Show commands:
Magma
magma: G := TransitiveGroup(28, 32);
Group action invariants
Degree $n$: | $28$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $32$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $\PSL(2,7)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,13,28,18,22,6,10)(2,14,26,17,24,7,12)(3,16,25,19,23,8,11)(4,15,27,20,21,5,9), (1,14)(2,15)(3,16)(4,13)(5,28)(6,26)(7,25)(8,27)(11,12)(17,18)(19,20)(21,24) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 7: $\GL(3,2)$ x 2
Degree 14: None
Low degree siblings
7T5 x 2, 8T37, 14T10 x 2, 21T14, 24T284, 42T37, 42T38 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{28}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1^{4}$ | $21$ | $2$ | $12$ | $( 1,27)( 2,26)( 3,28)( 4,25)( 6, 7)( 9,12)(10,11)(13,15)(17,21)(18,24)(19,22)(20,23)$ |
3A | $3^{9},1$ | $56$ | $3$ | $18$ | $( 1, 4, 3)( 5,20,25)( 6,17,27)( 7,18,26)( 8,19,28)( 9,24,13)(10,23,15)(11,22,16)(12,21,14)$ |
4A | $4^{6},2^{2}$ | $42$ | $4$ | $20$ | $( 1,18,27,24)( 2,19,26,22)( 3,17,28,21)( 4,20,25,23)( 5,14)( 6,13, 7,15)( 8,16)( 9,10,12,11)$ |
7A1 | $7^{4}$ | $24$ | $7$ | $24$ | $( 1,17, 6,24, 9,15,26)( 2,20, 8,21,12,16,25)( 3,19, 5,22,10,13,27)( 4,18, 7,23,11,14,28)$ |
7A-1 | $7^{4}$ | $24$ | $7$ | $24$ | $( 1,15,24,17,26, 9, 6)( 2,16,21,20,25,12, 8)( 3,13,22,19,27,10, 5)( 4,14,23,18,28,11, 7)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Group invariants
Order: | $168=2^{3} \cdot 3 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 168.42 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 4A | 7A1 | 7A-1 | ||
Size | 1 | 21 | 56 | 42 | 24 | 24 | |
2 P | 1A | 1A | 3A | 2A | 7A1 | 7A-1 | |
3 P | 1A | 2A | 1A | 4A | 7A-1 | 7A1 | |
7 P | 1A | 2A | 3A | 4A | 1A | 1A | |
Type | |||||||
168.42.1a | R | ||||||
168.42.3a1 | C | ||||||
168.42.3a2 | C | ||||||
168.42.6a | R | ||||||
168.42.7a | R | ||||||
168.42.8a | R |
magma: CharacterTable(G);