# Properties

 Label 18.0.51327388829...6176.1 Degree $18$ Signature $[0, 9]$ Discriminant $-\,2^{12}\cdot 3^{12}\cdot 11^{9}$ Root discriminant $10.95$ Ramified primes $2, 3, 11$ Class number $1$ Class group Trivial Galois group $C_3\times C_3:S_3$ (as 18T23)

# Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -7, 29, -79, 154, -224, 253, -232, 181, -108, 16, 64, -87, 51, -2, -20, 16, -6, 1]);

sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 + 16*x^16 - 20*x^15 - 2*x^14 + 51*x^13 - 87*x^12 + 64*x^11 + 16*x^10 - 108*x^9 + 181*x^8 - 232*x^7 + 253*x^6 - 224*x^5 + 154*x^4 - 79*x^3 + 29*x^2 - 7*x + 1)

gp: K = bnfinit(x^18 - 6*x^17 + 16*x^16 - 20*x^15 - 2*x^14 + 51*x^13 - 87*x^12 + 64*x^11 + 16*x^10 - 108*x^9 + 181*x^8 - 232*x^7 + 253*x^6 - 224*x^5 + 154*x^4 - 79*x^3 + 29*x^2 - 7*x + 1, 1)

## Normalizeddefining polynomial

$$x^{18} - 6 x^{17} + 16 x^{16} - 20 x^{15} - 2 x^{14} + 51 x^{13} - 87 x^{12} + 64 x^{11} + 16 x^{10} - 108 x^{9} + 181 x^{8} - 232 x^{7} + 253 x^{6} - 224 x^{5} + 154 x^{4} - 79 x^{3} + 29 x^{2} - 7 x + 1$$

magma: DefiningPolynomial(K);

sage: K.defining_polynomial()

gp: K.pol

## Invariants

 Degree: $18$ magma: Degree(K);  sage: K.degree()  gp: poldegree(K.pol) Signature: $[0, 9]$ magma: Signature(K);  sage: K.signature()  gp: K.sign Discriminant: $$-5132738882980786176=-\,2^{12}\cdot 3^{12}\cdot 11^{9}$$ magma: Discriminant(Integers(K));  sage: K.disc()  gp: K.disc Root discriminant: $10.95$ magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));  sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $2, 3, 11$ magma: PrimeDivisors(Discriminant(Integers(K)));  sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~ $|\Aut(K/\Q)|$: $9$ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{2733} a^{17} + \frac{233}{2733} a^{16} + \frac{44}{911} a^{15} - \frac{119}{911} a^{14} + \frac{103}{911} a^{13} + \frac{37}{911} a^{12} + \frac{934}{2733} a^{11} - \frac{272}{911} a^{10} + \frac{857}{2733} a^{9} - \frac{1171}{2733} a^{8} + \frac{300}{911} a^{7} - \frac{128}{2733} a^{6} - \frac{1187}{2733} a^{5} + \frac{1226}{2733} a^{4} - \frac{58}{911} a^{3} - \frac{670}{2733} a^{2} - \frac{676}{2733} a + \frac{587}{2733}$

magma: IntegralBasis(K);

sage: K.integral_basis()

gp: K.zk

## Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);

sage: K.class_group().invariants()

gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);

sage: UK = K.unit_group()

 Rank: $8$ magma: UnitRank(K);  sage: UK.rank()  gp: K.fu Torsion generator: $$-1$$ (order $2$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);  sage: UK.torsion_generator()  gp: K.tu[2] Fundamental units: Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right magma: [K!f(g): g in Generators(UK)];  sage: UK.fundamental_units()  gp: K.fu Regulator: $$51.3669704577$$ magma: Regulator(K);  sage: K.regulator()  gp: K.reg

## Galois group

magma: GaloisGroup(K);

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

 A solvable group of order 54 The 18 conjugacy class representatives for $C_3\times C_3:S_3$ Character table for $C_3\times C_3:S_3$

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

## Sibling fields

 Degree 18 siblings: data not computed

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 R R ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{9}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3} 3.3.0.1x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3} 3.9.12.1x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$$3$$3$$12$$C_3^2$$[2]^{3}$
$11$11.6.3.2$x^{6} - 121 x^{2} + 3993$$2$$3$$3$$C_6$$[\ ]_{2}^{3} 11.6.3.2x^{6} - 121 x^{2} + 3993$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
11.6.3.2$x^{6} - 121 x^{2} + 3993$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$