Group action invariants
| Degree $n$ : | $28$ | |
| Transitive number $t$ : | $25$ | |
| Group : | $C_2^2:F_7$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,20,13,15,5,28)(2,19,14,16,6,27)(3,10,7,17,24,22)(4,9,8,18,23,21)(11,25)(12,26), (1,16,2,15)(3,25,23,13,19,22,4,26,24,14,20,21)(5,7,17,12,9,27,6,8,18,11,10,28) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $C_6$ x 3 8: $D_{4}$ 12: $C_6\times C_2$ 24: $D_4 \times C_3$ 42: $F_7$ 84: $F_7 \times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 7: $F_7$
Degree 14: $F_7 \times C_2$
Low degree siblings
28T21Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 6, 6, 6, 6, 2, 1, 1 $ | $14$ | $6$ | $( 3, 8,19,28,24,12)( 4, 7,20,27,23,11)( 5,13, 9,26,18,21)( 6,14,10,25,17,22) (15,16)$ |
| $ 6, 6, 6, 6, 2, 1, 1 $ | $14$ | $6$ | $( 3,12,24,28,19, 8)( 4,11,23,27,20, 7)( 5,21,18,26, 9,13)( 6,22,17,25,10,14) (15,16)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1 $ | $7$ | $3$ | $( 3,19,24)( 4,20,23)( 5, 9,18)( 6,10,17)( 7,27,11)( 8,28,12)(13,26,21) (14,25,22)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1 $ | $7$ | $3$ | $( 3,24,19)( 4,23,20)( 5,18, 9)( 6,17,10)( 7,11,27)( 8,12,28)(13,21,26) (14,22,25)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $14$ | $2$ | $( 3,28)( 4,27)( 5,26)( 6,25)( 7,23)( 8,24)( 9,21)(10,22)(11,20)(12,19)(13,18) (14,17)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)$ |
| $ 6, 6, 6, 6, 2, 2 $ | $7$ | $6$ | $( 1, 2)( 3,20,24, 4,19,23)( 5,10,18, 6, 9,17)( 7,28,11, 8,27,12) (13,25,21,14,26,22)(15,16)$ |
| $ 6, 6, 6, 6, 2, 2 $ | $7$ | $6$ | $( 1, 2)( 3,23,19, 4,24,20)( 5,17, 9, 6,18,10)( 7,12,27, 8,11,28) (13,22,26,14,21,25)(15,16)$ |
| $ 4, 4, 4, 4, 4, 4, 4 $ | $14$ | $4$ | $( 1, 3, 2, 4)( 5,27, 6,28)( 7,25, 8,26)( 9,24,10,23)(11,22,12,21)(13,19,14,20) (15,18,16,17)$ |
| $ 14, 14 $ | $6$ | $14$ | $( 1, 3, 5, 7, 9,11,13,16,18,19,21,24,26,27)( 2, 4, 6, 8,10,12,14,15,17,20,22, 23,25,28)$ |
| $ 12, 12, 4 $ | $14$ | $12$ | $( 1, 3,10,28,26,19, 2, 4, 9,27,25,20)( 5,16,17,23,13,11, 6,15,18,24,14,12) ( 7,22, 8,21)$ |
| $ 12, 12, 4 $ | $14$ | $12$ | $( 1, 3,14, 8, 5,24, 2, 4,13, 7, 6,23)( 9,16,17,28,21,19,10,15,18,27,22,20) (11,25,12,26)$ |
| $ 6, 6, 6, 6, 2, 2 $ | $14$ | $6$ | $( 1, 3,21,16,18, 7)( 2, 4,22,15,17, 8)( 5,11, 9,19,26,24)( 6,12,10,20,25,23) (13,27)(14,28)$ |
| $ 6, 6, 6, 6, 2, 2 $ | $14$ | $6$ | $( 1, 3,26,16,18,11)( 2, 4,25,15,17,12)( 5,19)( 6,20)( 7,13,24,21,27, 9) ( 8,14,23,22,28,10)$ |
| $ 14, 14 $ | $6$ | $14$ | $( 1, 4, 5, 8, 9,12,13,15,18,20,21,23,26,28)( 2, 3, 6, 7,10,11,14,16,17,19,22, 24,25,27)$ |
| $ 7, 7, 7, 7 $ | $6$ | $7$ | $( 1, 5, 9,13,18,21,26)( 2, 6,10,14,17,22,25)( 3, 7,11,16,19,24,27) ( 4, 8,12,15,20,23,28)$ |
| $ 14, 14 $ | $6$ | $14$ | $( 1, 6, 9,14,18,22,26, 2, 5,10,13,17,21,25)( 3, 8,11,15,19,23,27, 4, 7,12,16, 20,24,28)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,15)( 2,16)( 3,17)( 4,18)( 5,20)( 6,19)( 7,22)( 8,21)( 9,23)(10,24)(11,25) (12,26)(13,28)(14,27)$ |
Group invariants
| Order: | $168=2^{3} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [168, 11] |
| Character table: |
2 3 2 2 3 3 2 3 3 3 2 2 2 2 2 2 2 2 2 2
3 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1 . . . 1
7 1 . . . . . 1 . . . 1 . . . . 1 1 1 1
1a 6a 6b 3a 3b 2a 2b 6c 6d 4a 14a 12a 12b 6e 6f 14b 7a 14c 2c
2P 1a 3a 3b 3b 3a 1a 1a 3b 3a 2b 7a 6c 6d 3b 3a 7a 7a 7a 1a
3P 1a 2a 2a 1a 1a 2a 2b 2b 2b 4a 14b 4a 4a 2c 2c 14a 7a 14c 2c
5P 1a 6b 6a 3b 3a 2a 2b 6d 6c 4a 14b 12b 12a 6f 6e 14a 7a 14c 2c
7P 1a 6a 6b 3a 3b 2a 2b 6c 6d 4a 2c 12a 12b 6e 6f 2c 1a 2b 2c
11P 1a 6b 6a 3b 3a 2a 2b 6d 6c 4a 14a 12b 12a 6f 6e 14b 7a 14c 2c
13P 1a 6a 6b 3a 3b 2a 2b 6c 6d 4a 14b 12a 12b 6e 6f 14a 7a 14c 2c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 1 1 1 -1 1 -1 -1 1 1 1 1 1 1
X.3 1 -1 -1 1 1 -1 1 1 1 1 -1 1 1 -1 -1 -1 1 1 -1
X.4 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 -1
X.5 1 A /A -/A -A -1 1 -/A -A -1 1 A /A -/A -A 1 1 1 1
X.6 1 /A A -A -/A -1 1 -A -/A -1 1 /A A -A -/A 1 1 1 1
X.7 1 A /A -/A -A -1 1 -/A -A 1 -1 -A -/A /A A -1 1 1 -1
X.8 1 /A A -A -/A -1 1 -A -/A 1 -1 -/A -A A /A -1 1 1 -1
X.9 1 -/A -A -A -/A 1 1 -A -/A -1 -1 /A A A /A -1 1 1 -1
X.10 1 -A -/A -/A -A 1 1 -/A -A -1 -1 A /A /A A -1 1 1 -1
X.11 1 -/A -A -A -/A 1 1 -A -/A 1 1 -/A -A -A -/A 1 1 1 1
X.12 1 -A -/A -/A -A 1 1 -/A -A 1 1 -A -/A -/A -A 1 1 1 1
X.13 2 . . 2 2 . -2 -2 -2 . . . . . . . 2 -2 .
X.14 2 . . B /B . -2 -B -/B . . . . . . . 2 -2 .
X.15 2 . . /B B . -2 -/B -B . . . . . . . 2 -2 .
X.16 6 . . . . . 6 . . . -1 . . . . -1 -1 -1 6
X.17 6 . . . . . 6 . . . 1 . . . . 1 -1 -1 -6
X.18 6 . . . . . -6 . . . C . . . . -C -1 1 .
X.19 6 . . . . . -6 . . . -C . . . . C -1 1 .
A = -E(3)
= (1-Sqrt(-3))/2 = -b3
B = 2*E(3)^2
= -1-Sqrt(-3) = -1-i3
C = -E(7)-E(7)^2+E(7)^3-E(7)^4+E(7)^5+E(7)^6
= -Sqrt(-7) = -i7
|