Group action invariants
| Degree $n$ : | $28$ | |
| Transitive number $t$ : | $43$ | |
| Group : | $C_2\times \PSL(2,7)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4,11,6,9,18,25,8,14,16,20,22,28,24)(2,3,12,5,10,17,26,7,13,15,19,21,27,23), (1,18,3,8,28,13)(2,17,4,7,27,14)(5,16,21,19,11,10)(6,15,22,20,12,9)(23,26)(24,25) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 168: $\GL(3,2)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 7: $\GL(3,2)$
Degree 14: $\PSL(2,7)$, 14T17, $\GL(3,2) \times C_2$
Low degree siblings
14T17 x 2, 14T19 x 2, 16T714, 28T43, 42T78, 42T79, 42T80 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1 $ | $56$ | $3$ | $( 3, 5,25)( 4, 6,26)( 9,17,15)(10,18,16)(11,21,28)(12,22,27)(13,19,24) (14,20,23)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $21$ | $2$ | $( 3,14)( 4,13)( 5,11)( 6,12)( 9,25)(10,26)(15,20)(16,19)(17,28)(18,27)(21,23) (22,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $21$ | $2$ | $( 1, 2)( 3, 4)( 5,26)( 6,25)( 7, 8)( 9,12)(10,11)(13,14)(15,22)(16,21)(17,27) (18,28)(19,23)(20,24)$ |
| $ 4, 4, 4, 4, 4, 4, 2, 2 $ | $42$ | $4$ | $( 1, 2)( 3,10,17,24)( 4, 9,18,23)( 5,12,20,16)( 6,11,19,15)( 7, 8) (13,21,27,25)(14,22,28,26)$ |
| $ 7, 7, 7, 7 $ | $24$ | $7$ | $( 1, 3, 5,15,25,17, 9)( 2, 4, 6,16,26,18,10)( 7,14,20,11,23,28,21) ( 8,13,19,12,24,27,22)$ |
| $ 4, 4, 4, 4, 4, 4, 2, 2 $ | $42$ | $4$ | $( 1, 3, 7,14)( 2, 4, 8,13)( 5, 9,23,15)( 6,10,24,16)(11,20,21,25)(12,19,22,26) (17,28)(18,27)$ |
| $ 7, 7, 7, 7 $ | $24$ | $7$ | $( 1, 3, 9,28,20,15,23)( 2, 4,10,27,19,16,24)( 5,11,25, 7,14,21,17) ( 6,12,26, 8,13,22,18)$ |
| $ 14, 14 $ | $24$ | $14$ | $( 1, 4, 5,18,21,26,15, 8,14,19,28,10,23,12)( 2, 3, 6,17,22,25,16, 7,13,20,27, 9,24,11)$ |
| $ 14, 14 $ | $24$ | $14$ | $( 1, 4, 9,26,11,27, 5, 8,14,22,23,16,17,19)( 2, 3,10,25,12,28, 6, 7,13,21,24, 15,18,20)$ |
| $ 6, 6, 6, 6, 2, 2 $ | $56$ | $6$ | $( 1, 4,17, 8,14,27)( 2, 3,18, 7,13,28)( 5,16,23,19,11,26)( 6,15,24,20,12,25) ( 9,22)(10,21)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 8)( 2, 7)( 3,13)( 4,14)( 5,19)( 6,20)( 9,22)(10,21)(11,16)(12,15)(17,27) (18,28)(23,26)(24,25)$ |
Group invariants
| Order: | $336=2^{4} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [336, 209] |
| Character table: |
2 4 1 4 4 3 1 3 1 1 1 1 4
3 1 1 . . . . . . . . 1 1
7 1 . . . . 1 . 1 1 1 . 1
1a 3a 2a 2b 4a 7a 4b 7b 14a 14b 6a 2c
2P 1a 3a 1a 1a 2a 7a 2a 7b 7b 7a 3a 1a
3P 1a 1a 2a 2b 4a 7b 4b 7a 14b 14a 2c 2c
5P 1a 3a 2a 2b 4a 7b 4b 7a 14b 14a 6a 2c
7P 1a 3a 2a 2b 4a 1a 4b 1a 2c 2c 6a 2c
11P 1a 3a 2a 2b 4a 7a 4b 7b 14a 14b 6a 2c
13P 1a 3a 2a 2b 4a 7b 4b 7a 14b 14a 6a 2c
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 1 1 1 -1 -1 -1 -1
X.3 3 . -1 -1 1 A 1 /A /A A . 3
X.4 3 . -1 -1 1 /A 1 A A /A . 3
X.5 3 . -1 1 -1 A 1 /A -/A -A . -3
X.6 3 . -1 1 -1 /A 1 A -A -/A . -3
X.7 6 . 2 2 . -1 . -1 -1 -1 . 6
X.8 6 . 2 -2 . -1 . -1 1 1 . -6
X.9 7 1 -1 -1 -1 . -1 . . . 1 7
X.10 7 1 -1 1 1 . -1 . . . -1 -7
X.11 8 -1 . . . 1 . 1 1 1 -1 8
X.12 8 -1 . . . 1 . 1 -1 -1 1 -8
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|