Show commands: Magma
Group invariants
Abstract group: | $D_7^2$ |
| |
Order: | $196=2^{2} \cdot 7^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $28$ |
| |
Transitive number $t$: | $36$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $14$ |
| |
Generators: | $(1,2)(3,7)(4,8)(5,25)(6,26)(9,22)(10,21)(11,27)(12,28)(13,18)(14,17)(15,24)(16,23)(19,20)$, $(1,12,25,8,22,3,18,27,14,24,10,20,6,16)(2,11,26,7,21,4,17,28,13,23,9,19,5,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $14$: $D_{7}$ x 2 $28$: $D_{14}$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 7: None
Degree 14: 14T13
Low degree siblings
14T13 x 3, 28T36 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{28}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{14}$ | $7$ | $2$ | $14$ | $( 1,20)( 2,19)( 3,14)( 4,13)( 5,23)( 6,24)( 7,17)( 8,18)( 9,28)(10,27)(11,21)(12,22)(15,26)(16,25)$ |
2B | $2^{14}$ | $7$ | $2$ | $14$ | $( 1,19)( 2,20)( 3,17)( 4,18)( 5,16)( 6,15)( 7,14)( 8,13)( 9,12)(10,11)(21,27)(22,28)(23,25)(24,26)$ |
2C | $2^{14}$ | $49$ | $2$ | $14$ | $( 1,13)( 2,14)( 3,11)( 4,12)( 5,10)( 6, 9)( 7, 8)(15,27)(16,28)(17,25)(18,26)(19,24)(20,23)(21,22)$ |
7A1 | $7^{4}$ | $2$ | $7$ | $24$ | $( 1,14,25,10,22, 6,18)( 2,13,26, 9,21, 5,17)( 3,16,27,12,24, 8,20)( 4,15,28,11,23, 7,19)$ |
7A2 | $7^{4}$ | $2$ | $7$ | $24$ | $( 1,25,22,18,14,10, 6)( 2,26,21,17,13, 9, 5)( 3,27,24,20,16,12, 8)( 4,28,23,19,15,11, 7)$ |
7A3 | $7^{4}$ | $2$ | $7$ | $24$ | $( 1,10,18,25, 6,14,22)( 2, 9,17,26, 5,13,21)( 3,12,20,27, 8,16,24)( 4,11,19,28, 7,15,23)$ |
7B1 | $7^{4}$ | $2$ | $7$ | $24$ | $( 1,10,18,25, 6,14,22)( 2, 9,17,26, 5,13,21)( 3,24,16, 8,27,20,12)( 4,23,15, 7,28,19,11)$ |
7B2 | $7^{4}$ | $2$ | $7$ | $24$ | $( 1,18, 6,22,10,25,14)( 2,17, 5,21, 9,26,13)( 3,16,27,12,24, 8,20)( 4,15,28,11,23, 7,19)$ |
7B3 | $7^{4}$ | $2$ | $7$ | $24$ | $( 1,25,22,18,14,10, 6)( 2,26,21,17,13, 9, 5)( 3, 8,12,16,20,24,27)( 4, 7,11,15,19,23,28)$ |
7C1 | $7^{4}$ | $4$ | $7$ | $24$ | $( 1,18, 6,22,10,25,14)( 2,17, 5,21, 9,26,13)( 3,12,20,27, 8,16,24)( 4,11,19,28, 7,15,23)$ |
7C2 | $7^{4}$ | $4$ | $7$ | $24$ | $( 1, 6,10,14,18,22,25)( 2, 5, 9,13,17,21,26)( 3,20, 8,24,12,27,16)( 4,19, 7,23,11,28,15)$ |
7C3 | $7^{4}$ | $4$ | $7$ | $24$ | $( 1,22,14, 6,25,18,10)( 2,21,13, 5,26,17, 9)( 3,27,24,20,16,12, 8)( 4,28,23,19,15,11, 7)$ |
7D1 | $7^{4}$ | $4$ | $7$ | $24$ | $( 1,22,14, 6,25,18,10)( 2,21,13, 5,26,17, 9)( 3, 8,12,16,20,24,27)( 4, 7,11,15,19,23,28)$ |
7D2 | $7^{4}$ | $4$ | $7$ | $24$ | $( 1,10,18,25, 6,14,22)( 2, 9,17,26, 5,13,21)( 3,16,27,12,24, 8,20)( 4,15,28,11,23, 7,19)$ |
7D3 | $7^{4}$ | $4$ | $7$ | $24$ | $( 1,14,25,10,22, 6,18)( 2,13,26, 9,21, 5,17)( 3, 8,12,16,20,24,27)( 4, 7,11,15,19,23,28)$ |
7E1 | $7^{2},1^{14}$ | $4$ | $7$ | $12$ | $( 3,24,16, 8,27,20,12)( 4,23,15, 7,28,19,11)$ |
7E2 | $7^{2},1^{14}$ | $4$ | $7$ | $12$ | $( 1,18, 6,22,10,25,14)( 2,17, 5,21, 9,26,13)$ |
7E3 | $7^{2},1^{14}$ | $4$ | $7$ | $12$ | $( 1,25,22,18,14,10, 6)( 2,26,21,17,13, 9, 5)$ |
14A1 | $14^{2}$ | $14$ | $14$ | $26$ | $( 1,12,14,24,25, 8,10,20,22, 3, 6,16,18,27)( 2,11,13,23,26, 7, 9,19,21, 4, 5,15,17,28)$ |
14A3 | $14^{2}$ | $14$ | $14$ | $26$ | $( 1,24,10, 3,18,12,25,20, 6,27,14, 8,22,16)( 2,23, 9, 4,17,11,26,19, 5,28,13, 7,21,15)$ |
14A5 | $14^{2}$ | $14$ | $14$ | $26$ | $( 1, 8, 6,12,10,16,14,20,18,24,22,27,25, 3)( 2, 7, 5,11, 9,15,13,19,17,23,21,28,26, 4)$ |
14B1 | $14^{2}$ | $14$ | $14$ | $26$ | $( 1,15,10, 7,18,28,25,19, 6,11,14, 4,22,23)( 2,16, 9, 8,17,27,26,20, 5,12,13, 3,21,24)$ |
14B3 | $14^{2}$ | $14$ | $14$ | $26$ | $( 1, 7,25,11,22,15,18,19,14,23,10,28, 6, 4)( 2, 8,26,12,21,16,17,20,13,24, 9,27, 5, 3)$ |
14B5 | $14^{2}$ | $14$ | $14$ | $26$ | $( 1,11,18,23, 6, 7,22,19,10, 4,25,15,14,28)( 2,12,17,24, 5, 8,21,20, 9, 3,26,16,13,27)$ |
Malle's constant $a(G)$: $1/12$
Character table
1A | 2A | 2B | 2C | 7A1 | 7A2 | 7A3 | 7B1 | 7B2 | 7B3 | 7C1 | 7C2 | 7C3 | 7D1 | 7D2 | 7D3 | 7E1 | 7E2 | 7E3 | 14A1 | 14A3 | 14A5 | 14B1 | 14B3 | 14B5 | ||
Size | 1 | 7 | 7 | 49 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 14 | 14 | 14 | 14 | 14 | 14 | |
2 P | 1A | 1A | 1A | 1A | 7A2 | 7A3 | 7A1 | 7B2 | 7B3 | 7B1 | 7C2 | 7C3 | 7C1 | 7D2 | 7D3 | 7D1 | 7E2 | 7E3 | 7E1 | 7A1 | 7A3 | 7A2 | 7B1 | 7B3 | 7B2 | |
7 P | 1A | 2A | 2B | 2C | 7A3 | 7A1 | 7A2 | 7B3 | 7B1 | 7B2 | 7C3 | 7C1 | 7C2 | 7D3 | 7D1 | 7D2 | 7E3 | 7E1 | 7E2 | 14A3 | 14A5 | 14A1 | 14B3 | 14B5 | 14B1 | |
Type | ||||||||||||||||||||||||||
196.9.1a | R | |||||||||||||||||||||||||
196.9.1b | R | |||||||||||||||||||||||||
196.9.1c | R | |||||||||||||||||||||||||
196.9.1d | R | |||||||||||||||||||||||||
196.9.2a1 | R | |||||||||||||||||||||||||
196.9.2a2 | R | |||||||||||||||||||||||||
196.9.2a3 | R | |||||||||||||||||||||||||
196.9.2b1 | R | |||||||||||||||||||||||||
196.9.2b2 | R | |||||||||||||||||||||||||
196.9.2b3 | R | |||||||||||||||||||||||||
196.9.2c1 | R | |||||||||||||||||||||||||
196.9.2c2 | R | |||||||||||||||||||||||||
196.9.2c3 | R | |||||||||||||||||||||||||
196.9.2d1 | R | |||||||||||||||||||||||||
196.9.2d2 | R | |||||||||||||||||||||||||
196.9.2d3 | R | |||||||||||||||||||||||||
196.9.4a1 | R | |||||||||||||||||||||||||
196.9.4a2 | R | |||||||||||||||||||||||||
196.9.4a3 | R | |||||||||||||||||||||||||
196.9.4b1 | R | |||||||||||||||||||||||||
196.9.4b2 | R | |||||||||||||||||||||||||
196.9.4b3 | R | |||||||||||||||||||||||||
196.9.4c1 | R | |||||||||||||||||||||||||
196.9.4c2 | R | |||||||||||||||||||||||||
196.9.4c3 | R |
Regular extensions
Data not computed