Group action invariants
Degree $n$: | $28$ | |
Transitive number $t$: | $45$ | |
Group: | $D_7\times S_4$ | |
Parity: | $-1$ | |
Primitive: | no | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $1$ | |
Generators: | (1,23,2,24)(3,22,4,21)(5,19,6,20)(7,18,8,17)(9,15,10,16)(11,14,12,13)(25,27,26,28), (1,7,12,14,17,23,28,2,5,11,16,18,21,27,4,6,9,15,20,22,25,3,8,10,13,19,24,26) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $14$: $D_{7}$ $24$: $S_4$ $28$: $D_{14}$ $48$: $S_4\times C_2$ $84$: 21T8 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $S_4$
Degree 7: $D_{7}$
Degree 14: None
Low degree siblings
42T74, 42T75, 42T76, 42T77Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $7$ | $2$ | $( 5,25)( 6,26)( 7,27)( 8,28)( 9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19) (16,20)$ |
$ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 3, 4)( 7, 8)(11,12)(15,16)(19,20)(23,24)(27,28)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $42$ | $2$ | $( 3, 4)( 5,25)( 6,26)( 7,28)( 8,27)( 9,21)(10,22)(11,24)(12,23)(13,17)(14,18) (15,20)(16,19)$ |
$ 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 2, 3, 4)( 6, 7, 8)(10,11,12)(14,15,16)(18,19,20)(22,23,24)(26,27,28)$ |
$ 6, 6, 6, 3, 2, 2, 2, 1 $ | $56$ | $6$ | $( 2, 3, 4)( 5,25)( 6,27, 8,26, 7,28)( 9,21)(10,23,12,22,11,24)(13,17) (14,19,16,18,15,20)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $21$ | $2$ | $( 1, 2)( 3, 4)( 5,26)( 6,25)( 7,28)( 8,27)( 9,22)(10,21)(11,24)(12,23)(13,18) (14,17)(15,20)(16,19)$ |
$ 4, 4, 4, 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 2, 3, 4)( 5, 6, 7, 8)( 9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) (25,26,27,28)$ |
$ 4, 4, 4, 4, 4, 4, 4 $ | $42$ | $4$ | $( 1, 2, 3, 4)( 5,26, 7,28)( 6,27, 8,25)( 9,22,11,24)(10,23,12,21)(13,18,15,20) (14,19,16,17)$ |
$ 7, 7, 7, 7 $ | $2$ | $7$ | $( 1, 5, 9,13,17,21,25)( 2, 6,10,14,18,22,26)( 3, 7,11,15,19,23,27) ( 4, 8,12,16,20,24,28)$ |
$ 14, 7, 7 $ | $12$ | $14$ | $( 1, 5, 9,13,17,21,25)( 2, 6,10,14,18,22,26)( 3, 8,11,16,19,24,27, 4, 7,12,15, 20,23,28)$ |
$ 21, 7 $ | $16$ | $21$ | $( 1, 5, 9,13,17,21,25)( 2, 7,12,14,19,24,26, 3, 8,10,15,20,22,27, 4, 6,11,16, 18,23,28)$ |
$ 14, 14 $ | $6$ | $14$ | $( 1, 6, 9,14,17,22,25, 2, 5,10,13,18,21,26)( 3, 8,11,16,19,24,27, 4, 7,12,15, 20,23,28)$ |
$ 28 $ | $12$ | $28$ | $( 1, 6,11,16,17,22,27, 4, 5,10,15,20,21,26, 3, 8, 9,14,19,24,25, 2, 7,12,13, 18,23,28)$ |
$ 7, 7, 7, 7 $ | $2$ | $7$ | $( 1, 9,17,25, 5,13,21)( 2,10,18,26, 6,14,22)( 3,11,19,27, 7,15,23) ( 4,12,20,28, 8,16,24)$ |
$ 14, 7, 7 $ | $12$ | $14$ | $( 1, 9,17,25, 5,13,21)( 2,10,18,26, 6,14,22)( 3,12,19,28, 7,16,23, 4,11,20,27, 8,15,24)$ |
$ 21, 7 $ | $16$ | $21$ | $( 1, 9,17,25, 5,13,21)( 2,11,20,26, 7,16,22, 3,12,18,27, 8,14,23, 4,10,19,28, 6,15,24)$ |
$ 14, 14 $ | $6$ | $14$ | $( 1,10,17,26, 5,14,21, 2, 9,18,25, 6,13,22)( 3,12,19,28, 7,16,23, 4,11,20,27, 8,15,24)$ |
$ 28 $ | $12$ | $28$ | $( 1,10,19,28, 5,14,23, 4, 9,18,27, 8,13,22, 3,12,17,26, 7,16,21, 2,11,20,25, 6,15,24)$ |
$ 7, 7, 7, 7 $ | $2$ | $7$ | $( 1,13,25, 9,21, 5,17)( 2,14,26,10,22, 6,18)( 3,15,27,11,23, 7,19) ( 4,16,28,12,24, 8,20)$ |
$ 14, 7, 7 $ | $12$ | $14$ | $( 1,13,25, 9,21, 5,17)( 2,14,26,10,22, 6,18)( 3,16,27,12,23, 8,19, 4,15,28,11, 24, 7,20)$ |
$ 21, 7 $ | $16$ | $21$ | $( 1,13,25, 9,21, 5,17)( 2,15,28,10,23, 8,18, 3,16,26,11,24, 6,19, 4,14,27,12, 22, 7,20)$ |
$ 14, 14 $ | $6$ | $14$ | $( 1,14,25,10,21, 6,17, 2,13,26, 9,22, 5,18)( 3,16,27,12,23, 8,19, 4,15,28,11, 24, 7,20)$ |
$ 28 $ | $12$ | $28$ | $( 1,14,27,12,21, 6,19, 4,13,26,11,24, 5,18, 3,16,25,10,23, 8,17, 2,15,28, 9, 22, 7,20)$ |
Group invariants
Order: | $336=2^{4} \cdot 3 \cdot 7$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | yes | |
GAP id: | [336, 212] |
Character table: not available. |