Show commands: Magma
Group invariants
| Abstract group: | $C_7:D_{28}$ |
| |
| Order: | $392=2^{3} \cdot 7^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $28$ |
| |
| Transitive number $t$: | $50$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,16,14,28,25,11,10,24,22,8,5,20,17,4,2,15,13,27,26,12,9,23,21,7,6,19,18,3)$, $(1,16,17,27,6,11,22,23,9,8,25,19,13,4)(2,15,18,28,5,12,21,24,10,7,26,20,14,3)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ $14$: $D_{7}$ x 2 $28$: $D_{14}$ x 2 $56$: 28T6, $D_{28}$ $196$: 14T13 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 7: None
Degree 14: 14T13
Low degree siblings
28T50 x 5Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{28}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{14}$ | $1$ | $2$ | $14$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)$ |
| 2B | $2^{14}$ | $14$ | $2$ | $14$ | $( 1, 4)( 2, 3)( 5,28)( 6,27)( 7,26)( 8,25)( 9,23)(10,24)(11,22)(12,21)(13,19)(14,20)(15,18)(16,17)$ |
| 2C | $2^{13},1^{2}$ | $98$ | $2$ | $13$ | $( 1, 5)( 2, 6)( 7,28)( 8,27)( 9,26)(10,25)(11,23)(12,24)(13,21)(14,22)(15,20)(16,19)(17,18)$ |
| 4A | $4^{7}$ | $14$ | $4$ | $21$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,15,14,16)(17,20,18,19)(21,23,22,24)(25,28,26,27)$ |
| 7A1 | $7^{4}$ | $2$ | $7$ | $24$ | $( 1,17, 6,22, 9,25,13)( 2,18, 5,21,10,26,14)( 3,15,28,12,24, 7,20)( 4,16,27,11,23, 8,19)$ |
| 7A2 | $7^{4}$ | $2$ | $7$ | $24$ | $( 1, 6, 9,13,17,22,25)( 2, 5,10,14,18,21,26)( 3,28,24,20,15,12, 7)( 4,27,23,19,16,11, 8)$ |
| 7A3 | $7^{4}$ | $2$ | $7$ | $24$ | $( 1,22,13, 6,25,17, 9)( 2,21,14, 5,26,18,10)( 3,12,20,28, 7,15,24)( 4,11,19,27, 8,16,23)$ |
| 7B1 | $7^{4}$ | $2$ | $7$ | $24$ | $( 1,17, 6,22, 9,25,13)( 2,18, 5,21,10,26,14)( 3,20, 7,24,12,28,15)( 4,19, 8,23,11,27,16)$ |
| 7B2 | $7^{4}$ | $2$ | $7$ | $24$ | $( 1, 6, 9,13,17,22,25)( 2, 5,10,14,18,21,26)( 3, 7,12,15,20,24,28)( 4, 8,11,16,19,23,27)$ |
| 7B3 | $7^{4}$ | $2$ | $7$ | $24$ | $( 1,22,13, 6,25,17, 9)( 2,21,14, 5,26,18,10)( 3,24,15, 7,28,20,12)( 4,23,16, 8,27,19,11)$ |
| 7C1 | $7^{2},1^{14}$ | $4$ | $7$ | $12$ | $( 1, 6, 9,13,17,22,25)( 2, 5,10,14,18,21,26)$ |
| 7C2 | $7^{2},1^{14}$ | $4$ | $7$ | $12$ | $( 1, 9,17,25, 6,13,22)( 2,10,18,26, 5,14,21)$ |
| 7C3 | $7^{2},1^{14}$ | $4$ | $7$ | $12$ | $( 1,13,25, 9,22, 6,17)( 2,14,26,10,21, 5,18)$ |
| 7D1 | $7^{4}$ | $4$ | $7$ | $24$ | $( 1,22,13, 6,25,17, 9)( 2,21,14, 5,26,18,10)( 3,15,28,12,24, 7,20)( 4,16,27,11,23, 8,19)$ |
| 7D2 | $7^{4}$ | $4$ | $7$ | $24$ | $( 1,13,25, 9,22, 6,17)( 2,14,26,10,21, 5,18)( 3,28,24,20,15,12, 7)( 4,27,23,19,16,11, 8)$ |
| 7D3 | $7^{4}$ | $4$ | $7$ | $24$ | $( 1, 6, 9,13,17,22,25)( 2, 5,10,14,18,21,26)( 3,12,20,28, 7,15,24)( 4,11,19,27, 8,16,23)$ |
| 7E1 | $7^{4}$ | $4$ | $7$ | $24$ | $( 1, 9,17,25, 6,13,22)( 2,10,18,26, 5,14,21)( 3,28,24,20,15,12, 7)( 4,27,23,19,16,11, 8)$ |
| 7E2 | $7^{4}$ | $4$ | $7$ | $24$ | $( 1,17, 6,22, 9,25,13)( 2,18, 5,21,10,26,14)( 3,24,15, 7,28,20,12)( 4,23,16, 8,27,19,11)$ |
| 7E3 | $7^{4}$ | $4$ | $7$ | $24$ | $( 1,25,22,17,13, 9, 6)( 2,26,21,18,14,10, 5)( 3,20, 7,24,12,28,15)( 4,19, 8,23,11,27,16)$ |
| 14A1 | $14^{2}$ | $2$ | $14$ | $26$ | $( 1,10,17,26, 6,14,22, 2, 9,18,25, 5,13,21)( 3,23,15, 8,28,19,12, 4,24,16, 7,27,20,11)$ |
| 14A3 | $14^{2}$ | $2$ | $14$ | $26$ | $( 1,26,22,18,13,10, 6, 2,25,21,17,14, 9, 5)( 3, 8,12,16,20,23,28, 4, 7,11,15,19,24,27)$ |
| 14A5 | $14^{2}$ | $2$ | $14$ | $26$ | $( 1,18, 6,21, 9,26,13, 2,17, 5,22,10,25,14)( 3,16,28,11,24, 8,20, 4,15,27,12,23, 7,19)$ |
| 14B1 | $14^{2}$ | $2$ | $14$ | $26$ | $( 1,10,17,26, 6,14,22, 2, 9,18,25, 5,13,21)( 3,11,20,27, 7,16,24, 4,12,19,28, 8,15,23)$ |
| 14B3 | $14^{2}$ | $2$ | $14$ | $26$ | $( 1,26,22,18,13,10, 6, 2,25,21,17,14, 9, 5)( 3,27,24,19,15,11, 7, 4,28,23,20,16,12, 8)$ |
| 14B5 | $14^{2}$ | $2$ | $14$ | $26$ | $( 1,14,25,10,22, 5,17, 2,13,26, 9,21, 6,18)( 3,16,28,11,24, 8,20, 4,15,27,12,23, 7,19)$ |
| 14C1 | $14,2^{7}$ | $4$ | $14$ | $20$ | $( 1,18, 6,21, 9,26,13, 2,17, 5,22,10,25,14)( 3, 4)( 7, 8)(11,12)(15,16)(19,20)(23,24)(27,28)$ |
| 14C3 | $14,2^{7}$ | $4$ | $14$ | $20$ | $( 1,21,13, 5,25,18, 9, 2,22,14, 6,26,17,10)( 3, 4)( 7, 8)(11,12)(15,16)(19,20)(23,24)(27,28)$ |
| 14C5 | $14,2^{7}$ | $4$ | $14$ | $20$ | $( 1, 2)( 3,27,24,19,15,11, 7, 4,28,23,20,16,12, 8)( 5, 6)( 9,10)(13,14)(17,18)(21,22)(25,26)$ |
| 14D1 | $14^{2}$ | $4$ | $14$ | $26$ | $( 1,26,22,18,13,10, 6, 2,25,21,17,14, 9, 5)( 3,23,15, 8,28,19,12, 4,24,16, 7,27,20,11)$ |
| 14D3 | $14^{2}$ | $4$ | $14$ | $26$ | $( 1, 5, 9,14,17,21,25, 2, 6,10,13,18,22,26)( 3,19, 7,23,12,27,15, 4,20, 8,24,11,28,16)$ |
| 14D5 | $14^{2}$ | $4$ | $14$ | $26$ | $( 1,10,17,26, 6,14,22, 2, 9,18,25, 5,13,21)( 3,19, 7,23,12,27,15, 4,20, 8,24,11,28,16)$ |
| 14E1 | $14^{2}$ | $4$ | $14$ | $26$ | $( 1, 5, 9,14,17,21,25, 2, 6,10,13,18,22,26)( 3,16,28,11,24, 8,20, 4,15,27,12,23, 7,19)$ |
| 14E3 | $14^{2}$ | $4$ | $14$ | $26$ | $( 1,14,25,10,22, 5,17, 2,13,26, 9,21, 6,18)( 3,11,20,27, 7,16,24, 4,12,19,28, 8,15,23)$ |
| 14E5 | $14^{2}$ | $4$ | $14$ | $26$ | $( 1,21,13, 5,25,18, 9, 2,22,14, 6,26,17,10)( 3, 8,12,16,20,23,28, 4, 7,11,15,19,24,27)$ |
| 14F1 | $14^{2}$ | $14$ | $14$ | $26$ | $( 1,23,17, 8, 6,19,22, 4, 9,16,25,27,13,11)( 2,24,18, 7, 5,20,21, 3,10,15,26,28,14,12)$ |
| 14F-1 | $14^{2}$ | $14$ | $14$ | $26$ | $( 1,11,13,27,25,16, 9, 4,22,19, 6, 8,17,23)( 2,12,14,28,26,15,10, 3,21,20, 5, 7,18,24)$ |
| 14F3 | $14^{2}$ | $14$ | $14$ | $26$ | $( 1, 8,22,16,13,23, 6, 4,25,11,17,19, 9,27)( 2, 7,21,15,14,24, 5, 3,26,12,18,20,10,28)$ |
| 14F-3 | $14^{2}$ | $14$ | $14$ | $26$ | $( 1,27, 9,19,17,11,25, 4, 6,23,13,16,22, 8)( 2,28,10,20,18,12,26, 3, 5,24,14,15,21, 7)$ |
| 14F5 | $14^{2}$ | $14$ | $14$ | $26$ | $( 1,19,25,23,22,27,17, 4,13, 8, 9,11, 6,16)( 2,20,26,24,21,28,18, 3,14, 7,10,12, 5,15)$ |
| 14F-5 | $14^{2}$ | $14$ | $14$ | $26$ | $( 1,16, 6,11, 9, 8,13, 4,17,27,22,23,25,19)( 2,15, 5,12,10, 7,14, 3,18,28,21,24,26,20)$ |
| 28A1 | $28$ | $14$ | $28$ | $27$ | $( 1, 8,10,15,17,23,26, 3, 6,11,14,20,22,27, 2, 7, 9,16,18,24,25, 4, 5,12,13,19,21,28)$ |
| 28A3 | $28$ | $14$ | $28$ | $27$ | $( 1,15,26,11,22, 7,18, 4,13,28,10,23, 6,20, 2,16,25,12,21, 8,17, 3,14,27, 9,24, 5,19)$ |
| 28A5 | $28$ | $14$ | $28$ | $27$ | $( 1,23,14, 7,25,19,10, 3,22,16, 5,28,17,11, 2,24,13, 8,26,20, 9, 4,21,15, 6,27,18,12)$ |
| 28A9 | $28$ | $14$ | $28$ | $27$ | $( 1,11,18,28, 6,16,21, 3, 9,19,26, 7,13,23, 2,12,17,27, 5,15,22, 4,10,20,25, 8,14,24)$ |
| 28A11 | $28$ | $14$ | $28$ | $27$ | $( 1,16,26,12,22, 8,18, 3,13,27,10,24, 6,19, 2,15,25,11,21, 7,17, 4,14,28, 9,23, 5,20)$ |
| 28A13 | $28$ | $14$ | $28$ | $27$ | $( 1,27,21,20,13,11, 5, 3,25,23,18,15, 9, 8, 2,28,22,19,14,12, 6, 4,26,24,17,16,10, 7)$ |
Malle's constant $a(G)$: $1/12$
Character table
47 x 47 character table
Regular extensions
Data not computed