Properties

Label 416.2.bd.a.83.4
Level $416$
Weight $2$
Character 416.83
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 83.4
Character \(\chi\) \(=\) 416.83
Dual form 416.2.bd.a.411.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37663 - 0.323857i) q^{2} +(-2.65712 - 1.10062i) q^{3} +(1.79023 + 0.891665i) q^{4} +(-1.41696 + 3.42085i) q^{5} +(3.30144 + 2.37567i) q^{6} +0.353777i q^{7} +(-2.17572 - 1.80728i) q^{8} +(3.72762 + 3.72762i) q^{9} +O(q^{10})\) \(q+(-1.37663 - 0.323857i) q^{2} +(-2.65712 - 1.10062i) q^{3} +(1.79023 + 0.891665i) q^{4} +(-1.41696 + 3.42085i) q^{5} +(3.30144 + 2.37567i) q^{6} +0.353777i q^{7} +(-2.17572 - 1.80728i) q^{8} +(3.72762 + 3.72762i) q^{9} +(3.05851 - 4.25036i) q^{10} +(2.46532 + 1.02117i) q^{11} +(-3.77548 - 4.33962i) q^{12} +(-3.60380 + 0.112275i) q^{13} +(0.114573 - 0.487021i) q^{14} +(7.53009 - 7.53009i) q^{15} +(2.40987 + 3.19258i) q^{16} +1.59116 q^{17} +(-3.92434 - 6.33878i) q^{18} +(-1.92428 - 4.64563i) q^{19} +(-5.58695 + 4.86066i) q^{20} +(0.389372 - 0.940028i) q^{21} +(-3.06313 - 2.20419i) q^{22} +(2.45672 + 2.45672i) q^{23} +(3.79204 + 7.19678i) q^{24} +(-6.15891 - 6.15891i) q^{25} +(4.99747 + 1.01256i) q^{26} +(-2.50021 - 6.03605i) q^{27} +(-0.315451 + 0.633343i) q^{28} +(-3.12000 + 7.53235i) q^{29} +(-12.8048 + 7.92748i) q^{30} +(-5.89587 - 5.89587i) q^{31} +(-2.28356 - 5.17546i) q^{32} +(-5.42675 - 5.42675i) q^{33} +(-2.19044 - 0.515309i) q^{34} +(-1.21022 - 0.501289i) q^{35} +(3.34952 + 9.99709i) q^{36} +(-9.34063 - 3.86902i) q^{37} +(1.14451 + 7.01852i) q^{38} +(9.69931 + 3.66807i) q^{39} +(9.26533 - 4.88197i) q^{40} +1.57288 q^{41} +(-0.840458 + 1.16797i) q^{42} +(0.399110 + 0.963538i) q^{43} +(3.50296 + 4.02637i) q^{44} +(-18.0335 + 7.46973i) q^{45} +(-2.58638 - 4.17763i) q^{46} +(-8.53183 - 8.53183i) q^{47} +(-2.88951 - 11.1354i) q^{48} +6.87484 q^{49} +(6.48394 + 10.4732i) q^{50} +(-4.22791 - 1.75126i) q^{51} +(-6.55176 - 3.01239i) q^{52} +(-1.84534 - 4.45505i) q^{53} +(1.48705 + 9.11913i) q^{54} +(-6.98654 + 6.98654i) q^{55} +(0.639372 - 0.769719i) q^{56} +14.4619i q^{57} +(6.73450 - 9.35884i) q^{58} +(0.791741 - 1.91143i) q^{59} +(20.1949 - 6.76629i) q^{60} +(2.66607 - 6.43647i) q^{61} +(6.20702 + 10.0259i) q^{62} +(-1.31875 + 1.31875i) q^{63} +(1.46751 + 7.86425i) q^{64} +(4.72238 - 12.4872i) q^{65} +(5.71314 + 9.22813i) q^{66} +(14.2881 - 5.91831i) q^{67} +(2.84855 + 1.41878i) q^{68} +(-3.82390 - 9.23172i) q^{69} +(1.50368 + 1.08203i) q^{70} -8.29142 q^{71} +(-1.37342 - 14.8471i) q^{72} -2.92849i q^{73} +(11.6056 + 8.35125i) q^{74} +(9.58637 + 23.1436i) q^{75} +(0.697433 - 10.0326i) q^{76} +(-0.361266 + 0.872174i) q^{77} +(-12.1645 - 8.19078i) q^{78} +0.975544 q^{79} +(-14.3360 + 3.72003i) q^{80} +2.97534i q^{81} +(-2.16528 - 0.509389i) q^{82} +(-1.97848 - 4.77649i) q^{83} +(1.53526 - 1.33568i) q^{84} +(-2.25462 + 5.44313i) q^{85} +(-0.237379 - 1.45569i) q^{86} +(16.5804 - 16.5804i) q^{87} +(-3.51832 - 6.67730i) q^{88} +5.86136 q^{89} +(27.2447 - 4.44278i) q^{90} +(-0.0397203 - 1.27494i) q^{91} +(2.20753 + 6.58868i) q^{92} +(9.17695 + 22.1551i) q^{93} +(8.98209 + 14.5083i) q^{94} +18.6187 q^{95} +(0.371507 + 16.2651i) q^{96} +(-0.254086 + 0.254086i) q^{97} +(-9.46413 - 2.22647i) q^{98} +(5.38325 + 12.9963i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24} - 4 q^{26} - 8 q^{27} + 56 q^{28} - 8 q^{29} - 16 q^{30} - 44 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} - 28 q^{39} - 8 q^{40} - 8 q^{41} - 48 q^{42} - 32 q^{43} + 12 q^{44} - 36 q^{45} - 48 q^{46} - 8 q^{47} - 8 q^{48} - 168 q^{49} + 76 q^{50} - 4 q^{52} - 8 q^{53} - 28 q^{54} - 40 q^{55} + 56 q^{56} + 32 q^{58} + 52 q^{59} - 36 q^{60} - 8 q^{61} + 72 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} + 20 q^{70} + 56 q^{71} + 8 q^{72} - 8 q^{74} - 68 q^{76} + 56 q^{77} - 48 q^{78} - 16 q^{79} + 28 q^{80} - 88 q^{82} + 36 q^{83} + 100 q^{84} - 24 q^{85} + 96 q^{86} - 8 q^{87} + 64 q^{88} - 8 q^{89} - 64 q^{90} + 72 q^{91} - 8 q^{92} - 40 q^{93} - 56 q^{94} + 36 q^{96} - 8 q^{97} + 52 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37663 0.323857i −0.973426 0.229002i
\(3\) −2.65712 1.10062i −1.53409 0.635441i −0.553737 0.832692i \(-0.686799\pi\)
−0.980353 + 0.197251i \(0.936799\pi\)
\(4\) 1.79023 + 0.891665i 0.895116 + 0.445833i
\(5\) −1.41696 + 3.42085i −0.633685 + 1.52985i 0.201271 + 0.979535i \(0.435493\pi\)
−0.834957 + 0.550316i \(0.814507\pi\)
\(6\) 3.30144 + 2.37567i 1.34781 + 0.969864i
\(7\) 0.353777i 0.133715i 0.997763 + 0.0668575i \(0.0212973\pi\)
−0.997763 + 0.0668575i \(0.978703\pi\)
\(8\) −2.17572 1.80728i −0.769233 0.638968i
\(9\) 3.72762 + 3.72762i 1.24254 + 1.24254i
\(10\) 3.05851 4.25036i 0.967184 1.34408i
\(11\) 2.46532 + 1.02117i 0.743323 + 0.307894i 0.722014 0.691879i \(-0.243217\pi\)
0.0213089 + 0.999773i \(0.493217\pi\)
\(12\) −3.77548 4.33962i −1.08989 1.25274i
\(13\) −3.60380 + 0.112275i −0.999515 + 0.0311395i
\(14\) 0.114573 0.487021i 0.0306210 0.130162i
\(15\) 7.53009 7.53009i 1.94426 1.94426i
\(16\) 2.40987 + 3.19258i 0.602467 + 0.798144i
\(17\) 1.59116 0.385913 0.192957 0.981207i \(-0.438192\pi\)
0.192957 + 0.981207i \(0.438192\pi\)
\(18\) −3.92434 6.33878i −0.924977 1.49406i
\(19\) −1.92428 4.64563i −0.441461 1.06578i −0.975436 0.220281i \(-0.929303\pi\)
0.533976 0.845500i \(-0.320697\pi\)
\(20\) −5.58695 + 4.86066i −1.24928 + 1.08688i
\(21\) 0.389372 0.940028i 0.0849680 0.205131i
\(22\) −3.06313 2.20419i −0.653061 0.469935i
\(23\) 2.45672 + 2.45672i 0.512262 + 0.512262i 0.915219 0.402957i \(-0.132018\pi\)
−0.402957 + 0.915219i \(0.632018\pi\)
\(24\) 3.79204 + 7.19678i 0.774046 + 1.46904i
\(25\) −6.15891 6.15891i −1.23178 1.23178i
\(26\) 4.99747 + 1.01256i 0.980085 + 0.198579i
\(27\) −2.50021 6.03605i −0.481166 1.16164i
\(28\) −0.315451 + 0.633343i −0.0596146 + 0.119691i
\(29\) −3.12000 + 7.53235i −0.579369 + 1.39872i 0.314010 + 0.949420i \(0.398327\pi\)
−0.893380 + 0.449302i \(0.851673\pi\)
\(30\) −12.8048 + 7.92748i −2.33783 + 1.44735i
\(31\) −5.89587 5.89587i −1.05893 1.05893i −0.998151 0.0607782i \(-0.980642\pi\)
−0.0607782 0.998151i \(-0.519358\pi\)
\(32\) −2.28356 5.17546i −0.403680 0.914900i
\(33\) −5.42675 5.42675i −0.944675 0.944675i
\(34\) −2.19044 0.515309i −0.375658 0.0883748i
\(35\) −1.21022 0.501289i −0.204564 0.0847333i
\(36\) 3.34952 + 9.99709i 0.558253 + 1.66618i
\(37\) −9.34063 3.86902i −1.53559 0.636062i −0.554951 0.831883i \(-0.687263\pi\)
−0.980640 + 0.195821i \(0.937263\pi\)
\(38\) 1.14451 + 7.01852i 0.185664 + 1.13855i
\(39\) 9.69931 + 3.66807i 1.55313 + 0.587362i
\(40\) 9.26533 4.88197i 1.46498 0.771907i
\(41\) 1.57288 0.245643 0.122821 0.992429i \(-0.460806\pi\)
0.122821 + 0.992429i \(0.460806\pi\)
\(42\) −0.840458 + 1.16797i −0.129685 + 0.180222i
\(43\) 0.399110 + 0.963538i 0.0608638 + 0.146938i 0.951386 0.308002i \(-0.0996605\pi\)
−0.890522 + 0.454941i \(0.849660\pi\)
\(44\) 3.50296 + 4.02637i 0.528091 + 0.606999i
\(45\) −18.0335 + 7.46973i −2.68828 + 1.11352i
\(46\) −2.58638 4.17763i −0.381340 0.615958i
\(47\) −8.53183 8.53183i −1.24449 1.24449i −0.958117 0.286378i \(-0.907549\pi\)
−0.286378 0.958117i \(-0.592451\pi\)
\(48\) −2.88951 11.1354i −0.417064 1.60726i
\(49\) 6.87484 0.982120
\(50\) 6.48394 + 10.4732i 0.916968 + 1.48113i
\(51\) −4.22791 1.75126i −0.592026 0.245225i
\(52\) −6.55176 3.01239i −0.908565 0.417743i
\(53\) −1.84534 4.45505i −0.253477 0.611948i 0.745003 0.667061i \(-0.232448\pi\)
−0.998480 + 0.0551131i \(0.982448\pi\)
\(54\) 1.48705 + 9.11913i 0.202363 + 1.24096i
\(55\) −6.98654 + 6.98654i −0.942065 + 0.942065i
\(56\) 0.639372 0.769719i 0.0854397 0.102858i
\(57\) 14.4619i 1.91553i
\(58\) 6.73450 9.35884i 0.884283 1.22888i
\(59\) 0.791741 1.91143i 0.103076 0.248847i −0.863925 0.503621i \(-0.832001\pi\)
0.967001 + 0.254774i \(0.0820009\pi\)
\(60\) 20.1949 6.76629i 2.60715 0.873524i
\(61\) 2.66607 6.43647i 0.341355 0.824105i −0.656224 0.754566i \(-0.727847\pi\)
0.997579 0.0695386i \(-0.0221527\pi\)
\(62\) 6.20702 + 10.0259i 0.788293 + 1.27329i
\(63\) −1.31875 + 1.31875i −0.166146 + 0.166146i
\(64\) 1.46751 + 7.86425i 0.183439 + 0.983031i
\(65\) 4.72238 12.4872i 0.585739 1.54884i
\(66\) 5.71314 + 9.22813i 0.703239 + 1.13590i
\(67\) 14.2881 5.91831i 1.74557 0.723037i 0.747280 0.664509i \(-0.231359\pi\)
0.998286 0.0585284i \(-0.0186408\pi\)
\(68\) 2.84855 + 1.41878i 0.345437 + 0.172053i
\(69\) −3.82390 9.23172i −0.460344 1.11137i
\(70\) 1.50368 + 1.08203i 0.179724 + 0.129327i
\(71\) −8.29142 −0.984011 −0.492005 0.870592i \(-0.663736\pi\)
−0.492005 + 0.870592i \(0.663736\pi\)
\(72\) −1.37342 14.8471i −0.161859 1.74975i
\(73\) 2.92849i 0.342754i −0.985206 0.171377i \(-0.945178\pi\)
0.985206 0.171377i \(-0.0548216\pi\)
\(74\) 11.6056 + 8.35125i 1.34912 + 0.970813i
\(75\) 9.58637 + 23.1436i 1.10694 + 2.67239i
\(76\) 0.697433 10.0326i 0.0800010 1.15082i
\(77\) −0.361266 + 0.872174i −0.0411701 + 0.0993935i
\(78\) −12.1645 8.19078i −1.37735 0.927424i
\(79\) 0.975544 0.109757 0.0548787 0.998493i \(-0.482523\pi\)
0.0548787 + 0.998493i \(0.482523\pi\)
\(80\) −14.3360 + 3.72003i −1.60282 + 0.415912i
\(81\) 2.97534i 0.330593i
\(82\) −2.16528 0.509389i −0.239115 0.0562526i
\(83\) −1.97848 4.77649i −0.217167 0.524287i 0.777325 0.629099i \(-0.216576\pi\)
−0.994492 + 0.104812i \(0.966576\pi\)
\(84\) 1.53526 1.33568i 0.167510 0.145735i
\(85\) −2.25462 + 5.44313i −0.244547 + 0.590390i
\(86\) −0.237379 1.45569i −0.0255973 0.156971i
\(87\) 16.5804 16.5804i 1.77761 1.77761i
\(88\) −3.51832 6.67730i −0.375054 0.711802i
\(89\) 5.86136 0.621303 0.310652 0.950524i \(-0.399453\pi\)
0.310652 + 0.950524i \(0.399453\pi\)
\(90\) 27.2447 4.44278i 2.87184 0.468310i
\(91\) −0.0397203 1.27494i −0.00416382 0.133650i
\(92\) 2.20753 + 6.58868i 0.230151 + 0.686917i
\(93\) 9.17695 + 22.1551i 0.951606 + 2.29738i
\(94\) 8.98209 + 14.5083i 0.926432 + 1.49642i
\(95\) 18.6187 1.91023
\(96\) 0.371507 + 16.2651i 0.0379168 + 1.66005i
\(97\) −0.254086 + 0.254086i −0.0257986 + 0.0257986i −0.719888 0.694090i \(-0.755807\pi\)
0.694090 + 0.719888i \(0.255807\pi\)
\(98\) −9.46413 2.22647i −0.956021 0.224907i
\(99\) 5.38325 + 12.9963i 0.541037 + 1.30618i
\(100\) −5.53419 16.5176i −0.553419 1.65176i
\(101\) −1.78843 4.31765i −0.177955 0.429622i 0.809582 0.587007i \(-0.199694\pi\)
−0.987537 + 0.157385i \(0.949694\pi\)
\(102\) 5.25312 + 3.78008i 0.520136 + 0.374283i
\(103\) −2.77664 + 2.77664i −0.273591 + 0.273591i −0.830544 0.556953i \(-0.811970\pi\)
0.556953 + 0.830544i \(0.311970\pi\)
\(104\) 8.04378 + 6.26878i 0.788757 + 0.614705i
\(105\) 2.66397 + 2.66397i 0.259977 + 0.259977i
\(106\) 1.09756 + 6.73059i 0.106604 + 0.653733i
\(107\) −8.49296 + 3.51790i −0.821046 + 0.340088i −0.753352 0.657618i \(-0.771564\pi\)
−0.0676940 + 0.997706i \(0.521564\pi\)
\(108\) 0.906171 13.0353i 0.0871964 1.25432i
\(109\) −6.49096 + 2.68864i −0.621721 + 0.257525i −0.671231 0.741248i \(-0.734234\pi\)
0.0495096 + 0.998774i \(0.484234\pi\)
\(110\) 11.8805 7.35526i 1.13277 0.701296i
\(111\) 20.5609 + 20.5609i 1.95155 + 1.95155i
\(112\) −1.12946 + 0.852555i −0.106724 + 0.0805589i
\(113\) 5.63040i 0.529664i 0.964295 + 0.264832i \(0.0853165\pi\)
−0.964295 + 0.264832i \(0.914684\pi\)
\(114\) 4.68360 19.9087i 0.438659 1.86462i
\(115\) −11.8852 + 4.92300i −1.10830 + 0.459072i
\(116\) −12.3019 + 10.7027i −1.14220 + 0.993717i
\(117\) −13.8521 13.0151i −1.28063 1.20325i
\(118\) −1.70897 + 2.37493i −0.157323 + 0.218630i
\(119\) 0.562916i 0.0516024i
\(120\) −29.9923 + 2.77442i −2.73791 + 0.253269i
\(121\) −2.74315 2.74315i −0.249377 0.249377i
\(122\) −5.75470 + 7.99722i −0.521006 + 0.724034i
\(123\) −4.17933 1.73114i −0.376838 0.156091i
\(124\) −5.29784 15.8121i −0.475760 1.41997i
\(125\) 12.6914 5.25695i 1.13515 0.470195i
\(126\) 2.24251 1.38834i 0.199779 0.123683i
\(127\) 1.50867 0.133873 0.0669363 0.997757i \(-0.478678\pi\)
0.0669363 + 0.997757i \(0.478678\pi\)
\(128\) 0.526671 11.3014i 0.0465516 0.998916i
\(129\) 2.99950i 0.264092i
\(130\) −10.5450 + 15.6609i −0.924861 + 1.37355i
\(131\) −12.6190 5.22695i −1.10253 0.456681i −0.244168 0.969733i \(-0.578515\pi\)
−0.858358 + 0.513052i \(0.828515\pi\)
\(132\) −4.87630 14.5540i −0.424427 1.26676i
\(133\) 1.64352 0.680767i 0.142511 0.0590300i
\(134\) −21.5861 + 3.52004i −1.86476 + 0.304085i
\(135\) 24.1911 2.08204
\(136\) −3.46192 2.87567i −0.296857 0.246586i
\(137\) 4.14276i 0.353940i 0.984216 + 0.176970i \(0.0566295\pi\)
−0.984216 + 0.176970i \(0.943371\pi\)
\(138\) 2.27435 + 13.9471i 0.193605 + 1.18725i
\(139\) −10.2116 + 4.22977i −0.866133 + 0.358764i −0.771103 0.636710i \(-0.780295\pi\)
−0.0950300 + 0.995474i \(0.530295\pi\)
\(140\) −1.71959 1.97653i −0.145332 0.167048i
\(141\) 13.2798 + 32.0604i 1.11836 + 2.69997i
\(142\) 11.4142 + 2.68524i 0.957861 + 0.225340i
\(143\) −8.99919 3.40330i −0.752550 0.284598i
\(144\) −2.91765 + 20.8838i −0.243137 + 1.74031i
\(145\) −21.3461 21.3461i −1.77270 1.77270i
\(146\) −0.948414 + 4.03146i −0.0784913 + 0.333646i
\(147\) −18.2673 7.56656i −1.50666 0.624079i
\(148\) −13.2720 15.2552i −1.09095 1.25397i
\(149\) 16.8714 + 6.98838i 1.38216 + 0.572510i 0.945059 0.326901i \(-0.106004\pi\)
0.437103 + 0.899411i \(0.356004\pi\)
\(150\) −5.70170 34.9648i −0.465542 2.85486i
\(151\) −10.4562 −0.850914 −0.425457 0.904979i \(-0.639887\pi\)
−0.425457 + 0.904979i \(0.639887\pi\)
\(152\) −4.20923 + 13.5853i −0.341414 + 1.10191i
\(153\) 5.93124 + 5.93124i 0.479512 + 0.479512i
\(154\) 0.779791 1.08366i 0.0628374 0.0873242i
\(155\) 28.5231 11.8147i 2.29103 0.948977i
\(156\) 14.0933 + 15.2152i 1.12837 + 1.21819i
\(157\) 0.894726 2.16006i 0.0714069 0.172392i −0.884146 0.467210i \(-0.845259\pi\)
0.955553 + 0.294818i \(0.0952592\pi\)
\(158\) −1.34297 0.315937i −0.106841 0.0251346i
\(159\) 13.8686i 1.09985i
\(160\) 20.9402 0.478288i 1.65547 0.0378120i
\(161\) −0.869132 + 0.869132i −0.0684972 + 0.0684972i
\(162\) 0.963586 4.09595i 0.0757065 0.321808i
\(163\) 4.27941 + 10.3314i 0.335190 + 0.809219i 0.998164 + 0.0605769i \(0.0192940\pi\)
−0.662974 + 0.748643i \(0.730706\pi\)
\(164\) 2.81582 + 1.40248i 0.219879 + 0.109515i
\(165\) 26.2536 10.8746i 2.04384 0.846586i
\(166\) 1.17675 + 7.21621i 0.0913332 + 0.560087i
\(167\) 18.8148i 1.45593i −0.685615 0.727965i \(-0.740466\pi\)
0.685615 0.727965i \(-0.259534\pi\)
\(168\) −2.54605 + 1.34153i −0.196432 + 0.103502i
\(169\) 12.9748 0.809233i 0.998061 0.0622487i
\(170\) 4.86657 6.76301i 0.373249 0.518699i
\(171\) 10.1441 24.4901i 0.775742 1.87281i
\(172\) −0.144653 + 2.08083i −0.0110297 + 0.158662i
\(173\) −2.07624 + 5.01250i −0.157854 + 0.381093i −0.982943 0.183909i \(-0.941125\pi\)
0.825089 + 0.565002i \(0.191125\pi\)
\(174\) −28.1949 + 17.4555i −2.13745 + 1.32330i
\(175\) 2.17888 2.17888i 0.164708 0.164708i
\(176\) 2.68093 + 10.3316i 0.202083 + 0.778775i
\(177\) −4.20750 + 4.20750i −0.316255 + 0.316255i
\(178\) −8.06894 1.89825i −0.604793 0.142280i
\(179\) −15.6779 6.49400i −1.17182 0.485384i −0.290027 0.957019i \(-0.593664\pi\)
−0.881794 + 0.471634i \(0.843664\pi\)
\(180\) −38.9447 2.70731i −2.90277 0.201791i
\(181\) 21.9954 9.11080i 1.63491 0.677200i 0.639137 0.769093i \(-0.279292\pi\)
0.995769 + 0.0918931i \(0.0292918\pi\)
\(182\) −0.358219 + 1.76799i −0.0265530 + 0.131052i
\(183\) −14.1682 + 14.1682i −1.04734 + 1.04734i
\(184\) −0.905166 9.78511i −0.0667297 0.721368i
\(185\) 26.4707 26.4707i 1.94616 1.94616i
\(186\) −5.45819 33.4715i −0.400214 2.45425i
\(187\) 3.92273 + 1.62485i 0.286858 + 0.118821i
\(188\) −7.66642 22.8815i −0.559131 1.66880i
\(189\) 2.13541 0.884518i 0.155329 0.0643392i
\(190\) −25.6310 6.02979i −1.85947 0.437447i
\(191\) 4.98552i 0.360739i −0.983599 0.180370i \(-0.942271\pi\)
0.983599 0.180370i \(-0.0577294\pi\)
\(192\) 4.75616 22.5114i 0.343246 1.62462i
\(193\) 7.82300 + 7.82300i 0.563112 + 0.563112i 0.930190 0.367078i \(-0.119642\pi\)
−0.367078 + 0.930190i \(0.619642\pi\)
\(194\) 0.432071 0.267496i 0.0310209 0.0192051i
\(195\) −26.2915 + 27.9824i −1.88277 + 2.00386i
\(196\) 12.3076 + 6.13006i 0.879112 + 0.437861i
\(197\) −6.87393 + 16.5951i −0.489747 + 1.18235i 0.465101 + 0.885258i \(0.346018\pi\)
−0.954848 + 0.297096i \(0.903982\pi\)
\(198\) −3.20180 19.6346i −0.227542 1.39537i
\(199\) −12.4837 + 12.4837i −0.884943 + 0.884943i −0.994032 0.109089i \(-0.965207\pi\)
0.109089 + 0.994032i \(0.465207\pi\)
\(200\) 2.26921 + 24.5309i 0.160458 + 1.73460i
\(201\) −44.4789 −3.13730
\(202\) 1.06371 + 6.52301i 0.0748421 + 0.458957i
\(203\) −2.66477 1.10378i −0.187030 0.0774704i
\(204\) −6.00740 6.90504i −0.420602 0.483449i
\(205\) −2.22871 + 5.38059i −0.155660 + 0.375797i
\(206\) 4.72165 2.92318i 0.328973 0.203668i
\(207\) 18.3155i 1.27301i
\(208\) −9.04313 11.2348i −0.627028 0.778997i
\(209\) 13.4180i 0.928143i
\(210\) −2.80456 4.53005i −0.193533 0.312603i
\(211\) 7.42408 17.9233i 0.511095 1.23389i −0.432152 0.901801i \(-0.642246\pi\)
0.943247 0.332092i \(-0.107754\pi\)
\(212\) 0.668821 9.62100i 0.0459348 0.660773i
\(213\) 22.0313 + 9.12567i 1.50956 + 0.625280i
\(214\) 12.8310 2.09235i 0.877108 0.143030i
\(215\) −3.86164 −0.263362
\(216\) −5.46904 + 17.6513i −0.372121 + 1.20102i
\(217\) 2.08582 2.08582i 0.141595 0.141595i
\(218\) 9.80640 1.59913i 0.664174 0.108307i
\(219\) −3.22315 + 7.78136i −0.217800 + 0.525816i
\(220\) −18.7372 + 6.27788i −1.26326 + 0.423255i
\(221\) −5.73423 + 0.178647i −0.385726 + 0.0120171i
\(222\) −21.6460 34.9636i −1.45278 2.34660i
\(223\) 13.7154 + 13.7154i 0.918450 + 0.918450i 0.996917 0.0784671i \(-0.0250025\pi\)
−0.0784671 + 0.996917i \(0.525003\pi\)
\(224\) 1.83096 0.807871i 0.122336 0.0539781i
\(225\) 45.9161i 3.06107i
\(226\) 1.82345 7.75099i 0.121294 0.515588i
\(227\) −12.1243 + 5.02203i −0.804715 + 0.333324i −0.746843 0.665000i \(-0.768432\pi\)
−0.0578720 + 0.998324i \(0.518432\pi\)
\(228\) −12.8952 + 25.8902i −0.854004 + 1.71462i
\(229\) −18.7008 7.74614i −1.23579 0.511879i −0.333391 0.942789i \(-0.608193\pi\)
−0.902395 + 0.430910i \(0.858193\pi\)
\(230\) 17.9559 2.92806i 1.18397 0.193070i
\(231\) 1.91986 1.91986i 0.126317 0.126317i
\(232\) 20.4013 10.7496i 1.33941 0.705744i
\(233\) −9.84366 + 9.84366i −0.644880 + 0.644880i −0.951751 0.306871i \(-0.900718\pi\)
0.306871 + 0.951751i \(0.400718\pi\)
\(234\) 14.8542 + 22.4031i 0.971052 + 1.46454i
\(235\) 41.2754 17.0968i 2.69251 1.11527i
\(236\) 3.12176 2.71594i 0.203209 0.176793i
\(237\) −2.59214 1.07370i −0.168378 0.0697443i
\(238\) 0.182305 0.774928i 0.0118170 0.0502311i
\(239\) −1.97560 + 1.97560i −0.127791 + 0.127791i −0.768109 0.640319i \(-0.778802\pi\)
0.640319 + 0.768109i \(0.278802\pi\)
\(240\) 42.1869 + 5.89387i 2.72315 + 0.380448i
\(241\) −16.0083 + 16.0083i −1.03119 + 1.03119i −0.0316884 + 0.999498i \(0.510088\pi\)
−0.999498 + 0.0316884i \(0.989912\pi\)
\(242\) 2.88792 + 4.66469i 0.185642 + 0.299858i
\(243\) −4.22593 + 10.2023i −0.271094 + 0.654478i
\(244\) 10.5121 9.14553i 0.672966 0.585482i
\(245\) −9.74140 + 23.5178i −0.622355 + 1.50250i
\(246\) 5.19276 + 3.73665i 0.331079 + 0.238240i
\(247\) 7.45633 + 16.5259i 0.474435 + 1.05152i
\(248\) 2.17230 + 23.4832i 0.137941 + 1.49119i
\(249\) 14.8693i 0.942301i
\(250\) −19.1739 + 3.12668i −1.21266 + 0.197749i
\(251\) 2.90534 1.20343i 0.183384 0.0759600i −0.289102 0.957298i \(-0.593357\pi\)
0.472486 + 0.881338i \(0.343357\pi\)
\(252\) −3.53674 + 1.18498i −0.222794 + 0.0746468i
\(253\) 3.54788 + 8.56534i 0.223053 + 0.538499i
\(254\) −2.07688 0.488593i −0.130315 0.0306571i
\(255\) 11.9816 11.9816i 0.750316 0.750316i
\(256\) −4.38509 + 15.3874i −0.274068 + 0.961710i
\(257\) 20.2150i 1.26098i 0.776198 + 0.630490i \(0.217146\pi\)
−0.776198 + 0.630490i \(0.782854\pi\)
\(258\) −0.971412 + 4.12921i −0.0604775 + 0.257074i
\(259\) 1.36877 3.30450i 0.0850511 0.205332i
\(260\) 19.5885 18.1441i 1.21483 1.12525i
\(261\) −39.7079 + 16.4475i −2.45786 + 1.01808i
\(262\) 15.6789 + 11.2823i 0.968646 + 0.697025i
\(263\) −6.40220 6.40220i −0.394776 0.394776i 0.481610 0.876386i \(-0.340052\pi\)
−0.876386 + 0.481610i \(0.840052\pi\)
\(264\) 1.99945 + 21.6147i 0.123058 + 1.33029i
\(265\) 17.8548 1.09681
\(266\) −2.48299 + 0.404901i −0.152242 + 0.0248261i
\(267\) −15.5744 6.45111i −0.953135 0.394801i
\(268\) 30.8561 + 2.14502i 1.88484 + 0.131028i
\(269\) 20.1893 + 8.36268i 1.23096 + 0.509881i 0.900879 0.434070i \(-0.142923\pi\)
0.330084 + 0.943952i \(0.392923\pi\)
\(270\) −33.3023 7.83448i −2.02671 0.476791i
\(271\) −21.7642 21.7642i −1.32208 1.32208i −0.912091 0.409988i \(-0.865533\pi\)
−0.409988 0.912091i \(-0.634467\pi\)
\(272\) 3.83449 + 5.07990i 0.232500 + 0.308014i
\(273\) −1.29768 + 3.43139i −0.0785392 + 0.207677i
\(274\) 1.34166 5.70305i 0.0810528 0.344534i
\(275\) −8.89440 21.4730i −0.536353 1.29487i
\(276\) 1.38593 19.9366i 0.0834229 1.20004i
\(277\) 19.2556 7.97591i 1.15695 0.479226i 0.280095 0.959972i \(-0.409634\pi\)
0.876860 + 0.480746i \(0.159634\pi\)
\(278\) 15.4274 2.51574i 0.925274 0.150884i
\(279\) 43.9551i 2.63152i
\(280\) 1.72713 + 3.27786i 0.103216 + 0.195890i
\(281\) −30.1434 −1.79821 −0.899103 0.437737i \(-0.855780\pi\)
−0.899103 + 0.437737i \(0.855780\pi\)
\(282\) −7.89847 48.4361i −0.470347 2.88433i
\(283\) 3.68558 1.52662i 0.219085 0.0907480i −0.270441 0.962736i \(-0.587170\pi\)
0.489527 + 0.871988i \(0.337170\pi\)
\(284\) −14.8436 7.39317i −0.880804 0.438704i
\(285\) −49.4720 20.4920i −2.93047 1.21384i
\(286\) 11.2864 + 7.59955i 0.667378 + 0.449371i
\(287\) 0.556449i 0.0328461i
\(288\) 10.7799 27.8044i 0.635211 1.63839i
\(289\) −14.4682 −0.851071
\(290\) 22.4726 + 36.2988i 1.31964 + 2.13154i
\(291\) 0.954790 0.395487i 0.0559708 0.0231838i
\(292\) 2.61124 5.24268i 0.152811 0.306805i
\(293\) 7.49438 + 3.10427i 0.437826 + 0.181354i 0.590698 0.806892i \(-0.298852\pi\)
−0.152872 + 0.988246i \(0.548852\pi\)
\(294\) 22.6969 + 16.3324i 1.32371 + 0.952523i
\(295\) 5.41685 + 5.41685i 0.315381 + 0.315381i
\(296\) 13.3302 + 25.2990i 0.774803 + 1.47047i
\(297\) 17.4339i 1.01162i
\(298\) −20.9625 15.0844i −1.21433 0.873814i
\(299\) −9.12937 8.57771i −0.527965 0.496062i
\(300\) −3.47446 + 49.9802i −0.200598 + 2.88561i
\(301\) −0.340877 + 0.141196i −0.0196478 + 0.00813840i
\(302\) 14.3944 + 3.38632i 0.828302 + 0.194861i
\(303\) 13.4409i 0.772159i
\(304\) 10.1943 17.3388i 0.584681 0.994447i
\(305\) 18.2405 + 18.2405i 1.04445 + 1.04445i
\(306\) −6.24426 10.0860i −0.356961 0.576579i
\(307\) −0.366292 + 0.151723i −0.0209054 + 0.00865930i −0.393112 0.919491i \(-0.628601\pi\)
0.372206 + 0.928150i \(0.378601\pi\)
\(308\) −1.42444 + 1.23927i −0.0811649 + 0.0706137i
\(309\) 10.4339 4.32186i 0.593563 0.245862i
\(310\) −43.0921 + 7.02702i −2.44747 + 0.399108i
\(311\) 8.51083 + 8.51083i 0.482605 + 0.482605i 0.905963 0.423358i \(-0.139149\pi\)
−0.423358 + 0.905963i \(0.639149\pi\)
\(312\) −14.4738 25.5100i −0.819416 1.44422i
\(313\) −14.1585 + 14.1585i −0.800285 + 0.800285i −0.983140 0.182855i \(-0.941466\pi\)
0.182855 + 0.983140i \(0.441466\pi\)
\(314\) −1.93126 + 2.68384i −0.108987 + 0.151458i
\(315\) −2.64262 6.37985i −0.148895 0.359464i
\(316\) 1.74645 + 0.869859i 0.0982456 + 0.0489334i
\(317\) −6.31088 15.2358i −0.354454 0.855728i −0.996059 0.0886929i \(-0.971731\pi\)
0.641605 0.767035i \(-0.278269\pi\)
\(318\) 4.49146 19.0920i 0.251868 1.07063i
\(319\) −15.3836 + 15.3836i −0.861317 + 0.861317i
\(320\) −28.9818 6.12321i −1.62013 0.342298i
\(321\) 26.4387 1.47566
\(322\) 1.47795 0.915000i 0.0823629 0.0509910i
\(323\) −3.06184 7.39195i −0.170366 0.411299i
\(324\) −2.65301 + 5.32655i −0.147389 + 0.295919i
\(325\) 22.8870 + 21.5040i 1.26954 + 1.19283i
\(326\) −2.54527 15.6085i −0.140970 0.864474i
\(327\) 20.2064 1.11742
\(328\) −3.42215 2.84263i −0.188956 0.156958i
\(329\) 3.01836 3.01836i 0.166408 0.166408i
\(330\) −39.6634 + 6.46789i −2.18340 + 0.356046i
\(331\) −4.25527 + 10.2731i −0.233891 + 0.564662i −0.996629 0.0820456i \(-0.973855\pi\)
0.762738 + 0.646708i \(0.223855\pi\)
\(332\) 0.717077 10.3152i 0.0393547 0.566118i
\(333\) −20.3961 49.2405i −1.11770 2.69836i
\(334\) −6.09330 + 25.9010i −0.333410 + 1.41724i
\(335\) 57.2634i 3.12863i
\(336\) 3.93945 1.02224i 0.214914 0.0557678i
\(337\) −2.85453 −0.155496 −0.0777480 0.996973i \(-0.524773\pi\)
−0.0777480 + 0.996973i \(0.524773\pi\)
\(338\) −18.1236 3.08797i −0.985793 0.167963i
\(339\) 6.19691 14.9607i 0.336570 0.812552i
\(340\) −8.88973 + 7.73410i −0.482113 + 0.419440i
\(341\) −8.51454 20.5559i −0.461088 1.11316i
\(342\) −21.8961 + 30.4287i −1.18400 + 1.64539i
\(343\) 4.90860i 0.265039i
\(344\) 0.873026 2.81769i 0.0470704 0.151920i
\(345\) 36.9987 1.99194
\(346\) 4.48156 6.22796i 0.240930 0.334817i
\(347\) −3.27675 7.91078i −0.175905 0.424673i 0.811195 0.584776i \(-0.198817\pi\)
−0.987100 + 0.160103i \(0.948817\pi\)
\(348\) 44.4670 14.8986i 2.38368 0.798651i
\(349\) 10.4538 4.33012i 0.559581 0.231786i −0.0849220 0.996388i \(-0.527064\pi\)
0.644503 + 0.764601i \(0.277064\pi\)
\(350\) −3.70516 + 2.29387i −0.198049 + 0.122612i
\(351\) 9.68797 + 21.4720i 0.517106 + 1.14609i
\(352\) −0.344690 15.0911i −0.0183721 0.804357i
\(353\) 0.176228 0.176228i 0.00937969 0.00937969i −0.702401 0.711781i \(-0.747889\pi\)
0.711781 + 0.702401i \(0.247889\pi\)
\(354\) 7.15481 4.42955i 0.380274 0.235428i
\(355\) 11.7486 28.3637i 0.623553 1.50539i
\(356\) 10.4932 + 5.22637i 0.556139 + 0.276997i
\(357\) 0.619554 1.49574i 0.0327903 0.0791628i
\(358\) 19.4796 + 14.0173i 1.02953 + 0.740835i
\(359\) 0.365637i 0.0192976i −0.999953 0.00964878i \(-0.996929\pi\)
0.999953 0.00964878i \(-0.00307135\pi\)
\(360\) 52.7358 + 16.3395i 2.77942 + 0.861168i
\(361\) −4.44400 + 4.44400i −0.233895 + 0.233895i
\(362\) −33.2302 + 5.41884i −1.74654 + 0.284808i
\(363\) 4.26972 + 10.3080i 0.224102 + 0.541031i
\(364\) 1.06571 2.31786i 0.0558585 0.121489i
\(365\) 10.0179 + 4.14957i 0.524363 + 0.217198i
\(366\) 24.0928 14.9159i 1.25935 0.779665i
\(367\) 7.56357 0.394815 0.197408 0.980322i \(-0.436748\pi\)
0.197408 + 0.980322i \(0.436748\pi\)
\(368\) −1.92290 + 13.7636i −0.100238 + 0.717480i
\(369\) 5.86310 + 5.86310i 0.305221 + 0.305221i
\(370\) −45.0131 + 27.8676i −2.34012 + 1.44877i
\(371\) 1.57609 0.652839i 0.0818267 0.0338937i
\(372\) −3.32607 + 47.8456i −0.172449 + 2.48068i
\(373\) −11.2013 27.0424i −0.579982 1.40020i −0.892829 0.450396i \(-0.851283\pi\)
0.312847 0.949804i \(-0.398717\pi\)
\(374\) −4.87393 3.50722i −0.252025 0.181354i
\(375\) −39.5084 −2.04021
\(376\) 3.14350 + 33.9822i 0.162114 + 1.75250i
\(377\) 10.3982 27.4954i 0.535533 1.41608i
\(378\) −3.22614 + 0.526086i −0.165935 + 0.0270589i
\(379\) −6.36739 2.63746i −0.327071 0.135477i 0.213105 0.977029i \(-0.431642\pi\)
−0.540176 + 0.841552i \(0.681642\pi\)
\(380\) 33.3317 + 16.6016i 1.70988 + 0.851644i
\(381\) −4.00871 1.66046i −0.205372 0.0850681i
\(382\) −1.61460 + 6.86323i −0.0826100 + 0.351153i
\(383\) 16.6127 + 16.6127i 0.848868 + 0.848868i 0.989992 0.141124i \(-0.0450715\pi\)
−0.141124 + 0.989992i \(0.545071\pi\)
\(384\) −13.8380 + 29.4496i −0.706166 + 1.50285i
\(385\) −2.47168 2.47168i −0.125968 0.125968i
\(386\) −8.23585 13.3029i −0.419194 0.677101i
\(387\) −2.10397 + 5.07943i −0.106951 + 0.258202i
\(388\) −0.681434 + 0.228314i −0.0345946 + 0.0115909i
\(389\) 6.34049 + 15.3073i 0.321475 + 0.776110i 0.999169 + 0.0407656i \(0.0129797\pi\)
−0.677693 + 0.735345i \(0.737020\pi\)
\(390\) 45.2560 30.0068i 2.29163 1.51945i
\(391\) 3.90904 + 3.90904i 0.197689 + 0.197689i
\(392\) −14.9577 12.4247i −0.755479 0.627544i
\(393\) 27.7773 + 27.7773i 1.40118 + 1.40118i
\(394\) 14.8373 20.6192i 0.747494 1.03878i
\(395\) −1.38231 + 3.33719i −0.0695516 + 0.167912i
\(396\) −1.95109 + 28.0665i −0.0980461 + 1.41039i
\(397\) −5.23840 12.6466i −0.262908 0.634716i 0.736208 0.676755i \(-0.236614\pi\)
−0.999116 + 0.0420396i \(0.986614\pi\)
\(398\) 21.2283 13.1425i 1.06408 0.658773i
\(399\) −5.11629 −0.256135
\(400\) 4.82064 34.5049i 0.241032 1.72525i
\(401\) 23.9777 23.9777i 1.19739 1.19739i 0.222445 0.974945i \(-0.428596\pi\)
0.974945 0.222445i \(-0.0714039\pi\)
\(402\) 61.2311 + 14.4048i 3.05393 + 0.718448i
\(403\) 21.9095 + 20.5856i 1.09139 + 1.02544i
\(404\) 0.648193 9.32427i 0.0322488 0.463900i
\(405\) −10.1782 4.21595i −0.505759 0.209492i
\(406\) 3.31094 + 2.38251i 0.164319 + 0.118242i
\(407\) −19.0767 19.0767i −0.945599 0.945599i
\(408\) 6.03374 + 11.4512i 0.298715 + 0.566921i
\(409\) 1.21937i 0.0602939i −0.999545 0.0301470i \(-0.990402\pi\)
0.999545 0.0301470i \(-0.00959753\pi\)
\(410\) 4.81066 6.68531i 0.237582 0.330164i
\(411\) 4.55958 11.0078i 0.224908 0.542975i
\(412\) −7.44667 + 2.49500i −0.366871 + 0.122920i
\(413\) 0.676220 + 0.280100i 0.0332746 + 0.0137828i
\(414\) 5.93160 25.2136i 0.291522 1.23918i
\(415\) 19.1431 0.939697
\(416\) 8.81057 + 18.3949i 0.431974 + 0.901886i
\(417\) 31.7887 1.55670
\(418\) −4.34552 + 18.4717i −0.212546 + 0.903478i
\(419\) −11.5662 4.79088i −0.565046 0.234050i 0.0818282 0.996646i \(-0.473924\pi\)
−0.646874 + 0.762597i \(0.723924\pi\)
\(420\) 2.39376 + 7.14450i 0.116803 + 0.348616i
\(421\) 2.81125 6.78695i 0.137012 0.330776i −0.840450 0.541890i \(-0.817709\pi\)
0.977461 + 0.211114i \(0.0677091\pi\)
\(422\) −16.0248 + 22.2695i −0.780077 + 1.08406i
\(423\) 63.6068i 3.09267i
\(424\) −4.03655 + 13.0280i −0.196032 + 0.632695i
\(425\) −9.79981 9.79981i −0.475361 0.475361i
\(426\) −27.3736 19.6977i −1.32626 0.954356i
\(427\) 2.27707 + 0.943194i 0.110195 + 0.0456444i
\(428\) −18.3412 1.27502i −0.886554 0.0616304i
\(429\) 20.1662 + 18.9476i 0.973634 + 0.914800i
\(430\) 5.31606 + 1.25062i 0.256363 + 0.0603104i
\(431\) −11.4808 + 11.4808i −0.553009 + 0.553009i −0.927308 0.374299i \(-0.877883\pi\)
0.374299 + 0.927308i \(0.377883\pi\)
\(432\) 13.2454 22.5282i 0.637268 1.08389i
\(433\) 10.0079 0.480949 0.240475 0.970655i \(-0.422697\pi\)
0.240475 + 0.970655i \(0.422697\pi\)
\(434\) −3.54692 + 2.19590i −0.170258 + 0.105407i
\(435\) 33.2253 + 80.2131i 1.59303 + 3.84592i
\(436\) −14.0177 0.974466i −0.671326 0.0466684i
\(437\) 6.68560 16.1405i 0.319815 0.772103i
\(438\) 6.95714 9.66823i 0.332425 0.461966i
\(439\) 11.3029 + 11.3029i 0.539457 + 0.539457i 0.923370 0.383912i \(-0.125424\pi\)
−0.383912 + 0.923370i \(0.625424\pi\)
\(440\) 27.8274 2.57415i 1.32662 0.122718i
\(441\) 25.6268 + 25.6268i 1.22032 + 1.22032i
\(442\) 7.95178 + 1.61114i 0.378228 + 0.0766342i
\(443\) 0.195059 + 0.470913i 0.00926752 + 0.0223738i 0.928446 0.371468i \(-0.121146\pi\)
−0.919178 + 0.393842i \(0.871146\pi\)
\(444\) 18.4754 + 55.1422i 0.876801 + 2.61693i
\(445\) −8.30533 + 20.0509i −0.393711 + 0.950502i
\(446\) −14.4392 23.3229i −0.683716 1.10437i
\(447\) −37.1379 37.1379i −1.75656 1.75656i
\(448\) −2.78219 + 0.519172i −0.131446 + 0.0245286i
\(449\) −27.7903 27.7903i −1.31151 1.31151i −0.920305 0.391202i \(-0.872059\pi\)
−0.391202 0.920305i \(-0.627941\pi\)
\(450\) −14.8703 + 63.2096i −0.700991 + 2.97973i
\(451\) 3.87766 + 1.60618i 0.182592 + 0.0756320i
\(452\) −5.02043 + 10.0797i −0.236141 + 0.474111i
\(453\) 27.7834 + 11.5083i 1.30538 + 0.540706i
\(454\) 18.3171 2.98696i 0.859663 0.140185i
\(455\) 4.41767 + 1.67067i 0.207104 + 0.0783222i
\(456\) 26.1366 31.4650i 1.22396 1.47349i
\(457\) −10.4561 −0.489114 −0.244557 0.969635i \(-0.578643\pi\)
−0.244557 + 0.969635i \(0.578643\pi\)
\(458\) 23.2355 + 16.7200i 1.08572 + 0.781274i
\(459\) −3.97824 9.60432i −0.185688 0.448291i
\(460\) −25.6669 1.78428i −1.19672 0.0831924i
\(461\) 23.5526 9.75582i 1.09696 0.454374i 0.240528 0.970642i \(-0.422679\pi\)
0.856427 + 0.516268i \(0.172679\pi\)
\(462\) −3.26470 + 2.02118i −0.151887 + 0.0940337i
\(463\) 22.0162 + 22.0162i 1.02318 + 1.02318i 0.999725 + 0.0234560i \(0.00746696\pi\)
0.0234560 + 0.999725i \(0.492533\pi\)
\(464\) −31.5664 + 8.19111i −1.46543 + 0.380263i
\(465\) −88.7928 −4.11767
\(466\) 16.7390 10.3632i 0.775421 0.480064i
\(467\) −26.1364 10.8261i −1.20945 0.500970i −0.315408 0.948956i \(-0.602141\pi\)
−0.894040 + 0.447986i \(0.852141\pi\)
\(468\) −13.1934 35.6515i −0.609866 1.64799i
\(469\) 2.09376 + 5.05479i 0.0966810 + 0.233409i
\(470\) −62.3580 + 10.1687i −2.87636 + 0.469047i
\(471\) −4.75479 + 4.75479i −0.219089 + 0.219089i
\(472\) −5.17709 + 2.72784i −0.238295 + 0.125559i
\(473\) 2.78299i 0.127962i
\(474\) 3.22070 + 2.31757i 0.147932 + 0.106450i
\(475\) −16.7605 + 40.4635i −0.769026 + 1.85659i
\(476\) −0.501933 + 1.00775i −0.0230060 + 0.0461902i
\(477\) 9.72800 23.4855i 0.445414 1.07533i
\(478\) 3.35949 2.07986i 0.153659 0.0951307i
\(479\) −20.9333 + 20.9333i −0.956469 + 0.956469i −0.999091 0.0426225i \(-0.986429\pi\)
0.0426225 + 0.999091i \(0.486429\pi\)
\(480\) −56.1670 21.7762i −2.56366 0.993944i
\(481\) 34.0962 + 12.8945i 1.55465 + 0.587936i
\(482\) 27.2220 16.8531i 1.23993 0.767640i
\(483\) 3.26597 1.35281i 0.148607 0.0615549i
\(484\) −2.46490 7.35684i −0.112041 0.334402i
\(485\) −0.509161 1.22922i −0.0231198 0.0558161i
\(486\) 9.12165 12.6762i 0.413766 0.575005i
\(487\) −26.1553 −1.18521 −0.592605 0.805493i \(-0.701901\pi\)
−0.592605 + 0.805493i \(0.701901\pi\)
\(488\) −17.4331 + 9.18562i −0.789159 + 0.415813i
\(489\) 32.1618i 1.45441i
\(490\) 21.0267 29.2206i 0.949891 1.32005i
\(491\) 2.91967 + 7.04871i 0.131763 + 0.318104i 0.975967 0.217918i \(-0.0699265\pi\)
−0.844204 + 0.536022i \(0.819926\pi\)
\(492\) −5.93839 6.82570i −0.267723 0.307726i
\(493\) −4.96442 + 11.9852i −0.223586 + 0.539785i
\(494\) −4.91259 25.1649i −0.221028 1.13222i
\(495\) −52.0863 −2.34111
\(496\) 4.61476 33.0313i 0.207209 1.48315i
\(497\) 2.93331i 0.131577i
\(498\) 4.81552 20.4695i 0.215789 0.917260i
\(499\) −5.20677 12.5702i −0.233087 0.562722i 0.763451 0.645866i \(-0.223504\pi\)
−0.996537 + 0.0831447i \(0.973504\pi\)
\(500\) 27.4080 + 1.90531i 1.22572 + 0.0852082i
\(501\) −20.7078 + 49.9931i −0.925157 + 2.23353i
\(502\) −4.38933 + 0.715767i −0.195905 + 0.0319463i
\(503\) −8.12326 + 8.12326i −0.362198 + 0.362198i −0.864622 0.502423i \(-0.832442\pi\)
0.502423 + 0.864622i \(0.332442\pi\)
\(504\) 5.25256 0.485884i 0.233967 0.0216430i
\(505\) 17.3042 0.770025
\(506\) −2.11018 12.9403i −0.0938089 0.575268i
\(507\) −35.3662 12.1300i −1.57067 0.538713i
\(508\) 2.70086 + 1.34523i 0.119832 + 0.0596847i
\(509\) −3.12959 7.55550i −0.138717 0.334892i 0.839220 0.543791i \(-0.183012\pi\)
−0.977937 + 0.208900i \(0.933012\pi\)
\(510\) −20.3746 + 12.6139i −0.902200 + 0.558553i
\(511\) 1.03603 0.0458314
\(512\) 11.0200 19.7626i 0.487018 0.873392i
\(513\) −23.2301 + 23.2301i −1.02564 + 1.02564i
\(514\) 6.54679 27.8287i 0.288767 1.22747i
\(515\) −5.56408 13.4329i −0.245183 0.591923i
\(516\) 2.67455 5.36981i 0.117741 0.236393i
\(517\) −12.3213 29.7462i −0.541888 1.30823i
\(518\) −2.95448 + 4.10580i −0.129812 + 0.180398i
\(519\) 11.0337 11.0337i 0.484324 0.484324i
\(520\) −32.8423 + 18.6339i −1.44023 + 0.817152i
\(521\) −14.0233 14.0233i −0.614373 0.614373i 0.329709 0.944082i \(-0.393049\pi\)
−0.944082 + 0.329709i \(0.893049\pi\)
\(522\) 59.9898 9.78253i 2.62568 0.428170i
\(523\) −6.69070 + 2.77138i −0.292564 + 0.121184i −0.524138 0.851633i \(-0.675612\pi\)
0.231574 + 0.972817i \(0.425612\pi\)
\(524\) −17.9302 20.6094i −0.783285 0.900324i
\(525\) −8.18765 + 3.39144i −0.357339 + 0.148014i
\(526\) 6.74007 + 10.8869i 0.293881 + 0.474690i
\(527\) −9.38128 9.38128i −0.408655 0.408655i
\(528\) 4.24757 30.4030i 0.184852 1.32312i
\(529\) 10.9290i 0.475175i
\(530\) −24.5796 5.78242i −1.06767 0.251172i
\(531\) 10.0764 4.17378i 0.437278 0.181127i
\(532\) 3.54929 + 0.246736i 0.153881 + 0.0106973i
\(533\) −5.66835 + 0.176595i −0.245523 + 0.00764918i
\(534\) 19.3509 + 13.9247i 0.837396 + 0.602580i
\(535\) 34.0379i 1.47159i
\(536\) −41.7829 12.9459i −1.80475 0.559177i
\(537\) 34.5107 + 34.5107i 1.48925 + 1.48925i
\(538\) −25.0849 18.0508i −1.08149 0.778224i
\(539\) 16.9487 + 7.02038i 0.730032 + 0.302389i
\(540\) 43.3078 + 21.5704i 1.86367 + 0.928242i
\(541\) 3.28934 1.36249i 0.141420 0.0585780i −0.310851 0.950459i \(-0.600614\pi\)
0.452271 + 0.891881i \(0.350614\pi\)
\(542\) 22.9128 + 37.0097i 0.984187 + 1.58970i
\(543\) −68.4719 −2.93841
\(544\) −3.63351 8.23498i −0.155786 0.353072i
\(545\) 26.0143i 1.11433i
\(546\) 2.89771 4.30350i 0.124011 0.184173i
\(547\) 11.5180 + 4.77093i 0.492476 + 0.203990i 0.615079 0.788466i \(-0.289124\pi\)
−0.122603 + 0.992456i \(0.539124\pi\)
\(548\) −3.69395 + 7.41650i −0.157798 + 0.316817i
\(549\) 33.9308 14.0546i 1.44813 0.599835i
\(550\) 5.29013 + 32.4409i 0.225572 + 1.38329i
\(551\) 40.9963 1.74650
\(552\) −8.36451 + 26.9965i −0.356017 + 1.14905i
\(553\) 0.345125i 0.0146762i
\(554\) −29.0909 + 4.74384i −1.23595 + 0.201547i
\(555\) −99.4698 + 41.2017i −4.22226 + 1.74892i
\(556\) −22.0526 1.53303i −0.935239 0.0650148i
\(557\) −7.00735 16.9172i −0.296911 0.716807i −0.999984 0.00568880i \(-0.998189\pi\)
0.703073 0.711118i \(-0.251811\pi\)
\(558\) −14.2352 + 60.5100i −0.602624 + 2.56159i
\(559\) −1.54650 3.42759i −0.0654098 0.144972i
\(560\) −1.31606 5.07175i −0.0556137 0.214321i
\(561\) −8.63483 8.63483i −0.364563 0.364563i
\(562\) 41.4964 + 9.76217i 1.75042 + 0.411792i
\(563\) −1.44990 0.600569i −0.0611061 0.0253110i 0.351921 0.936030i \(-0.385529\pi\)
−0.413027 + 0.910719i \(0.635529\pi\)
\(564\) −4.81311 + 69.2367i −0.202669 + 2.91539i
\(565\) −19.2608 7.97807i −0.810307 0.335640i
\(566\) −5.56810 + 0.907988i −0.234045 + 0.0381656i
\(567\) −1.05261 −0.0442053
\(568\) 18.0398 + 14.9849i 0.756933 + 0.628752i
\(569\) −25.2684 25.2684i −1.05931 1.05931i −0.998127 0.0611796i \(-0.980514\pi\)
−0.0611796 0.998127i \(-0.519486\pi\)
\(570\) 61.4683 + 44.2318i 2.57462 + 1.85267i
\(571\) 20.4365 8.46509i 0.855242 0.354253i 0.0883972 0.996085i \(-0.471826\pi\)
0.766845 + 0.641832i \(0.221826\pi\)
\(572\) −13.0760 14.1170i −0.546737 0.590260i
\(573\) −5.48714 + 13.2471i −0.229229 + 0.553407i
\(574\) 0.180210 0.766025i 0.00752182 0.0319733i
\(575\) 30.2614i 1.26199i
\(576\) −23.8446 + 34.7852i −0.993525 + 1.44939i
\(577\) −14.7312 + 14.7312i −0.613267 + 0.613267i −0.943796 0.330529i \(-0.892773\pi\)
0.330529 + 0.943796i \(0.392773\pi\)
\(578\) 19.9174 + 4.68564i 0.828455 + 0.194897i
\(579\) −12.1765 29.3968i −0.506040 1.22169i
\(580\) −19.1809 57.2481i −0.796444 2.37710i
\(581\) 1.68981 0.699942i 0.0701051 0.0290385i
\(582\) −1.44248 + 0.235224i −0.0597925 + 0.00975036i
\(583\) 12.8675i 0.532919i
\(584\) −5.29259 + 6.37158i −0.219009 + 0.263658i
\(585\) 64.1506 28.9442i 2.65230 1.19669i
\(586\) −9.31166 6.70055i −0.384661 0.276797i
\(587\) 1.90840 4.60730i 0.0787683 0.190163i −0.879590 0.475733i \(-0.842183\pi\)
0.958358 + 0.285570i \(0.0921828\pi\)
\(588\) −25.9559 29.8342i −1.07040 1.23034i
\(589\) −16.0447 + 38.7354i −0.661111 + 1.59606i
\(590\) −5.70273 9.21130i −0.234778 0.379223i
\(591\) 36.5297 36.5297i 1.50263 1.50263i
\(592\) −10.1575 39.1445i −0.417472 1.60883i
\(593\) −29.4587 + 29.4587i −1.20973 + 1.20973i −0.238610 + 0.971116i \(0.576692\pi\)
−0.971116 + 0.238610i \(0.923308\pi\)
\(594\) −5.64611 + 24.0001i −0.231663 + 0.984738i
\(595\) −1.92565 0.797631i −0.0789440 0.0326997i
\(596\) 23.9725 + 27.5545i 0.981952 + 1.12868i
\(597\) 46.9103 19.4309i 1.91991 0.795253i
\(598\) 9.78983 + 14.7650i 0.400336 + 0.603785i
\(599\) 7.80699 7.80699i 0.318985 0.318985i −0.529392 0.848377i \(-0.677580\pi\)
0.848377 + 0.529392i \(0.177580\pi\)
\(600\) 20.9695 67.6791i 0.856077 2.76299i
\(601\) −15.2437 + 15.2437i −0.621805 + 0.621805i −0.945993 0.324188i \(-0.894909\pi\)
0.324188 + 0.945993i \(0.394909\pi\)
\(602\) 0.514990 0.0839793i 0.0209894 0.00342274i
\(603\) 75.3217 + 31.1993i 3.06734 + 1.27053i
\(604\) −18.7191 9.32344i −0.761667 0.379365i
\(605\) 13.2708 5.49696i 0.539536 0.223483i
\(606\) 4.35293 18.5032i 0.176826 0.751639i
\(607\) 41.2527i 1.67439i −0.546902 0.837197i \(-0.684193\pi\)
0.546902 0.837197i \(-0.315807\pi\)
\(608\) −19.6490 + 20.5676i −0.796874 + 0.834127i
\(609\) 5.86578 + 5.86578i 0.237693 + 0.237693i
\(610\) −19.2031 31.0177i −0.777511 1.25587i
\(611\) 31.7049 + 29.7891i 1.28264 + 1.20514i
\(612\) 5.32962 + 15.9070i 0.215437 + 0.643002i
\(613\) 8.64630 20.8740i 0.349221 0.843093i −0.647492 0.762073i \(-0.724182\pi\)
0.996712 0.0810209i \(-0.0258180\pi\)
\(614\) 0.553386 0.0902406i 0.0223329 0.00364181i
\(615\) 11.8439 11.8439i 0.477593 0.477593i
\(616\) 2.36227 1.24470i 0.0951787 0.0501503i
\(617\) 38.0732 1.53277 0.766385 0.642382i \(-0.222054\pi\)
0.766385 + 0.642382i \(0.222054\pi\)
\(618\) −15.7633 + 2.57052i −0.634093 + 0.103401i
\(619\) −2.84679 1.17918i −0.114422 0.0473952i 0.324738 0.945804i \(-0.394724\pi\)
−0.439160 + 0.898409i \(0.644724\pi\)
\(620\) 61.5978 + 4.28208i 2.47383 + 0.171972i
\(621\) 8.68657 20.9712i 0.348580 0.841546i
\(622\) −8.95999 14.4726i −0.359263 0.580298i
\(623\) 2.07361i 0.0830776i
\(624\) 11.6634 + 39.8054i 0.466911 + 1.59349i
\(625\) 7.31421i 0.292568i
\(626\) 24.0763 14.9057i 0.962284 0.595751i
\(627\) −14.7681 + 35.6533i −0.589780 + 1.42385i
\(628\) 3.52782 3.06921i 0.140775 0.122475i
\(629\) −14.8624 6.15623i −0.592605 0.245465i
\(630\) 1.57175 + 9.63853i 0.0626202 + 0.384008i
\(631\) −22.2524 −0.885853 −0.442927 0.896558i \(-0.646060\pi\)
−0.442927 + 0.896558i \(0.646060\pi\)
\(632\) −2.12251 1.76308i −0.0844290 0.0701314i
\(633\) −39.4534 + 39.4534i −1.56813 + 1.56813i
\(634\) 3.75353 + 23.0179i 0.149072 + 0.914159i
\(635\) −2.13773 + 5.16093i −0.0848330 + 0.204805i
\(636\) −12.3662 + 24.8281i −0.490350 + 0.984496i
\(637\) −24.7756 + 0.771872i −0.981644 + 0.0305827i
\(638\) 26.1597 16.1955i 1.03567 0.641185i
\(639\) −30.9073 30.9073i −1.22267 1.22267i
\(640\) 37.9143 + 17.8154i 1.49869 + 0.704215i
\(641\) 22.7437i 0.898322i 0.893451 + 0.449161i \(0.148277\pi\)
−0.893451 + 0.449161i \(0.851723\pi\)
\(642\) −36.3964 8.56237i −1.43645 0.337930i
\(643\) −14.2276 + 5.89327i −0.561082 + 0.232408i −0.645155 0.764052i \(-0.723207\pi\)
0.0840729 + 0.996460i \(0.473207\pi\)
\(644\) −2.33092 + 0.780973i −0.0918512 + 0.0307747i
\(645\) 10.2609 + 4.25019i 0.404021 + 0.167351i
\(646\) 1.82110 + 11.1676i 0.0716501 + 0.439383i
\(647\) −16.0729 + 16.0729i −0.631892 + 0.631892i −0.948542 0.316650i \(-0.897442\pi\)
0.316650 + 0.948542i \(0.397442\pi\)
\(648\) 5.37726 6.47351i 0.211239 0.254303i
\(649\) 3.90379 3.90379i 0.153237 0.153237i
\(650\) −24.5427 37.0152i −0.962645 1.45186i
\(651\) −7.83797 + 3.24659i −0.307194 + 0.127244i
\(652\) −1.55102 + 22.3115i −0.0607427 + 0.873784i
\(653\) −21.2018 8.78207i −0.829690 0.343669i −0.0729100 0.997339i \(-0.523229\pi\)
−0.756780 + 0.653670i \(0.773229\pi\)
\(654\) −27.8168 6.54401i −1.08772 0.255891i
\(655\) 35.7613 35.7613i 1.39731 1.39731i
\(656\) 3.79043 + 5.02154i 0.147991 + 0.196058i
\(657\) 10.9163 10.9163i 0.425886 0.425886i
\(658\) −5.13270 + 3.17766i −0.200093 + 0.123878i
\(659\) −7.90917 + 19.0944i −0.308098 + 0.743814i 0.691669 + 0.722215i \(0.256876\pi\)
−0.999767 + 0.0215990i \(0.993124\pi\)
\(660\) 56.6965 + 3.94136i 2.20691 + 0.153417i
\(661\) −13.2440 + 31.9740i −0.515134 + 1.24364i 0.425728 + 0.904851i \(0.360018\pi\)
−0.940862 + 0.338791i \(0.889982\pi\)
\(662\) 9.18497 12.7642i 0.356984 0.496095i
\(663\) 15.4332 + 5.83650i 0.599375 + 0.226671i
\(664\) −4.32780 + 13.9680i −0.167951 + 0.542062i
\(665\) 6.58685i 0.255427i
\(666\) 12.1310 + 74.3915i 0.470067 + 2.88261i
\(667\) −26.1699 + 10.8399i −1.01330 + 0.419723i
\(668\) 16.7765 33.6828i 0.649101 1.30323i
\(669\) −21.3481 51.5388i −0.825364 1.99260i
\(670\) 18.5452 78.8307i 0.716463 3.04549i
\(671\) 13.1455 13.1455i 0.507475 0.507475i
\(672\) −5.75423 + 0.131431i −0.221974 + 0.00507004i
\(673\) 3.14540i 0.121246i 0.998161 + 0.0606231i \(0.0193088\pi\)
−0.998161 + 0.0606231i \(0.980691\pi\)
\(674\) 3.92963 + 0.924460i 0.151364 + 0.0356089i
\(675\) −21.7769 + 52.5740i −0.838192 + 2.02358i
\(676\) 23.9495 + 10.1205i 0.921133 + 0.389248i
\(677\) −20.8407 + 8.63252i −0.800975 + 0.331775i −0.745347 0.666677i \(-0.767716\pi\)
−0.0556280 + 0.998452i \(0.517716\pi\)
\(678\) −13.3760 + 18.5884i −0.513702 + 0.713884i
\(679\) −0.0898899 0.0898899i −0.00344966 0.00344966i
\(680\) 14.7426 7.76800i 0.565354 0.297889i
\(681\) 37.7430 1.44631
\(682\) 5.06420 + 31.0554i 0.193918 + 1.18917i
\(683\) 42.8294 + 17.7405i 1.63882 + 0.678822i 0.996178 0.0873440i \(-0.0278379\pi\)
0.642643 + 0.766166i \(0.277838\pi\)
\(684\) 39.9974 34.7979i 1.52934 1.33053i
\(685\) −14.1718 5.87013i −0.541475 0.224286i
\(686\) 1.58969 6.75734i 0.0606945 0.257996i
\(687\) 41.1649 + 41.1649i 1.57054 + 1.57054i
\(688\) −2.11437 + 3.59619i −0.0806094 + 0.137103i
\(689\) 7.15044 + 15.8479i 0.272410 + 0.603758i
\(690\) −50.9336 11.9823i −1.93901 0.456158i
\(691\) 17.8719 + 43.1467i 0.679881 + 1.64138i 0.764232 + 0.644941i \(0.223118\pi\)
−0.0843517 + 0.996436i \(0.526882\pi\)
\(692\) −8.18643 + 7.12222i −0.311201 + 0.270746i
\(693\) −4.59780 + 1.90447i −0.174656 + 0.0723448i
\(694\) 1.94892 + 11.9514i 0.0739799 + 0.453670i
\(695\) 40.9256i 1.55240i
\(696\) −66.0398 + 6.10897i −2.50323 + 0.231560i
\(697\) 2.50271 0.0947967
\(698\) −15.7934 + 2.57543i −0.597791 + 0.0974816i
\(699\) 36.9899 15.3217i 1.39909 0.579520i
\(700\) 5.84353 1.95787i 0.220865 0.0740005i
\(701\) −21.1619 8.76555i −0.799274 0.331070i −0.0546083 0.998508i \(-0.517391\pi\)
−0.744666 + 0.667438i \(0.767391\pi\)
\(702\) −6.38290 32.6966i −0.240907 1.23405i
\(703\) 50.8382i 1.91740i
\(704\) −4.41284 + 20.8865i −0.166315 + 0.787189i
\(705\) −128.491 −4.83924
\(706\) −0.299675 + 0.185529i −0.0112784 + 0.00698247i
\(707\) 1.52748 0.632705i 0.0574469 0.0237953i
\(708\) −11.2841 + 3.78072i −0.424082 + 0.142088i
\(709\) −5.42719 2.24801i −0.203822 0.0844260i 0.278437 0.960455i \(-0.410184\pi\)
−0.482259 + 0.876029i \(0.660184\pi\)
\(710\) −25.3594 + 35.2415i −0.951720 + 1.32259i
\(711\) 3.63646 + 3.63646i 0.136378 + 0.136378i
\(712\) −12.7527 10.5931i −0.477927 0.396993i
\(713\) 28.9690i 1.08490i
\(714\) −1.33730 + 1.85843i −0.0500473 + 0.0695500i
\(715\) 24.3937 25.9625i 0.912273 0.970944i
\(716\) −22.2766 25.6052i −0.832516 0.956911i
\(717\) 7.42379 3.07503i 0.277246 0.114839i
\(718\) −0.118414 + 0.503347i −0.00441918 + 0.0187848i
\(719\) 29.1752i 1.08805i 0.839069 + 0.544025i \(0.183100\pi\)
−0.839069 + 0.544025i \(0.816900\pi\)
\(720\) −67.3061 39.5724i −2.50835 1.47477i
\(721\) −0.982312 0.982312i −0.0365832 0.0365832i
\(722\) 7.55697 4.67853i 0.281241 0.174117i
\(723\) 60.1550 24.9170i 2.23719 0.926674i
\(724\) 47.5007 + 3.30209i 1.76535 + 0.122721i
\(725\) 65.6068 27.1752i 2.43658 1.00926i
\(726\) −2.53951 15.5731i −0.0942500 0.577974i
\(727\) −0.875628 0.875628i −0.0324752 0.0324752i 0.690683 0.723158i \(-0.257310\pi\)
−0.723158 + 0.690683i \(0.757310\pi\)
\(728\) −2.21775 + 2.84570i −0.0821953 + 0.105469i
\(729\) 28.7693 28.7693i 1.06553 1.06553i
\(730\) −12.4472 8.95681i −0.460690 0.331506i
\(731\) 0.635049 + 1.53314i 0.0234881 + 0.0567054i
\(732\) −37.9975 + 12.7310i −1.40443 + 0.470553i
\(733\) −0.221050 0.533662i −0.00816467 0.0197113i 0.919745 0.392517i \(-0.128396\pi\)
−0.927909 + 0.372806i \(0.878396\pi\)
\(734\) −10.4123 2.44952i −0.384323 0.0904134i
\(735\) 51.7681 51.7681i 1.90950 1.90950i
\(736\) 7.10459 18.3247i 0.261879 0.675459i
\(737\) 41.2683 1.52014
\(738\) −6.17252 9.97014i −0.227214 0.367006i
\(739\) 14.3778 + 34.7112i 0.528897 + 1.27687i 0.932246 + 0.361825i \(0.117846\pi\)
−0.403349 + 0.915046i \(0.632154\pi\)
\(740\) 70.9916 23.7857i 2.60970 0.874379i
\(741\) −1.62371 52.1178i −0.0596484 1.91460i
\(742\) −2.38113 + 0.388290i −0.0874140 + 0.0142546i
\(743\) −27.0184 −0.991210 −0.495605 0.868548i \(-0.665054\pi\)
−0.495605 + 0.868548i \(0.665054\pi\)
\(744\) 20.0739 64.7886i 0.735946 2.37527i
\(745\) −47.8124 + 47.8124i −1.75171 + 1.75171i
\(746\) 6.66222 + 40.8550i 0.243921 + 1.49581i
\(747\) 10.4299 25.1800i 0.381609 0.921286i
\(748\) 5.57377 + 6.40661i 0.203797 + 0.234249i
\(749\) −1.24455 3.00461i −0.0454749 0.109786i
\(750\) 54.3886 + 12.7951i 1.98599 + 0.467211i
\(751\) 27.8107i 1.01483i 0.861703 + 0.507414i \(0.169398\pi\)
−0.861703 + 0.507414i \(0.830602\pi\)
\(752\) 6.67795 47.7991i 0.243520 1.74305i
\(753\) −9.04437 −0.329595
\(754\) −23.2190 + 34.4835i −0.845588 + 1.25582i
\(755\) 14.8161 35.7691i 0.539212 1.30177i
\(756\) 4.61158 + 0.320582i 0.167722 + 0.0116595i
\(757\) −3.97154 9.58814i −0.144348 0.348487i 0.835126 0.550059i \(-0.185395\pi\)
−0.979474 + 0.201572i \(0.935395\pi\)
\(758\) 7.91139 + 5.69293i 0.287355 + 0.206777i
\(759\) 26.6640i 0.967842i
\(760\) −40.5090 33.6490i −1.46941 1.22058i
\(761\) 4.70902 0.170702 0.0853509 0.996351i \(-0.472799\pi\)
0.0853509 + 0.996351i \(0.472799\pi\)
\(762\) 4.98077 + 3.58410i 0.180434 + 0.129838i
\(763\) −0.951180 2.29635i −0.0344350 0.0831335i
\(764\) 4.44541 8.92524i 0.160829 0.322904i
\(765\) −28.6942 + 11.8855i −1.03744 + 0.429723i
\(766\) −17.4894 28.2497i −0.631918 1.02070i
\(767\) −2.63867 + 6.97731i −0.0952769 + 0.251936i
\(768\) 28.5873 36.0598i 1.03155 1.30120i
\(769\) −36.1755 + 36.1755i −1.30452 + 1.30452i