Group action invariants
| Degree $n$ : | $28$ | |
| Transitive number $t$ : | $7$ | |
| Group : | $D_{14}:C_2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11,22,3,14,23,5,15,25,7,17,28,9,20)(2,12,21,4,13,24,6,16,26,8,18,27,10,19), (1,14)(2,13)(3,12)(4,11)(5,9)(6,10)(7,8)(15,27)(16,28)(17,25)(18,26)(19,23)(20,24) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $D_{4}$ 14: $D_{7}$ 28: $D_{14}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 7: $D_{7}$
Degree 14: $D_{14}$
Low degree siblings
28T6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $14$ | $2$ | $( 3,27)( 4,28)( 5,25)( 6,26)( 7,24)( 8,23)( 9,22)(10,21)(11,19)(12,20)(13,18) (14,17)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)$ |
| $ 4, 4, 4, 4, 4, 4, 4 $ | $14$ | $4$ | $( 1, 3, 2, 4)( 5,28, 6,27)( 7,26, 8,25)( 9,23,10,24)(11,21,12,22)(13,19,14,20) (15,18,16,17)$ |
| $ 14, 14 $ | $2$ | $14$ | $( 1, 3, 5, 7, 9,11,14,15,17,20,22,23,25,28)( 2, 4, 6, 8,10,12,13,16,18,19,21, 24,26,27)$ |
| $ 14, 14 $ | $2$ | $14$ | $( 1, 4, 5, 8, 9,12,14,16,17,19,22,24,25,27)( 2, 3, 6, 7,10,11,13,15,18,20,21, 23,26,28)$ |
| $ 7, 7, 7, 7 $ | $2$ | $7$ | $( 1, 5, 9,14,17,22,25)( 2, 6,10,13,18,21,26)( 3, 7,11,15,20,23,28) ( 4, 8,12,16,19,24,27)$ |
| $ 14, 14 $ | $2$ | $14$ | $( 1, 6, 9,13,17,21,25, 2, 5,10,14,18,22,26)( 3, 8,11,16,20,24,28, 4, 7,12,15, 19,23,27)$ |
| $ 14, 14 $ | $2$ | $14$ | $( 1, 7,14,20,25, 3, 9,15,22,28, 5,11,17,23)( 2, 8,13,19,26, 4,10,16,21,27, 6, 12,18,24)$ |
| $ 14, 14 $ | $2$ | $14$ | $( 1, 8,14,19,25, 4, 9,16,22,27, 5,12,17,24)( 2, 7,13,20,26, 3,10,15,21,28, 6, 11,18,23)$ |
| $ 7, 7, 7, 7 $ | $2$ | $7$ | $( 1, 9,17,25, 5,14,22)( 2,10,18,26, 6,13,21)( 3,11,20,28, 7,15,23) ( 4,12,19,27, 8,16,24)$ |
| $ 14, 14 $ | $2$ | $14$ | $( 1,10,17,26, 5,13,22, 2, 9,18,25, 6,14,21)( 3,12,20,27, 7,16,23, 4,11,19,28, 8,15,24)$ |
| $ 14, 14 $ | $2$ | $14$ | $( 1,11,22, 3,14,23, 5,15,25, 7,17,28, 9,20)( 2,12,21, 4,13,24, 6,16,26, 8,18, 27,10,19)$ |
| $ 14, 14 $ | $2$ | $14$ | $( 1,12,22, 4,14,24, 5,16,25, 8,17,27, 9,19)( 2,11,21, 3,13,23, 6,15,26, 7,18, 28,10,20)$ |
| $ 14, 14 $ | $2$ | $14$ | $( 1,13,25,10,22, 6,17, 2,14,26, 9,21, 5,18)( 3,16,28,12,23, 8,20, 4,15,27,11, 24, 7,19)$ |
| $ 7, 7, 7, 7 $ | $2$ | $7$ | $( 1,14,25, 9,22, 5,17)( 2,13,26,10,21, 6,18)( 3,15,28,11,23, 7,20) ( 4,16,27,12,24, 8,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,15)( 2,16)( 3,17)( 4,18)( 5,20)( 6,19)( 7,22)( 8,21)( 9,23)(10,24)(11,25) (12,26)(13,27)(14,28)$ |
Group invariants
| Order: | $56=2^{3} \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [56, 7] |
| Character table: |
2 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7 1 . 1 . 1 1 1 1 1 1 1 1 1 1 1 1 1
1a 2a 2b 4a 14a 14b 7a 14c 14d 14e 7b 14f 14g 14h 14i 7c 2c
2P 1a 1a 1a 2b 7a 7a 7b 7b 7c 7c 7c 7c 7b 7b 7a 7a 1a
3P 1a 2a 2b 4a 14d 14e 7c 14i 14h 14g 7a 14c 14a 14b 14f 7b 2c
5P 1a 2a 2b 4a 14g 14h 7b 14f 14a 14b 7c 14i 14e 14d 14c 7a 2c
7P 1a 2a 2b 4a 2c 2c 1a 2b 2c 2c 1a 2b 2c 2c 2b 1a 2c
11P 1a 2a 2b 4a 14e 14d 7c 14i 14g 14h 7a 14c 14b 14a 14f 7b 2c
13P 1a 2a 2b 4a 14b 14a 7a 14c 14e 14d 7b 14f 14h 14g 14i 7c 2c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.3 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1
X.4 1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1
X.5 2 . -2 . . . 2 -2 . . 2 -2 . . -2 2 .
X.6 2 . 2 . A A -B -B C C -C -C B B -A -A -2
X.7 2 . 2 . B B -C -C A A -A -A C C -B -B -2
X.8 2 . 2 . C C -A -A B B -B -B A A -C -C -2
X.9 2 . 2 . -A -A -B -B -C -C -C -C -B -B -A -A 2
X.10 2 . 2 . -B -B -C -C -A -A -A -A -C -C -B -B 2
X.11 2 . 2 . -C -C -A -A -B -B -B -B -A -A -C -C 2
X.12 2 . -2 . D -D -C C F -F -A A -E E B -B .
X.13 2 . -2 . E -E -A A -D D -B B F -F C -C .
X.14 2 . -2 . F -F -B B E -E -C C D -D A -A .
X.15 2 . -2 . -F F -B B -E E -C C -D D A -A .
X.16 2 . -2 . -E E -A A D -D -B B -F F C -C .
X.17 2 . -2 . -D D -C C -F F -A A E -E B -B .
A = -E(7)^3-E(7)^4
B = -E(7)-E(7)^6
C = -E(7)^2-E(7)^5
D = -E(7)+E(7)^6
E = -E(7)^2+E(7)^5
F = -E(7)^3+E(7)^4
|