Group action invariants
Degree $n$: | $28$ | |
Transitive number $t$: | $6$ | |
Group: | $D_{14}:C_2$ | |
Parity: | $-1$ | |
Primitive: | no | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $14$ | |
Generators: | (1,24)(2,23)(3,22)(4,21)(5,19)(6,20)(7,17)(8,18)(9,16)(10,15)(11,28)(12,27)(13,26)(14,25), (1,10,3,12,5,13,8)(2,9,4,11,6,14,7)(15,23,18,25,19,28,22,16,24,17,26,20,27,21) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ $14$: $D_{7}$ $28$: $D_{14}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 7: $D_{7}$
Degree 14: $D_{7}$
Low degree siblings
28T7Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)$ |
$ 14, 7, 7 $ | $2$ | $14$ | $( 1, 3, 5, 8,10,12,13)( 2, 4, 6, 7, 9,11,14)(15,17,19,21,24,25,27,16,18,20,22, 23,26,28)$ |
$ 7, 7, 7, 7 $ | $2$ | $7$ | $( 1, 3, 5, 8,10,12,13)( 2, 4, 6, 7, 9,11,14)(15,18,19,22,24,26,27) (16,17,20,21,23,25,28)$ |
$ 14, 14 $ | $2$ | $14$ | $( 1, 4, 5, 7,10,11,13, 2, 3, 6, 8, 9,12,14)(15,17,19,21,24,25,27,16,18,20,22, 23,26,28)$ |
$ 14, 7, 7 $ | $2$ | $14$ | $( 1, 4, 5, 7,10,11,13, 2, 3, 6, 8, 9,12,14)(15,18,19,22,24,26,27) (16,17,20,21,23,25,28)$ |
$ 7, 7, 7, 7 $ | $2$ | $7$ | $( 1, 5,10,13, 3, 8,12)( 2, 6, 9,14, 4, 7,11)(15,19,24,27,18,22,26) (16,20,23,28,17,21,25)$ |
$ 14, 7, 7 $ | $2$ | $14$ | $( 1, 5,10,13, 3, 8,12)( 2, 6, 9,14, 4, 7,11)(15,20,24,28,18,21,26,16,19,23,27, 17,22,25)$ |
$ 14, 7, 7 $ | $2$ | $14$ | $( 1, 6,10,14, 3, 7,12, 2, 5, 9,13, 4, 8,11)(15,19,24,27,18,22,26) (16,20,23,28,17,21,25)$ |
$ 14, 14 $ | $2$ | $14$ | $( 1, 6,10,14, 3, 7,12, 2, 5, 9,13, 4, 8,11)(15,20,24,28,18,21,26,16,19,23,27, 17,22,25)$ |
$ 14, 14 $ | $2$ | $14$ | $( 1, 7,13, 6,12, 4,10, 2, 8,14, 5,11, 3, 9)(15,21,27,20,26,17,24,16,22,28,19, 25,18,23)$ |
$ 14, 7, 7 $ | $2$ | $14$ | $( 1, 7,13, 6,12, 4,10, 2, 8,14, 5,11, 3, 9)(15,22,27,19,26,18,24) (16,21,28,20,25,17,23)$ |
$ 14, 7, 7 $ | $2$ | $14$ | $( 1, 8,13, 5,12, 3,10)( 2, 7,14, 6,11, 4, 9)(15,21,27,20,26,17,24,16,22,28,19, 25,18,23)$ |
$ 7, 7, 7, 7 $ | $2$ | $7$ | $( 1, 8,13, 5,12, 3,10)( 2, 7,14, 6,11, 4, 9)(15,22,27,19,26,18,24) (16,21,28,20,25,17,23)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $14$ | $2$ | $( 1,15)( 2,16)( 3,27)( 4,28)( 5,26)( 6,25)( 7,23)( 8,24)( 9,21)(10,22)(11,20) (12,19)(13,18)(14,17)$ |
$ 4, 4, 4, 4, 4, 4, 4 $ | $14$ | $4$ | $( 1,15, 2,16)( 3,27, 4,28)( 5,26, 6,25)( 7,23, 8,24)( 9,21,10,22)(11,20,12,19) (13,18,14,17)$ |
Group invariants
Order: | $56=2^{3} \cdot 7$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | yes | |
GAP id: | [56, 7] |
Character table: |
2 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . 1a 2a 2b 14a 7a 14b 14c 7b 14d 14e 14f 14g 14h 14i 7c 2c 4a 2P 1a 1a 1a 7b 7b 7b 7b 7c 7c 7c 7c 7a 7a 7a 7a 1a 2b 3P 1a 2a 2b 14i 7c 14g 14h 7a 14c 14a 14b 14f 14e 14d 7b 2c 4a 5P 1a 2a 2b 14e 7b 14f 14d 7c 14i 14h 14g 14b 14c 14a 7a 2c 4a 7P 1a 2a 2b 2a 1a 2b 2a 1a 2a 2a 2b 2b 2a 2a 1a 2c 4a 11P 1a 2a 2b 14h 7c 14g 14i 7a 14a 14c 14b 14f 14d 14e 7b 2c 4a 13P 1a 2a 2b 14c 7a 14b 14a 7b 14e 14d 14f 14g 14i 14h 7c 2c 4a X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 X.3 1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 X.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 X.5 2 . -2 . 2 -2 . 2 . . -2 -2 . . 2 . . X.6 2 -2 2 A -A -A A -B B B -B -C C C -C . . X.7 2 -2 2 B -B -B B -C C C -C -A A A -A . . X.8 2 -2 2 C -C -C C -A A A -A -B B B -B . . X.9 2 2 2 -A -A -A -A -B -B -B -B -C -C -C -C . . X.10 2 2 2 -B -B -B -B -C -C -C -C -A -A -A -A . . X.11 2 2 2 -C -C -C -C -A -A -A -A -B -B -B -B . . X.12 2 . -2 D -A A -D -B E -E B C -F F -C . . X.13 2 . -2 E -B B -E -C -F F C A D -D -A . . X.14 2 . -2 F -C C -F -A -D D A B -E E -B . . X.15 2 . -2 -F -C C F -A D -D A B E -E -B . . X.16 2 . -2 -E -B B E -C F -F C A -D D -A . . X.17 2 . -2 -D -A A D -B -E E B C F -F -C . . A = -E(7)-E(7)^6 B = -E(7)^2-E(7)^5 C = -E(7)^3-E(7)^4 D = -E(7)+E(7)^6 E = -E(7)^2+E(7)^5 F = -E(7)^3+E(7)^4 |