Normalized defining polynomial
\( x^{18} - 21 x^{15} - 7815 x^{12} + 467768 x^{9} + 44713203 x^{6} - 127849638 x^{3} + 174676879 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-32680784318068732897853908300449068156188587=-\,3^{39}\cdot 7^{12}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $261.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{6} - \frac{1}{9} a^{3} - \frac{2}{9}$, $\frac{1}{9} a^{7} - \frac{1}{9} a^{4} - \frac{2}{9} a$, $\frac{1}{27} a^{8} - \frac{1}{27} a^{7} + \frac{1}{27} a^{6} + \frac{2}{27} a^{5} - \frac{2}{27} a^{4} + \frac{2}{27} a^{3} + \frac{1}{27} a^{2} - \frac{1}{27} a + \frac{1}{27}$, $\frac{1}{513} a^{9} + \frac{1}{19} a^{6} - \frac{10}{171} a^{3} - \frac{164}{513}$, $\frac{1}{513} a^{10} + \frac{1}{19} a^{7} - \frac{10}{171} a^{4} - \frac{164}{513} a$, $\frac{1}{1539} a^{11} - \frac{1}{1539} a^{10} + \frac{1}{1539} a^{9} + \frac{1}{57} a^{8} - \frac{1}{57} a^{7} + \frac{1}{57} a^{6} - \frac{10}{513} a^{5} + \frac{10}{513} a^{4} - \frac{10}{513} a^{3} + \frac{349}{1539} a^{2} - \frac{349}{1539} a + \frac{349}{1539}$, $\frac{1}{56943} a^{12} - \frac{29}{56943} a^{9} + \frac{341}{18981} a^{6} + \frac{9211}{56943} a^{3} + \frac{18931}{56943}$, $\frac{1}{170829} a^{13} + \frac{1}{170829} a^{12} - \frac{140}{170829} a^{10} - \frac{140}{170829} a^{9} + \frac{1451}{56943} a^{7} + \frac{1451}{56943} a^{6} + \frac{6214}{170829} a^{4} + \frac{6214}{170829} a^{3} + \frac{81424}{170829} a + \frac{81424}{170829}$, $\frac{1}{170829} a^{14} - \frac{1}{170829} a^{12} - \frac{29}{170829} a^{11} - \frac{1}{1539} a^{10} - \frac{82}{170829} a^{9} + \frac{341}{56943} a^{8} + \frac{10}{513} a^{7} + \frac{769}{56943} a^{6} - \frac{9770}{170829} a^{5} + \frac{16}{171} a^{4} + \frac{25754}{170829} a^{3} - \frac{56993}{170829} a^{2} - \frac{292}{1539} a + \frac{24581}{170829}$, $\frac{1}{2653729263351} a^{15} + \frac{12718457}{2653729263351} a^{12} + \frac{1467830425}{2653729263351} a^{9} - \frac{49817893805}{2653729263351} a^{6} + \frac{366070091210}{2653729263351} a^{3} + \frac{1164695236042}{2653729263351}$, $\frac{1}{4450303974639627} a^{16} + \frac{1}{7961187790053} a^{15} - \frac{3342716047}{4450303974639627} a^{13} + \frac{12718457}{7961187790053} a^{12} - \frac{4683799499}{4450303974639627} a^{10} + \frac{6640791952}{7961187790053} a^{9} + \frac{125820918937495}{4450303974639627} a^{7} + \frac{384710874463}{7961187790053} a^{6} - \frac{607129474847608}{4450303974639627} a^{4} + \frac{800598859478}{7961187790053} a^{3} - \frac{1272002358832862}{4450303974639627} a + \frac{3264917616004}{7961187790053}$, $\frac{1}{2487719921823551493} a^{17} - \frac{1}{7961187790053} a^{15} + \frac{130869846683}{67235673562798689} a^{14} - \frac{12718457}{7961187790053} a^{12} - \frac{666811727889647}{2487719921823551493} a^{11} - \frac{1}{1539} a^{10} - \frac{1467830425}{7961187790053} a^{9} + \frac{41474657021119714}{2487719921823551493} a^{8} - \frac{28}{513} a^{7} + \frac{49817893805}{7961187790053} a^{6} + \frac{143215615922381576}{2487719921823551493} a^{5} - \frac{28}{513} a^{4} - \frac{366070091210}{7961187790053} a^{3} + \frac{1074412493003110306}{2487719921823551493} a^{2} - \frac{406}{1539} a - \frac{1164695236042}{7961187790053}$
Class group and class number
$C_{3}\times C_{27}\times C_{189}$, which has order $15309$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{62}{4400877717} a^{15} + \frac{49}{162995471} a^{12} + \frac{157621}{1466959239} a^{9} - \frac{28559699}{4400877717} a^{6} - \frac{916925509}{1466959239} a^{3} + \frac{675665378}{488986413} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 267000059795.07947 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_3:S_3$ (as 18T23):
| A solvable group of order 54 |
| The 18 conjugacy class representatives for $C_3\times C_3:S_3$ |
| Character table for $C_3\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.70227.1 x3, 6.0.47258883.3, Deg 6, Deg 6, 6.0.14795494587.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $17$ | 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |