Group action invariants
| Degree $n$ : | $28$ | |
| Transitive number $t$ : | $16$ | |
| Group : | $C_7:A_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11,16)(2,10,14)(3,12,13)(4,9,15)(5,28,24)(6,25,22)(7,27,21)(8,26,23)(17,19,20), (1,5,15)(2,7,14)(3,8,16)(4,6,13)(9,24,20)(10,22,17)(11,21,19)(12,23,18)(25,27,26) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 12: $A_4$ 21: $C_7:C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $A_4$
Degree 7: $C_7:C_3$
Degree 14: None
Low degree siblings
42T8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $28$ | $3$ | $( 2, 3, 4)( 5,10,18)( 6,12,19)( 7,11,17)( 8, 9,20)(13,28,21)(14,26,24) (15,25,22)(16,27,23)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $28$ | $3$ | $( 2, 4, 3)( 5,18,10)( 6,19,12)( 7,17,11)( 8,20, 9)(13,21,28)(14,24,26) (15,22,25)(16,23,27)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)$ |
| $ 14, 14 $ | $3$ | $14$ | $( 1, 5,12,13,19,23,26, 2, 6,11,14,20,24,25)( 3, 7,10,15,17,21,28, 4, 8, 9,16, 18,22,27)$ |
| $ 7, 7, 7, 7 $ | $3$ | $7$ | $( 1, 6,12,14,19,24,26)( 2, 5,11,13,20,23,25)( 3, 8,10,16,17,22,28) ( 4, 7, 9,15,18,21,27)$ |
| $ 14, 14 $ | $3$ | $14$ | $( 1, 7,12,15,19,21,26, 4, 6, 9,14,18,24,27)( 2, 8,11,16,20,22,25, 3, 5,10,13, 17,23,28)$ |
| $ 14, 14 $ | $3$ | $14$ | $( 1, 8,12,16,19,22,26, 3, 6,10,14,17,24,28)( 2, 7,11,15,20,21,25, 4, 5, 9,13, 18,23,27)$ |
| $ 14, 14 $ | $3$ | $14$ | $( 1,13,26,11,24, 5,19, 2,14,25,12,23, 6,20)( 3,15,28, 9,22, 7,17, 4,16,27,10, 21, 8,18)$ |
| $ 7, 7, 7, 7 $ | $3$ | $7$ | $( 1,14,26,12,24, 6,19)( 2,13,25,11,23, 5,20)( 3,16,28,10,22, 8,17) ( 4,15,27, 9,21, 7,18)$ |
| $ 14, 14 $ | $3$ | $14$ | $( 1,15,26, 9,24, 7,19, 4,14,27,12,21, 6,18)( 2,16,25,10,23, 8,20, 3,13,28,11, 22, 5,17)$ |
| $ 14, 14 $ | $3$ | $14$ | $( 1,16,26,10,24, 8,19, 3,14,28,12,22, 6,17)( 2,15,25, 9,23, 7,20, 4,13,27,11, 21, 5,18)$ |
Group invariants
| Order: | $84=2^{2} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [84, 11] |
| Character table: |
2 2 . . 2 2 2 2 2 2 2 2 2
3 1 1 1 . . . . . . . . .
7 1 . . 1 1 1 1 1 1 1 1 1
1a 3a 3b 2a 14a 7a 14b 14c 14d 7b 14e 14f
2P 1a 3b 3a 1a 7a 7a 7a 7a 7b 7b 7b 7b
3P 1a 1a 1a 2a 14d 7b 14e 14f 14b 7a 14c 14a
5P 1a 3b 3a 2a 14f 7b 14d 14e 14a 7a 14b 14c
7P 1a 3a 3b 2a 2a 1a 2a 2a 2a 1a 2a 2a
11P 1a 3b 3a 2a 14c 7a 14a 14b 14f 7b 14d 14e
13P 1a 3a 3b 2a 14e 7b 14f 14d 14c 7a 14a 14b
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 A /A 1 1 1 1 1 1 1 1 1
X.3 1 /A A 1 1 1 1 1 1 1 1 1
X.4 3 . . -1 -1 3 -1 -1 -1 3 -1 -1
X.5 3 . . 3 B B B B /B /B /B /B
X.6 3 . . 3 /B /B /B /B B B B B
X.7 3 . . -1 C B E D /D /B /C /E
X.8 3 . . -1 D B C E /E /B /D /C
X.9 3 . . -1 E B D C /C /B /E /D
X.10 3 . . -1 /E /B /D /C C B E D
X.11 3 . . -1 /C /B /E /D D B C E
X.12 3 . . -1 /D /B /C /E E B D C
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
C = -E(7)^3-E(7)^5+E(7)^6
D = E(7)^3-E(7)^5-E(7)^6
E = -E(7)^3+E(7)^5-E(7)^6
|