Group action invariants
| Degree $n$ : | $28$ | |
| Transitive number $t$ : | $46$ | |
| Group : | $SO(3,7)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,27,23,7,14,9,21,18)(2,20,15,12,16,10,6,28)(3,5,25,22,17,13,8,26)(4,11,24,19), (1,2,24,21,19,28,14,13)(3,25,16,12)(4,9,6,22,26,20,18,11)(5,15,8,7,23,27,17,10) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 7: None
Degree 14: None
Low degree siblings
8T43, 14T16, 16T713, 21T20, 24T707, 28T42, 42T81, 42T82, 42T83Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $56$ | $3$ | $( 2, 3, 5)( 4, 6, 7)( 8,12,13)( 9,10,11)(14,24,19)(15,26,20)(16,21,17) (18,27,22)(23,28,25)$ |
| $ 6, 6, 6, 6, 3, 1 $ | $56$ | $6$ | $( 2, 4, 5, 7, 3, 6)( 8, 9,13,11,12,10)(14,20,19,26,24,15)(16,25,17,28,21,23) (18,27,22)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $28$ | $2$ | $( 2, 7)( 3, 4)( 5, 6)( 8,11)( 9,12)(10,13)(14,26)(15,19)(16,28)(17,23)(20,24) (21,25)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $21$ | $2$ | $( 2, 8)( 3,13)( 4,10)( 5,12)( 6, 9)( 7,11)(14,19)(15,26)(16,23)(17,28)(21,25) (22,27)$ |
| $ 7, 7, 7, 7 $ | $48$ | $7$ | $( 1, 2, 5, 4, 3, 6, 7)( 8,22,11,15,28,16,19)( 9,25,14,18,26,21,12) (10,24,20,13,23,27,17)$ |
| $ 4, 4, 4, 4, 4, 4, 2, 2 $ | $42$ | $4$ | $( 1, 2,23,10)( 3, 9)( 4,25,19, 8)( 5,22,26,13)( 6,15,28,12)( 7,24,18,11) (14,20,21,16)(17,27)$ |
| $ 8, 8, 8, 4 $ | $42$ | $8$ | $( 1, 2,24,21,19,28,14,13)( 3,25,16,12)( 4, 9, 6,22,26,20,18,11) ( 5,15, 8, 7,23,27,17,10)$ |
| $ 8, 8, 8, 4 $ | $42$ | $8$ | $( 1, 2,25,27,26,18,17,12)( 3,15,20, 8)( 4,22,11, 6,23,14,21,10) ( 5,24,28,16,19,13, 7, 9)$ |
Group invariants
| Order: | $336=2^{4} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [336, 208] |
| Character table: |
2 4 1 1 2 4 . 3 3 3
3 1 1 1 1 . . . . .
7 1 . . . . 1 . . .
1a 3a 6a 2a 2b 7a 4a 8a 8b
2P 1a 3a 3a 1a 1a 7a 2b 4a 4a
3P 1a 1a 2a 2a 2b 7a 4a 8b 8a
5P 1a 3a 6a 2a 2b 7a 4a 8b 8a
7P 1a 3a 6a 2a 2b 1a 4a 8a 8b
X.1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 -1 -1
X.3 6 . . . -2 -1 2 . .
X.4 6 . . . 2 -1 . A -A
X.5 6 . . . 2 -1 . -A A
X.6 7 1 -1 -1 -1 . -1 1 1
X.7 7 1 1 1 -1 . -1 -1 -1
X.8 8 -1 -1 2 . 1 . . .
X.9 8 -1 1 -2 . 1 . . .
A = -E(8)+E(8)^3
= -Sqrt(2) = -r2
|