Group action invariants
| Degree $n$ : | $28$ | |
| Transitive number $t$ : | $27$ | |
| Group : | $F_8:C_3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,8,3,12,5)(2,10,7,4,11,6)(13,22,26,14,23,28)(15,21,27,16,24,25)(17,20,18), (1,27,10,5,20,22,13)(2,25,11,7,19,21,16)(3,28,12,6,18,23,15)(4,26,9,8,17,24,14) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 21: $C_7:C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 7: $C_7:C_3$
Degree 14: None
Low degree siblings
8T36, 14T11, 24T283, 42T26Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $7$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26) (27,28)$ |
| $ 6, 6, 6, 6, 3, 1 $ | $28$ | $6$ | $( 2, 3, 4)( 5,15,21, 6,16,22)( 7,13,23, 8,14,24)( 9,20,26,10,19,25) (11,17,28,12,18,27)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $28$ | $3$ | $( 2, 3, 4)( 5,16,21)( 6,15,22)( 7,14,23)( 8,13,24)( 9,19,26)(10,20,25) (11,18,28)(12,17,27)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $28$ | $3$ | $( 2, 4, 3)( 5,21,16)( 6,22,15)( 7,23,14)( 8,24,13)( 9,26,19)(10,25,20) (11,28,18)(12,27,17)$ |
| $ 6, 6, 6, 6, 3, 1 $ | $28$ | $6$ | $( 2, 4, 3)( 5,22,16, 6,21,15)( 7,24,14, 8,23,13)( 9,25,19,10,26,20) (11,27,18,12,28,17)$ |
| $ 7, 7, 7, 7 $ | $24$ | $7$ | $( 1, 5,13,10,22,27,20)( 2, 7,16,11,21,25,19)( 3, 6,15,12,23,28,18) ( 4, 8,14, 9,24,26,17)$ |
| $ 7, 7, 7, 7 $ | $24$ | $7$ | $( 1, 9,18,16,26, 7,22)( 2,12,17,13,28, 5,21)( 3,11,20,14,25, 8,23) ( 4,10,19,15,27, 6,24)$ |
Group invariants
| Order: | $168=2^{3} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [168, 43] |
| Character table: |
2 3 3 1 1 1 1 . .
3 1 1 1 1 1 1 . .
7 1 . . . . . 1 1
1a 2a 6a 3a 3b 6b 7a 7b
2P 1a 1a 3b 3b 3a 3a 7a 7b
3P 1a 2a 2a 1a 1a 2a 7b 7a
5P 1a 2a 6b 3b 3a 6a 7b 7a
7P 1a 2a 6a 3a 3b 6b 1a 1a
X.1 1 1 1 1 1 1 1 1
X.2 1 1 A A /A /A 1 1
X.3 1 1 /A /A A A 1 1
X.4 3 3 . . . . B /B
X.5 3 3 . . . . /B B
X.6 7 -1 -1 1 1 -1 . .
X.7 7 -1 -A A /A -/A . .
X.8 7 -1 -/A /A A -A . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|