Show commands: Magma
Group invariants
Abstract group: | $C_2\times F_7$ |
| |
Order: | $84=2^{2} \cdot 3 \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $28$ |
| |
Transitive number $t$: | $15$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $4$ |
| |
Generators: | $(1,2)(3,8,19,27,23,12)(4,7,20,28,24,11)(5,14,9,26,17,22)(6,13,10,25,18,21)(15,16)$, $(1,12,18,16,26,4)(2,11,17,15,25,3)(5,19)(6,20)(7,9,28,21,23,13)(8,10,27,22,24,14)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $C_6$ x 3 $12$: $C_6\times C_2$ $42$: $F_7$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 7: $F_7$
Degree 14: $F_7$, $F_7 \times C_2$ x 2
Low degree siblings
14T7 x 2, 42T10 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{28}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{14}$ | $1$ | $2$ | $14$ | $( 1,16)( 2,15)( 3,17)( 4,18)( 5,19)( 6,20)( 7,21)( 8,22)( 9,23)(10,24)(11,25)(12,26)(13,28)(14,27)$ |
2B | $2^{14}$ | $7$ | $2$ | $14$ | $( 1, 2)( 3,27)( 4,28)( 5,26)( 6,25)( 7,24)( 8,23)( 9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)$ |
2C | $2^{14}$ | $7$ | $2$ | $14$ | $( 1,11)( 2,12)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,27)(14,28)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)$ |
3A1 | $3^{8},1^{4}$ | $7$ | $3$ | $16$ | $( 3,19,23)( 4,20,24)( 5, 9,17)( 6,10,18)( 7,28,11)( 8,27,12)(13,25,21)(14,26,22)$ |
3A-1 | $3^{8},1^{4}$ | $7$ | $3$ | $16$ | $( 3,23,19)( 4,24,20)( 5,17, 9)( 6,18,10)( 7,11,28)( 8,12,27)(13,21,25)(14,22,26)$ |
6A1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1, 2)( 3, 8,19,27,23,12)( 4, 7,20,28,24,11)( 5,14, 9,26,17,22)( 6,13,10,25,18,21)(15,16)$ |
6A-1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1, 2)( 3,12,23,27,19, 8)( 4,11,24,28,20, 7)( 5,22,17,26, 9,14)( 6,21,18,25,10,13)(15,16)$ |
6B1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1,20,14,16, 6,27)( 2,19,13,15, 5,28)( 3, 9, 7,17,23,21)( 4,10, 8,18,24,22)(11,25)(12,26)$ |
6B-1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1,20,22,16, 6, 8)( 2,19,21,15, 5, 7)( 3,13,11,17,28,25)( 4,14,12,18,27,26)( 9,23)(10,24)$ |
6C1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1,19,18,11,22,23)( 2,20,17,12,21,24)( 3,26, 7,10,15, 6)( 4,25, 8, 9,16, 5)(13,27)(14,28)$ |
6C-1 | $6^{4},2^{2}$ | $7$ | $6$ | $22$ | $( 1,19,26,28,10, 3)( 2,20,25,27, 9, 4)( 5,12,13,24,17,16)( 6,11,14,23,18,15)( 7,22)( 8,21)$ |
7A | $7^{4}$ | $6$ | $7$ | $24$ | $( 1,10,18,26, 6,14,22)( 2, 9,17,25, 5,13,21)( 3,11,19,28, 7,15,23)( 4,12,20,27, 8,16,24)$ |
14A | $14^{2}$ | $6$ | $14$ | $26$ | $( 1,20,10,27,18, 8,26,16, 6,24,14, 4,22,12)( 2,19, 9,28,17, 7,25,15, 5,23,13, 3,21,11)$ |
Malle's constant $a(G)$: $1/14$
Character table
1A | 2A | 2B | 2C | 3A1 | 3A-1 | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 7A | 14A | ||
Size | 1 | 1 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 6 | 6 | |
2 P | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 3A-1 | 3A1 | 3A1 | 3A-1 | 7A | 7A | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 2B | 2B | 2A | 2A | 2C | 2C | 7A | 14A | |
7 P | 1A | 2A | 2B | 2C | 3A1 | 3A-1 | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 1A | 2A | |
Type | |||||||||||||||
84.7.1a | R | ||||||||||||||
84.7.1b | R | ||||||||||||||
84.7.1c | R | ||||||||||||||
84.7.1d | R | ||||||||||||||
84.7.1e1 | C | ||||||||||||||
84.7.1e2 | C | ||||||||||||||
84.7.1f1 | C | ||||||||||||||
84.7.1f2 | C | ||||||||||||||
84.7.1g1 | C | ||||||||||||||
84.7.1g2 | C | ||||||||||||||
84.7.1h1 | C | ||||||||||||||
84.7.1h2 | C | ||||||||||||||
84.7.6a | R | ||||||||||||||
84.7.6b | R |
Regular extensions
Data not computed