Refine search
Label | Name | Order | Parity | Solvable | Subfields | Low Degree Siblings |
---|---|---|---|---|---|---|
28T1 | $C_{28}$ | $28$ | $-1$ | ✓ | $C_2$, $C_4$, $C_7$, $C_{14}$ | |
28T2 | $C_2\times C_{14}$ | $28$ | $1$ | ✓ | $C_2$ x 3, $C_2^2$, $C_7$, $C_{14}$ x 3 | |
28T3 | $C_7:C_4$ | $28$ | $-1$ | ✓ | $C_2$, $C_4$, $D_{7}$, $D_{7}$ | |
28T4 | $D_{14}$ | $28$ | $1$ | ✓ | $C_2$ x 3, $C_2^2$, $D_{7}$, $D_{7}$, $D_{14}$ x 2 | 14T3 x 2 |
28T5 | $C_7\times D_4$ | $56$ | $-1$ | ✓ | $C_2$, $D_{4}$, $C_7$, $C_{14}$ | 28T5 |
28T6 | $D_{14}:C_2$ | $56$ | $-1$ | ✓ | $C_2$, $D_{4}$, $D_{7}$, $D_{7}$ | 28T7 |
28T7 | $D_{14}:C_2$ | $56$ | $-1$ | ✓ | $C_2$, $D_{4}$, $D_{7}$, $D_{14}$ | 28T6 |
28T8 | $C_4\times D_7$ | $56$ | $-1$ | ✓ | $C_2$, $C_4$, $D_{7}$, $D_{14}$ | 28T8 |
28T9 | $C_2^2\times D_7$ | $56$ | $1$ | ✓ | $C_2$ x 3, $C_2^2$, $D_{7}$, $D_{14}$ x 3 | 28T9 x 3 |
28T10 | $D_{28}$ | $56$ | $-1$ | ✓ | $C_2$, $D_{4}$, $D_{7}$, $D_{14}$ | 28T10 |
28T11 | $F_8$ | $56$ | $1$ | ✓ | $C_7$, $F_8$ | 8T25, 14T6 |
28T12 | $C_7:C_{12}$ | $84$ | $-1$ | ✓ | $C_2$, $C_4$, $F_7$, $F_7$ | |
28T13 | $C_4\times C_7:C_3$ | $84$ | $-1$ | ✓ | $C_2$, $C_4$, $C_7:C_3$, $(C_7:C_3) \times C_2$ | |
28T14 | $C_2^2\times C_7:C_3$ | $84$ | $1$ | ✓ | $C_2$ x 3, $C_2^2$, $C_7:C_3$, $(C_7:C_3) \times C_2$ x 3 | |
28T15 | $C_2\times F_7$ | $84$ | $1$ | ✓ | $C_2$ x 3, $C_2^2$, $F_7$, $F_7$, $F_7 \times C_2$ x 2 | 14T7 x 2, 42T10 x 2 |
28T16 | $C_7:A_4$ | $84$ | $1$ | ✓ | $A_4$, $C_7:C_3$ | 42T8 |
28T17 | $C_7\times A_4$ | $84$ | $1$ | ✓ | $A_4$, $C_7$ | 42T7 |
28T18 | $D_4\times D_7$ | $112$ | $-1$ | ✓ | $C_2$, $D_{4}$, $D_{7}$, $D_{14}$ | 28T18 x 3 |
28T19 | $C_2\times F_8$ | $112$ | $1$ | ✓ | $C_7$, $F_8$, $C_2\times F_8$ | 14T9, 16T196, 28T19 x 2, 28T20 |
28T20 | $C_2\times F_8$ | $112$ | $1$ | ✓ | $C_2$, $C_7$, $C_{14}$, $F_8$, $C_2\times F_8$ | 14T9, 16T196, 28T19 x 3 |
28T21 | $C_2^2:F_7$ | $168$ | $-1$ | ✓ | $C_2$, $D_{4}$, $F_7$, $F_7$ | 28T25 |
28T22 | $D_4\times C_7:C_3$ | $168$ | $-1$ | ✓ | $C_2$, $D_{4}$, $C_7:C_3$, $(C_7:C_3) \times C_2$ | 28T22 |
28T23 | $D_{28}:C_3$ | $168$ | $-1$ | ✓ | $C_2$, $D_{4}$, $F_7$, $F_7 \times C_2$ | 28T23 |
28T24 | $C_2^2\times F_7$ | $168$ | $1$ | ✓ | $C_2$ x 3, $C_2^2$, $F_7$, $F_7 \times C_2$ x 3 | 28T24 x 3 |
28T25 | $C_2^2:F_7$ | $168$ | $-1$ | ✓ | $C_2$, $D_{4}$, $F_7$, $F_7 \times C_2$ | 28T21 |
28T26 | $C_4\times F_7$ | $168$ | $-1$ | ✓ | $C_2$, $C_4$, $F_7$, $F_7 \times C_2$ | 28T26 |
28T27 | $F_8:C_3$ | $168$ | $1$ | ✓ | $C_7:C_3$ | 8T36, 14T11, 24T283, 42T26 |
28T28 | $D_7:A_4$ | $168$ | $1$ | ✓ | $A_4$, $F_7$ | 42T30, 42T31 |
28T29 | $A_4\times D_7$ | $168$ | $1$ | ✓ | $A_4$, $D_{7}$ | 42T28, 42T29 |
28T30 | $C_7:S_4$ | $168$ | $-1$ | ✓ | $S_4$, $D_{7}$ | 42T32, 42T33 |
28T31 | $C_7\times S_4$ | $168$ | $-1$ | ✓ | $S_4$, $C_7$ | 42T34, 42T35 |
28T32 | $\PSL(2,7)$ | $168$ | $1$ | $\GL(3,2)$ x 2 | 7T5 x 2, 8T37, 14T10 x 2, 21T14, 24T284, 42T37, 42T38 x 2 | |
28T33 | $C_7\times C_7:C_4$ | $196$ | $-1$ | ✓ | $C_2$, $C_4$, $C_7 \wr C_2$ | 28T33 x 2 |
28T34 | $C_{14}\times D_7$ | $196$ | $1$ | ✓ | $C_2$ x 3, $C_2^2$, $C_7 \wr C_2$ | 28T34 x 2 |
28T35 | $C_7:D_7.C_2$ | $196$ | $-1$ | ✓ | $C_2$, $C_4$, $C_7:D_7.C_2$ | 14T12 x 4, 28T35 x 3 |
28T36 | $D_7^2$ | $196$ | $1$ | ✓ | $C_2$ x 3, $C_2^2$, $D_7^2$ | 14T13 x 3, 28T36 x 2 |
28T37 | $C_4\times F_8$ | $224$ | $-1$ | ✓ | $C_2$, $C_7$, $C_{14}$ | 32T2229 |
28T38 | $C_2^2\times F_8$ | $224$ | $1$ | ✓ | $C_7$, $C_2\times F_8$ x 3 | 28T38 x 5, 28T39 x 3, 32T2228 |
28T39 | $C_2^2\times F_8$ | $224$ | $1$ | ✓ | $C_2$, $C_7$, $C_{14}$, $C_2\times F_8$ x 2 | 28T38 x 6, 28T39 x 2, 32T2228 |
28T40 | $A_4\times C_7:C_3$ | $252$ | $1$ | ✓ | $A_4$, $C_7:C_3$ | 42T39 |
28T41 | $D_4\times F_7$ | $336$ | $-1$ | ✓ | $C_2$, $D_{4}$, $F_7$, $F_7 \times C_2$ | 28T41 x 3 |
28T42 | $\SO(3,7)$ | $336$ | $1$ | $C_2$, $\SO(3,7)$ | 8T43, 14T16, 16T713, 21T20, 24T707, 28T46, 42T81, 42T82, 42T83 | |
28T43 | $C_2\times \PSL(2,7)$ | $336$ | $1$ | $C_2$, $\GL(3,2)$, $\PSL(2,7)$, $C_2\times \PSL(2,7)$, $\GL(3,2) \times C_2$ | 14T17 x 2, 14T19 x 2, 16T714, 28T43, 42T78, 42T79, 42T80 x 2 | |
28T44 | $C_2\times F_8:C_3$ | $336$ | $1$ | ✓ | $C_2$, $C_7:C_3$, $(C_7:C_3) \times C_2$, $F_8:C_3$, $C_2\times F_8:C_3$ | 14T18, 16T712, 42T67 |
28T45 | $D_7\times S_4$ | $336$ | $-1$ | ✓ | $S_4$, $D_{7}$ | 42T74, 42T75, 42T76, 42T77 |
28T46 | $\SO(3,7)$ | $336$ | $1$ | 8T43, 14T16, 16T713, 21T20, 24T707, 28T42, 42T81, 42T82, 42T83 | ||
28T47 | $C_7\times D_{14}:C_2$ | $392$ | $-1$ | ✓ | $C_2$, $D_{4}$, $C_7 \wr C_2$ | 28T47 x 5 |
28T48 | $C_2\times C_7:D_7.C_2$ | $392$ | $1$ | ✓ | $C_2$ x 3, $C_2^2$, $C_7:D_7.C_2$ | 28T48 x 3, 28T49 x 4 |
28T49 | $C_2\times C_7:D_7.C_2$ | $392$ | $-1$ | ✓ | $C_2$, $C_4$, $C_7:D_7.C_2$ | 28T48 x 4, 28T49 x 3 |
28T50 | $(C_{14}\times D_7):C_2$ | $392$ | $-1$ | ✓ | $C_2$, $D_{4}$, $D_7^2$ | 28T50 x 5 |
Results are complete for degrees $\leq 23$.