955i \(0.337799\pi\)
\(644\) 1.88783 + 0.321949i 0.0743909 + 0.0126866i
\(645\) 60.6896 + 25.1385i 2.38965 + 0.989826i
\(646\) 7.15486 + 0.605720i 0.281504 + 0.0238317i
\(647\) −18.8193 + 18.8193i −0.739863 + 0.739863i −0.972551 0.232689i \(-0.925248\pi\)
0.232689 + 0.972551i \(0.425248\pi\)
\(648\) 1.38127 + 9.84961i 0.0542614 + 0.386929i
\(649\) 20.2199 20.2199i 0.793699 0.793699i
\(650\) −64.4304 5.36970i −2.52717 0.210617i
\(651\) −19.3764 + 8.02596i −0.759420 + 0.314562i
\(652\) −26.9033 + 42.7581i −1.05362 + 1.67453i
\(653\) −13.3176 5.51632i −0.521157 0.215870i 0.106568 0.994305i \(-0.466014\pi\)
−0.627725 + 0.778435i \(0.716014\pi\)
\(654\) 10.0031 19.3482i 0.391151 0.756576i
\(655\) −6.82600 + 6.82600i −0.266714 + 0.266714i
\(656\) 11.6439 33.1455i 0.454617 1.29411i
\(657\) 18.6938 18.6938i 0.729315 0.729315i
\(658\) −0.906106 2.84590i −0.0353237 0.110945i
\(659\) −12.9850 + 31.3485i −0.505822 + 1.22116i 0.440446 + 0.897779i \(0.354820\pi\)
−0.946268 + 0.323384i \(0.895180\pi\)
\(660\) −73.6709 46.3537i −2.86763 1.80431i
\(661\) 11.8010 28.4901i 0.459005 1.10814i −0.509796 0.860295i \(-0.670279\pi\)
0.968801 0.247840i \(-0.0797209\pi\)
\(662\) −6.22370 7.37494i −0.241891 0.286635i
\(663\) 44.8736 + 44.7563i 1.74275 + 1.73819i
\(664\) 7.13660 + 12.1238i 0.276954 + 0.470496i
\(665\) 4.10757i 0.159285i
\(666\) 40.0264 + 3.38857i 1.55099 + 0.131305i
\(667\) 2.58569 1.07103i 0.100118 0.0414703i
\(668\) −11.9422 + 8.46239i −0.462057 + 0.327420i
\(669\) 10.6664 + 25.7509i 0.412386 + 0.995588i
\(670\) 61.7849 + 31.9429i 2.38696 + 1.23406i
\(671\) 15.7165 15.7165i 0.606728 0.606728i
\(672\) 17.8842 6.79528i 0.689897 0.262134i
\(673\) 6.71647i 0.258901i −0.991586 0.129450i \(-0.958679\pi\)
0.991586 0.129450i \(-0.0413213\pi\)
\(674\) 15.5056 29.9914i 0.597253 1.15523i
\(675\) −32.8337 + 79.2675i −1.26377 + 3.05101i
\(676\) 4.30384 25.6413i 0.165532 0.986204i
\(677\) 29.3246 12.1466i 1.12703 0.466833i 0.260263 0.965538i \(-0.416191\pi\)
0.866772 + 0.498705i \(0.166191\pi\)
\(678\) −19.4481 23.0455i −0.746898 0.885057i
\(679\) −2.02199 2.02199i −0.0775970 0.0775970i
\(680\) 18.1425 70.0653i 0.695731 2.68688i
\(681\) 21.2286 0.813483
\(682\) 31.3145 + 2.65104i 1.19909 + 0.101514i
\(683\) −27.3626 11.3340i −1.04700 0.433682i −0.208180 0.978091i \(-0.566754\pi\)
−0.838820 + 0.544409i \(0.816754\pi\)
\(684\) −8.69259 + 1.97840i −0.332369 + 0.0756462i
\(685\) −3.40779 1.41155i −0.130205 0.0539327i
\(686\) 18.5767 + 9.60418i 0.709262 + 0.366689i
\(687\) 53.6686 + 53.6686i 2.04758 + 2.04758i
\(688\) 21.6030 1.18655i 0.823607 0.0452370i
\(689\) −0.0347220 26.5379i −0.00132280 1.01102i
\(690\) −6.45051 + 12.4768i −0.245567 + 0.474982i
\(691\) 1.10611 + 2.67037i 0.0420782 + 0.101586i 0.943521 0.331312i \(-0.107491\pi\)
−0.901443 + 0.432898i \(0.857491\pi\)
\(692\) 15.1371 3.44515i 0.575426 0.130965i
\(693\) −20.7110 + 8.57880i −0.786748 + 0.325882i
\(694\) −13.4507 1.13872i −0.510581 0.0432251i
\(695\) 63.5512i 2.41063i
\(696\) 16.8330 22.3242i 0.638051 0.846197i
\(697\) −53.4498 −2.02456
\(698\) 2.45857 29.0411i 0.0930584 1.09922i
\(699\) 39.4867 16.3559i 1.49352 0.618637i
\(700\) 29.2709 + 4.99184i 1.10634 + 0.188674i
\(701\) −6.38088 2.64305i −0.241003 0.0998266i 0.258913 0.965901i \(-0.416636\pi\)
−0.499916 + 0.866074i \(0.666636\pi\)
\(702\) −30.6700 15.8056i −1.15757 0.596546i
\(703\) 4.43551i 0.167289i
\(704\) −28.4814 3.26229i −1.07343 0.122952i
\(705\) 21.9048 0.824981
\(706\) 7.36013 + 23.1167i 0.277002 + 0.870008i
\(707\) 2.05872 0.852751i 0.0774263 0.0320710i
\(708\) −45.4413 7.74953i −1.70779 0.291245i
\(709\) −44.6576 18.4978i −1.67715 0.694699i −0.677969 0.735091i \(-0.737140\pi\)
−0.999184 + 0.0403913i \(0.987140\pi\)
\(710\) −50.4741 59.8106i −1.89426 2.24465i
\(711\) −4.29464 4.29464i −0.161062 0.161062i
\(712\) −7.22442 + 1.01312i −0.270747 + 0.0379685i
\(713\) 5.07124i 0.189919i
\(714\) −18.7725 22.2450i −0.702544 0.832499i
\(715\) 50.1637 20.8554i 1.87601 0.779948i
\(716\) −10.5193 46.2189i −0.393124 1.72728i
\(717\) −3.46249 + 1.43421i −0.129309 + 0.0535616i
\(718\) 15.1422 + 7.82856i 0.565103 + 0.292159i
\(719\) 9.56965i 0.356888i 0.983950 + 0.178444i \(0.0571063\pi\)
−0.983950 + 0.178444i \(0.942894\pi\)
\(720\) 4.92808 + 89.7232i 0.183659 + 3.34378i
\(721\) −9.61202 9.61202i −0.357970 0.357970i
\(722\) 7.85330 + 24.6656i 0.292269 + 0.917960i
\(723\) −8.04027 + 3.33039i −0.299021 + 0.123858i
\(724\) 16.8968 + 10.6315i 0.627965 + 0.395115i
\(725\) 40.0912 16.6063i 1.48895 0.616743i
\(726\) 7.49370 + 0.634406i 0.278117 + 0.0235450i
\(727\) −6.78338 6.78338i −0.251582 0.251582i 0.570037 0.821619i \(-0.306929\pi\)
−0.821619 + 0.570037i \(0.806929\pi\)
\(728\) −2.97811 + 11.5637i −0.110376 + 0.428578i
\(729\) 28.1757 28.1757i 1.04354 1.04354i
\(730\) 22.4869 18.9767i 0.832279 0.702358i
\(731\) −12.5968 30.4114i −0.465910 1.12481i
\(732\) −35.3205 6.02354i −1.30548 0.222637i
\(733\) 15.1487 + 36.5721i 0.559529 + 1.35082i 0.910140 + 0.414301i \(0.135974\pi\)
−0.350611 + 0.936521i \(0.614026\pi\)
\(734\) −22.0205 + 42.5927i −0.812791 + 1.57212i
\(735\) −48.3397 + 48.3397i −1.78304 + 1.78304i
\(736\) −0.136850 + 4.62402i −0.00504437 + 0.170443i
\(737\) −41.9150 −1.54396
\(738\) 63.2329 20.1327i 2.32763 0.741096i
\(739\) 0.527608 + 1.27376i 0.0194084 + 0.0468560i 0.933287 0.359132i \(-0.116927\pi\)
−0.913878 + 0.405988i \(0.866927\pi\)
\(740\) 44.0719 + 7.51599i 1.62011 + 0.276293i
\(741\) 3.31447 8.03155i 0.121760 0.295046i
\(742\) −1.02815 + 12.1446i −0.0377444 + 0.445843i
\(743\) 6.30691 0.231378 0.115689 0.993285i \(-0.463092\pi\)
0.115689 + 0.993285i \(0.463092\pi\)
\(744\) −25.6996 43.6592i −0.942194 1.60062i
\(745\) 12.2312 12.2312i 0.448117 0.448117i
\(746\) −38.4712 3.25692i −1.40853 0.119244i
\(747\) −10.1695 + 24.5513i −0.372082 + 0.898286i
\(748\) 9.67929 + 42.5282i 0.353910 + 1.55499i
\(749\) −4.19456 10.1266i −0.153266 0.370017i
\(750\) −60.5761 + 117.168i −2.21193 + 4.27837i
\(751\) 18.7423i 0.683918i 0.939715 + 0.341959i \(0.111090\pi\)
−0.939715 + 0.341959i \(0.888910\pi\)
\(752\) 6.50391 3.12227i 0.237173 0.113858i
\(753\) 35.9759 1.31104
\(754\) 5.31602 + 16.6213i 0.193598 + 0.605312i
\(755\) 2.91417 7.03543i 0.106058 0.256045i
\(756\) 13.4122 + 8.43896i 0.487797 + 0.306922i
\(757\) 14.9181 + 36.0156i 0.542209 + 1.30901i 0.923161 + 0.384414i \(0.125596\pi\)
−0.380952 + 0.924595i \(0.624404\pi\)
\(758\) 8.92043 7.52794i 0.324005 0.273427i
\(759\) 8.46426i 0.307233i
\(760\) −9.82600 + 1.37796i −0.356427 + 0.0499839i
\(761\) 35.1154 1.27293 0.636466 0.771305i \(-0.280396\pi\)
0.636466 + 0.771305i \(0.280396\pi\)
\(762\) −45.5447 + 38.4351i −1.64991 + 1.39236i
\(763\) −2.38932 5.76832i −0.0864991 0.208827i
\(764\) −21.9657 + 15.5652i −0.794691 + 0.563129i
\(765\) 126.307 52.3180i 4.56663 1.89156i
\(766\) −8.14363 + 2.59285i −0.294241 + 0.0936836i
\(767\) 20.3179 20.3712i 0.733638 0.735561i
\(768\) 22.2551 + 40.5024i 0.803060 + 1.46151i
\(769\) 29.9616 29.9616i 1.08044 1.08044i 0.0839767 0.996468i \(-0.473238\pi\)