Learn more about

Further refine search

Results (displaying all 26 matches)

Label Polynomial Discriminant Galois group Class group
18.0.5040742784941043712.1 x18 - x15 + 2x12 - 9x9 + 12x6 - 5x3 + 1 \( -\,2^{12}\cdot 3^{21}\cdot 7^{6} \) $C_3\times C_3:S_3$ (as 18T23) Trivial
18.0.5132738882980786176.1 x18 - 6x17 + 16x16 - 20x15 - 2x14 + 51x13 - 87x12 + 64x11 + 16x10 - 108x9 + 181x8 - 232x7 + 253x6 - 224x5 + 154x4 - 79x3 + 29x2 - 7x + 1 \( -\,2^{12}\cdot 3^{12}\cdot 11^{9} \) $C_3\times C_3:S_3$ (as 18T23) Trivial
18.0.1844362878529525198848.2 x18 - 3x15 + 6x12 - 11x9 + 12x6 + 3x3 + 1 \( -\,2^{12}\cdot 3^{37} \) $C_3\times C_3:S_3$ (as 18T23) Trivial
18.0.16599265906765726789632.4 x18 - 6x15 - 3x12 + 34x9 + 285x6 + 12x3 + 1 \( -\,2^{12}\cdot 3^{39} \) $C_3\times C_3:S_3$ (as 18T23) Trivial
18.18.106297170913362278088000000000.1 x18 - 42x16 - 35x15 + 612x14 + 870x13 - 3614x12 - 6570x11 + 9132x10 + 20685x9 - 9144x8 - 29310x7 + 3176x6 + 19710x5 - 570x4 - 6175x3 + 450x2 + 750x - 125 \( 2^{12}\cdot 3^{24}\cdot 5^{9}\cdot 19^{6} \) $C_3\times C_3:S_3$ (as 18T23) Trivial (GRH)
18.0.4052555153018976267000000000000.10 x18 + 9x16 - 18x15 + 36x14 + 72x13 + 177x12 + 270x11 - 3240x10 - 4056x9 + 945x8 + 14490x7 + 48987x6 - 4428x5 - 150804x4 - 35748x3 + 170424x2 - 15120x + 34896 \( -\,2^{12}\cdot 3^{39}\cdot 5^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[3, 3, 3]$ (GRH)
18.18.116407003600838612509128000000000.1 x18 - 72x16 - 15x15 + 1692x14 - 120x13 - 16668x12 + 7470x11 + 65196x10 - 39545x9 - 104526x8 + 52290x7 + 84016x6 - 18900x5 - 34320x4 - 2525x3 + 4950x2 + 1500x + 125 \( 2^{12}\cdot 3^{24}\cdot 5^{9}\cdot 61^{6} \) $C_3\times C_3:S_3$ (as 18T23) Trivial (GRH)
18.0.2361108749748912380642242285082187.6 x18 + 9x16 - 36x15 + 36x14 - 117x13 + 519x12 + 54x11 - 783x10 - 2565x9 - 1323x8 + 10323x7 + 3276x6 - 23787x5 - 43209x4 + 7146x3 + 132030x2 + 138402x + 47523 \( -\,3^{39}\cdot 17^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[3, 3, 9, 9]$ (GRH)
18.0.13266257117930788904129800273932288.5 x18 - 9x17 + 39x16 - 90x15 + 69x14 + 225x13 - 1676x12 + 5337x11 - 8355x10 - 78x9 + 17625x8 - 19323x7 + 283375x6 - 836352x5 + 1123398x4 - 814854x3 + 360072x2 - 109404x + 19476 \( -\,2^{12}\cdot 3^{33}\cdot 17^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[3, 3]$ (GRH)
18.0.50396986113842071567939653456703488.13 x18 - 9x17 + 39x16 - 90x15 + 69x14 + 225x13 - 1100x12 + 3825x11 - 10119x10 + 12342x9 + 6465x8 - 43155x7 + 160075x6 - 339732x5 + 408726x4 - 315030x3 + 174384x2 - 56916x + 8796 \( -\,2^{12}\cdot 3^{33}\cdot 19^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[3, 3, 3, 9]$ (GRH)
18.0.149893238403862212943036837746306920448.1 x18 - 9x17 + 39x16 - 90x15 + 69x14 + 225x13 - 2756x12 + 14733x11 - 41133x10 + 44796x9 + 31989x8 - 156159x7 + 1476721x6 - 3954150x5 + 5131062x4 - 3847170x3 + 1822716x2 - 520884x + 66996 \( -\,2^{12}\cdot 3^{33}\cdot 37^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[3, 3, 3, 9]$ (GRH)
18.0.3238832304182321509797314520003000000000000.3 x18 - 9x17 + 39x16 - 18x15 - 579x14 + 2889x13 - 7292x12 - 207x11 + 62061x10 - 66486x9 - 912039x8 + 3557637x7 + 13853359x6 - 59070312x5 + 91169694x4 + 75997794x3 - 287391240x2 + 162804708x + 385910388 \( -\,2^{12}\cdot 3^{33}\cdot 5^{12}\cdot 17^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[3, 3, 3, 3, 3]$ (GRH)
18.0.5623949773935752894766481334356864599994368.1 x18 - 9x17 + 39x16 - 90x15 + 177x14 - 531x13 + 4408x12 - 23931x11 + 73689x10 - 272778x9 + 747021x8 - 1223703x7 + 1661599x6 - 1645560x5 + 2088558x4 + 11847282x3 - 23111064x2 + 9854892x + 47870076 \( -\,2^{12}\cdot 3^{33}\cdot 89^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[6, 6]$ (GRH)
18.0.12303951687949724503891516957203000000000000.1 x18 - 9x17 + 39x16 - 18x15 - 615x14 + 3141x13 + 2680x12 - 55755x11 + 190365x10 - 168870x9 - 379995x8 + 1417041x7 - 4869773x6 - 236412x5 + 20343942x4 - 85483590x3 + 33435936x2 + 35801892x + 1328391828 \( -\,2^{12}\cdot 3^{33}\cdot 5^{12}\cdot 19^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[3, 3, 3, 3, 9, 9]$ (GRH)
18.0.32680784318068732897853908300449068156188587.3 x18 - 21x15 - 7815x12 + 467768x9 + 44713203x6 - 127849638x3 + 174676879 \( -\,3^{39}\cdot 7^{12}\cdot 17^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[3, 27, 189]$ (GRH)
18.0.872233768265190335916797362984151904157842243.1 x18 - 9x17 + 39x16 - 99x15 - 129x14 + 1845x13 + 4363x12 - 46008x11 + 155823x10 - 946308x9 + 2059689x8 - 1186992x7 + 4368925x6 - 19419525x5 + 104639490x4 + 498275931x3 - 2708142030x2 + 2120234994x + 21867232251 \( -\,3^{33}\cdot 271^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[3, 9, 9, 9, 27]$ (GRH)
18.0.8969580780515349163336915861800987000000000000.1 x18 - 60x15 - 28551x12 + 1705300x9 + 313150767x6 - 184875000x3 + 40353607 \( -\,2^{12}\cdot 3^{39}\cdot 5^{12}\cdot 19^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[3, 3, 3, 3, 6, 18]$ (GRH)
18.0.158167331320896150779524753864609204299658702848.1 x18 - 9x17 + 39x16 + 90x15 - 1191x14 + 4365x13 + 3940x12 - 44235x11 + 89241x10 + 663882x9 - 2055975x8 + 1561365x7 + 48365515x6 - 130560552x5 + 146010546x4 + 514036110x3 - 952674696x2 + 374601564x + 2314764156 \( -\,2^{12}\cdot 3^{33}\cdot 11^{12}\cdot 19^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[3, 3, 3, 3, 9, 9]$ (GRH)
18.0.5225877221356918592091419443200727020071175574107.1 x18 - 96x15 + 3849x12 + 74482x9 + 224141118x6 + 33589614x3 + 17373979 \( -\,3^{39}\cdot 17^{12}\cdot 19^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[3, 3, 3, 3, 9, 9, 27]$ (GRH)
18.0.5171755899362511287780502990259247846315138714185728.1 x18 - 9x17 + 39x16 + 18x15 - 849x14 + 3843x13 - 28406x12 + 92007x11 - 95403x10 - 448638x9 - 900645x8 + 7936227x7 + 281242081x6 - 884819106x5 + 1203660630x4 + 111900570x3 - 1123085628x2 + 404543268x + 888131124 \( -\,2^{12}\cdot 3^{33}\cdot 7^{12}\cdot 71^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[3, 3, 3, 3, 3, 3, 3, 3, 3]$ (GRH)
18.0.12520069450520138163679370498940927487923000000000000.1 x18 - 9x17 + 39x16 - 18x15 - 489x14 + 2259x13 - 30962x12 + 131103x11 - 233499x10 - 812226x9 + 3378711x8 - 4698873x7 + 272888029x6 - 810558162x5 + 1079608554x4 - 805226586x3 + 468467820x2 - 202915692x + 51961428 \( -\,2^{12}\cdot 3^{33}\cdot 5^{12}\cdot 107^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[3, 3, 3, 6, 6]$ (GRH)
18.0.59046319790637747019476233422195951296270284280622347.1 x18 - 60x15 + 2229x12 + 3025762x9 + 1020101190x6 + 51364578x3 + 40353607 \( -\,3^{39}\cdot 19^{12}\cdot 37^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[3, 3, 3, 3, 9, 9, 9, 18, 54]$ (GRH)
18.0.1955476758561888850288369070881021250289363000000000000.1 x18 - 9x17 + 39x16 - 18x15 - 489x14 + 2259x13 - 46082x12 + 294723x11 - 868809x10 - 832476x9 + 9141591x8 - 21041973x7 + 634588399x6 - 1846066752x5 + 2444612454x4 - 2002296426x3 + 1157395500x2 - 374881932x + 57871188 \( -\,2^{12}\cdot 3^{33}\cdot 5^{12}\cdot 163^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[3, 3, 3, 3, 18, 18]$ (GRH)
18.0.5548588090332456647311228183246490588513332762983149568.1 x18 - 9x17 + 39x16 + 18x15 - 795x14 + 3465x13 - 17408x12 + 110313x11 - 382071x10 - 1046958x9 + 7983021x8 - 18695511x7 + 227790487x6 - 633662316x5 + 831229938x4 - 969139794x3 + 983394720x2 - 427567140x + 256690812 \( -\,2^{12}\cdot 3^{33}\cdot 7^{12}\cdot 127^{12} \) $C_3\times C_3:S_3$ (as 18T23) $[3, 3, 3, 3, 3, 3, 9, 18, 18]$ (GRH)
18.0.20803075197746806021621278075959514606918210410888671875.1 x18 - 9x17 + 39x16 - 63x15 - 588x14 + 4122x13 + 65374x12 - 404667x11 + 1068837x10 - 8088882x9 + 36038982x8 - 79679565x7 - 143151569x6 + 541076877x5 - 81393138x4 + 14258110416x3 - 14623618176x2 + 99972009x + 522764442927 \( -\,3^{33}\cdot 5^{12}\cdot 397^{12} \) $C_3\times C_3:S_3$ (as 18T23) n/a
18.0.13985883359540449487500333263200539051545952247168701171875.1 x18 - 9x17 + 39x16 - 63x15 + 627x14 - 4383x13 + 170809x12 - 1036062x11 + 3126507x10 - 25029222x9 + 89645457x8 - 160156980x7 - 1758315869x6 + 6138070497x5 - 4922138088x4 + 134538470331x3 - 132534531936x2 - 1368271656x + 9167365520487 \( -\,3^{33}\cdot 5^{12}\cdot 683^{12} \) $C_3\times C_3:S_3$ (as 18T23) n/a


Download all search results for