Group action invariants
| Degree $n$ : | $28$ | |
| Transitive number $t$ : | $4$ | |
| Group : | $D_{14}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,25)(2,26)(3,24)(4,23)(5,22)(6,21)(7,20)(8,19)(9,18)(10,17)(11,16)(12,15)(13,14)(27,28), (1,4,6,8,10,12,14,16,18,20,22,24,26,27)(2,3,5,7,9,11,13,15,17,19,21,23,25,28) | |
| $|\Aut(F/K)|$: | $28$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 14: $D_{7}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 7: $D_{7}$
Low degree siblings
14T3 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $7$ | $2$ | $( 1, 2)( 3,27)( 4,28)( 5,26)( 6,25)( 7,24)( 8,23)( 9,22)(10,21)(11,20)(12,19) (13,18)(14,17)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $7$ | $2$ | $( 1, 3)( 2, 4)( 5,27)( 6,28)( 7,26)( 8,25)( 9,24)(10,23)(11,22)(12,21)(13,20) (14,19)(15,18)(16,17)$ |
| $ 14, 14 $ | $2$ | $14$ | $( 1, 4, 6, 8,10,12,14,16,18,20,22,24,26,27)( 2, 3, 5, 7, 9,11,13,15,17,19,21, 23,25,28)$ |
| $ 7, 7, 7, 7 $ | $2$ | $7$ | $( 1, 6,10,14,18,22,26)( 2, 5, 9,13,17,21,25)( 3, 7,11,15,19,23,28) ( 4, 8,12,16,20,24,27)$ |
| $ 14, 14 $ | $2$ | $14$ | $( 1, 8,14,20,26, 4,10,16,22,27, 6,12,18,24)( 2, 7,13,19,25, 3, 9,15,21,28, 5, 11,17,23)$ |
| $ 7, 7, 7, 7 $ | $2$ | $7$ | $( 1,10,18,26, 6,14,22)( 2, 9,17,25, 5,13,21)( 3,11,19,28, 7,15,23) ( 4,12,20,27, 8,16,24)$ |
| $ 14, 14 $ | $2$ | $14$ | $( 1,12,22, 4,14,24, 6,16,26, 8,18,27,10,20)( 2,11,21, 3,13,23, 5,15,25, 7,17, 28, 9,19)$ |
| $ 7, 7, 7, 7 $ | $2$ | $7$ | $( 1,14,26,10,22, 6,18)( 2,13,25, 9,21, 5,17)( 3,15,28,11,23, 7,19) ( 4,16,27,12,24, 8,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,16)( 2,15)( 3,17)( 4,18)( 5,19)( 6,20)( 7,21)( 8,22)( 9,23)(10,24)(11,25) (12,26)(13,28)(14,27)$ |
Group invariants
| Order: | $28=2^{2} \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [28, 3] |
| Character table: |
2 2 2 2 1 1 1 1 1 1 2
7 1 . . 1 1 1 1 1 1 1
1a 2a 2b 14a 7a 14b 7b 14c 7c 2c
2P 1a 1a 1a 7a 7b 7c 7c 7b 7a 1a
3P 1a 2a 2b 14b 7c 14c 7a 14a 7b 2c
5P 1a 2a 2b 14c 7b 14a 7c 14b 7a 2c
7P 1a 2a 2b 2c 1a 2c 1a 2c 1a 2c
11P 1a 2a 2b 14b 7c 14c 7a 14a 7b 2c
13P 1a 2a 2b 14a 7a 14b 7b 14c 7c 2c
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 1 1 1 1
X.3 1 -1 1 -1 1 -1 1 -1 1 -1
X.4 1 1 -1 -1 1 -1 1 -1 1 -1
X.5 2 . . A -B C -C B -A -2
X.6 2 . . B -C A -A C -B -2
X.7 2 . . C -A B -B A -C -2
X.8 2 . . -C -A -B -B -A -C 2
X.9 2 . . -B -C -A -A -C -B 2
X.10 2 . . -A -B -C -C -B -A 2
A = -E(7)-E(7)^6
B = -E(7)^2-E(7)^5
C = -E(7)^3-E(7)^4
|