Show commands: Magma
Group invariants
| Abstract group: | $C_2^2\times F_7$ |
| |
| Order: | $168=2^{3} \cdot 3 \cdot 7$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $28$ |
| |
| Transitive number $t$: | $24$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,13,18,9,26,21)(2,14,17,10,25,22)(3,24,11,7,16,27)(4,23,12,8,15,28)$, $(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)$, $(1,16)(2,15)(3,13)(4,14)(5,11)(6,12)(7,9)(8,10)(17,28)(18,27)(19,26)(20,25)(21,24)(22,23)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $3$: $C_3$ $4$: $C_2^2$ x 7 $6$: $C_6$ x 7 $8$: $C_2^3$ $12$: $C_6\times C_2$ x 7 $24$: 24T3 $42$: $F_7$ $84$: $F_7 \times C_2$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 7: $F_7$
Degree 14: $F_7 \times C_2$ x 3
Low degree siblings
28T24 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{28}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{14}$ | $1$ | $2$ | $14$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)$ |
| 2B | $2^{14}$ | $1$ | $2$ | $14$ | $( 1,16)( 2,15)( 3,18)( 4,17)( 5,19)( 6,20)( 7,21)( 8,22)( 9,24)(10,23)(11,26)(12,25)(13,27)(14,28)$ |
| 2C | $2^{14}$ | $1$ | $2$ | $14$ | $( 1,15)( 2,16)( 3,17)( 4,18)( 5,20)( 6,19)( 7,22)( 8,21)( 9,23)(10,24)(11,25)(12,26)(13,28)(14,27)$ |
| 2D | $2^{14}$ | $7$ | $2$ | $14$ | $( 1,16)( 2,15)( 3,13)( 4,14)( 5,11)( 6,12)( 7, 9)( 8,10)(17,28)(18,27)(19,26)(20,25)(21,24)(22,23)$ |
| 2E | $2^{14}$ | $7$ | $2$ | $14$ | $( 1,28)( 2,27)( 3,25)( 4,26)( 5,23)( 6,24)( 7,22)( 8,21)( 9,20)(10,19)(11,17)(12,18)(13,15)(14,16)$ |
| 2F | $2^{12},1^{4}$ | $7$ | $2$ | $12$ | $( 3,27)( 4,28)( 5,26)( 6,25)( 7,24)( 8,23)( 9,21)(10,22)(11,19)(12,20)(13,18)(14,17)$ |
| 2G | $2^{14}$ | $7$ | $2$ | $14$ | $( 1,14)( 2,13)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)(15,27)(16,28)(17,26)(18,25)(19,23)(20,24)(21,22)$ |
| 3A1 | $3^{8},1^{4}$ | $7$ | $3$ | $16$ | $( 3,19,24)( 4,20,23)( 5, 9,18)( 6,10,17)( 7,27,11)( 8,28,12)(13,26,21)(14,25,22)$ |
| 3A-1 | $3^{8},1^{4}$ | $7$ | $3$ | $16$ | $( 3,24,19)( 4,23,20)( 5,18, 9)( 6,17,10)( 7,11,27)( 8,12,28)(13,21,26)(14,22,25)$ |
| 6A1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1,16)( 2,15)( 3,21,19,13,24,26)( 4,22,20,14,23,25)( 5,27, 9,11,18, 7)( 6,28,10,12,17, 8)$ |
| 6A-1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1,16)( 2,15)( 3,26,24,13,19,21)( 4,25,23,14,20,22)( 5, 7,18,11, 9,27)( 6, 8,17,12,10,28)$ |
| 6B1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1,17,21, 2,18,22)( 3, 8,16, 4, 7,15)( 5,25, 9, 6,26,10)(11,23,19,12,24,20)(13,14)(27,28)$ |
| 6B-1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1,17,26, 2,18,25)( 3,12,16, 4,11,15)( 5, 6)( 7,28,24, 8,27,23)( 9,22,13,10,21,14)(19,20)$ |
| 6C1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1, 4, 9,28,26,20)( 2, 3,10,27,25,19)( 5,15,18,23,13,12)( 6,16,17,24,14,11)( 7,22)( 8,21)$ |
| 6C-1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1, 4,13, 8, 5,23)( 2, 3,14, 7, 6,24)( 9,15,18,28,21,20)(10,16,17,27,22,19)(11,25)(12,26)$ |
| 6D1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1,16)( 2,15)( 3, 5,24,18,19, 9)( 4, 6,23,17,20,10)( 7,13,11,21,27,26)( 8,14,12,22,28,25)$ |
| 6D-1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1,16)( 2,15)( 3, 9,19,18,24, 5)( 4,10,20,17,23, 6)( 7,26,27,21,11,13)( 8,25,28,22,12,14)$ |
| 6E1 | $6^{4},1^{4}$ | $7$ | $6$ | $20$ | $( 3, 7,19,27,24,11)( 4, 8,20,28,23,12)( 5,13, 9,26,18,21)( 6,14,10,25,17,22)$ |
| 6E-1 | $6^{4},1^{4}$ | $7$ | $6$ | $20$ | $( 3,11,24,27,19, 7)( 4,12,23,28,20, 8)( 5,21,18,26, 9,13)( 6,22,17,25,10,14)$ |
| 6F1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1, 4,21,15,18, 8)( 2, 3,22,16,17, 7)( 5,12, 9,20,26,23)( 6,11,10,19,25,24)(13,28)(14,27)$ |
| 6F-1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1, 4,26,15,18,12)( 2, 3,25,16,17,11)( 5,20)( 6,19)( 7,14,24,22,27,10)( 8,13,23,21,28, 9)$ |
| 6G1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1,17, 9,14,26, 6)( 2,18,10,13,25, 5)( 3,23,27,12,19,15)( 4,24,28,11,20,16)( 7, 8)(21,22)$ |
| 6G-1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1,17,13,22, 5,10)( 2,18,14,21, 6, 9)( 3,28, 7,20,24,15)( 4,27, 8,19,23,16)(11,12)(25,26)$ |
| 7A | $7^{4}$ | $6$ | $7$ | $24$ | $( 1, 5, 9,13,18,21,26)( 2, 6,10,14,17,22,25)( 3, 7,11,16,19,24,27)( 4, 8,12,15,20,23,28)$ |
| 14A | $14^{2}$ | $6$ | $14$ | $26$ | $( 1,17, 5,22, 9,25,13, 2,18, 6,21,10,26,14)( 3,20, 7,23,11,28,16, 4,19, 8,24,12,27,15)$ |
| 14B | $14^{2}$ | $6$ | $14$ | $26$ | $( 1,19, 9,27,18, 7,26,16, 5,24,13, 3,21,11)( 2,20,10,28,17, 8,25,15, 6,23,14, 4,22,12)$ |
| 14C | $14^{2}$ | $6$ | $14$ | $26$ | $( 1, 4, 5, 8, 9,12,13,15,18,20,21,23,26,28)( 2, 3, 6, 7,10,11,14,16,17,19,22,24,25,27)$ |
Malle's constant $a(G)$: $1/12$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A1 | 3A-1 | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 6D1 | 6D-1 | 6E1 | 6E-1 | 6F1 | 6F-1 | 6G1 | 6G-1 | 7A | 14A | 14B | 14C | ||
| Size | 1 | 1 | 1 | 1 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 6 | 6 | 6 | 6 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 3A-1 | 3A1 | 3A1 | 3A-1 | 3A-1 | 3A1 | 3A1 | 3A-1 | 3A-1 | 3A1 | 3A1 | 3A-1 | 7A | 7A | 7A | 7A | |
| 3 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 1A | 1A | 2D | 2D | 2A | 2A | 2E | 2E | 2B | 2B | 2F | 2F | 2C | 2C | 2G | 2G | 7A | 14A | 14B | 14C | |
| 7 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A1 | 3A-1 | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 6D1 | 6D-1 | 6E1 | 6E-1 | 6F1 | 6F-1 | 6G1 | 6G-1 | 1A | 2A | 2B | 2C | |
| Type | |||||||||||||||||||||||||||||
| 168.47.1a | R | ||||||||||||||||||||||||||||
| 168.47.1b | R | ||||||||||||||||||||||||||||
| 168.47.1c | R | ||||||||||||||||||||||||||||
| 168.47.1d | R | ||||||||||||||||||||||||||||
| 168.47.1e | R | ||||||||||||||||||||||||||||
| 168.47.1f | R | ||||||||||||||||||||||||||||
| 168.47.1g | R | ||||||||||||||||||||||||||||
| 168.47.1h | R | ||||||||||||||||||||||||||||
| 168.47.1i1 | C | ||||||||||||||||||||||||||||
| 168.47.1i2 | C | ||||||||||||||||||||||||||||
| 168.47.1j1 | C | ||||||||||||||||||||||||||||
| 168.47.1j2 | C | ||||||||||||||||||||||||||||
| 168.47.1k1 | C | ||||||||||||||||||||||||||||
| 168.47.1k2 | C | ||||||||||||||||||||||||||||
| 168.47.1l1 | C | ||||||||||||||||||||||||||||
| 168.47.1l2 | C | ||||||||||||||||||||||||||||
| 168.47.1m1 | C | ||||||||||||||||||||||||||||
| 168.47.1m2 | C | ||||||||||||||||||||||||||||
| 168.47.1n1 | C | ||||||||||||||||||||||||||||
| 168.47.1n2 | C | ||||||||||||||||||||||||||||
| 168.47.1o1 | C | ||||||||||||||||||||||||||||
| 168.47.1o2 | C | ||||||||||||||||||||||||||||
| 168.47.1p1 | C | ||||||||||||||||||||||||||||
| 168.47.1p2 | C | ||||||||||||||||||||||||||||
| 168.47.6a | R | ||||||||||||||||||||||||||||
| 168.47.6b | R | ||||||||||||||||||||||||||||
| 168.47.6c | R | ||||||||||||||||||||||||||||
| 168.47.6d | R |
Regular extensions
Data not computed