Normalized defining polynomial
\( x^{18} + 9 x^{16} - 18 x^{15} + 36 x^{14} + 72 x^{13} + 177 x^{12} + 270 x^{11} - 3240 x^{10} - 4056 x^{9} + 945 x^{8} + 14490 x^{7} + 48987 x^{6} - 4428 x^{5} - 150804 x^{4} - 35748 x^{3} + 170424 x^{2} - 15120 x + 34896 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4052555153018976267000000000000=-\,2^{12}\cdot 3^{39}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} - \frac{3}{8} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{10} + \frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{5032} a^{15} - \frac{99}{5032} a^{13} + \frac{3}{148} a^{12} + \frac{35}{5032} a^{11} - \frac{45}{1258} a^{10} - \frac{169}{5032} a^{9} - \frac{625}{2516} a^{8} - \frac{927}{5032} a^{7} - \frac{5}{629} a^{6} + \frac{123}{5032} a^{5} + \frac{331}{2516} a^{4} + \frac{41}{2516} a^{3} - \frac{195}{1258} a^{2} - \frac{278}{629} a + \frac{58}{629}$, $\frac{1}{5032} a^{16} - \frac{99}{5032} a^{14} + \frac{3}{148} a^{13} + \frac{35}{5032} a^{12} - \frac{45}{1258} a^{11} - \frac{169}{5032} a^{10} + \frac{1}{629} a^{9} + \frac{331}{5032} a^{8} - \frac{5}{629} a^{7} - \frac{1135}{5032} a^{6} + \frac{331}{2516} a^{5} - \frac{147}{629} a^{4} - \frac{1019}{2516} a^{3} + \frac{73}{1258} a^{2} + \frac{58}{629} a$, $\frac{1}{1884049707377067207018094411200056} a^{17} - \frac{8678832172519237195212475021}{942024853688533603509047205600028} a^{16} + \frac{1448226846863888742800241203}{1884049707377067207018094411200056} a^{15} + \frac{18877294829508640144000622633771}{942024853688533603509047205600028} a^{14} + \frac{9542451907189133711157828447041}{235506213422133400877261801400007} a^{13} + \frac{21206971991026396587198400997161}{235506213422133400877261801400007} a^{12} - \frac{90322336468143389693223570017681}{1884049707377067207018094411200056} a^{11} + \frac{36017065688560498187484134938587}{942024853688533603509047205600028} a^{10} + \frac{20192592788576560767281217705339}{942024853688533603509047205600028} a^{9} + \frac{98546500474635492272643684994901}{942024853688533603509047205600028} a^{8} + \frac{317209985751968180253493232025}{18291744731816186475903829234952} a^{7} - \frac{12680713384592001307741127075177}{471012426844266801754523602800014} a^{6} - \frac{529351625266596884191626006825809}{1884049707377067207018094411200056} a^{5} - \frac{60477972874541175163513403772121}{235506213422133400877261801400007} a^{4} - \frac{412864730189507720112283846208989}{942024853688533603509047205600028} a^{3} + \frac{1605187410682115036232453308017}{471012426844266801754523602800014} a^{2} - \frac{25899866767699259944849339261399}{235506213422133400877261801400007} a + \frac{62718912393162488494390974641814}{235506213422133400877261801400007}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}$, which has order $27$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3400791522608286}{261368613242854966729} a^{17} - \frac{4904243309668713}{522737226485709933458} a^{16} - \frac{122527587910196367}{1045474452971419866916} a^{15} + \frac{35707428017561700}{261368613242854966729} a^{14} - \frac{289355022742569051}{1045474452971419866916} a^{13} - \frac{359540844395741481}{261368613242854966729} a^{12} - \frac{640455504924426750}{261368613242854966729} a^{11} - \frac{3017987756394015339}{522737226485709933458} a^{10} + \frac{42402793399776490741}{1045474452971419866916} a^{9} + \frac{21714495737706724113}{261368613242854966729} a^{8} + \frac{9079973348150306367}{261368613242854966729} a^{7} - \frac{72851609948838117327}{522737226485709933458} a^{6} - \frac{766620758303786882187}{1045474452971419866916} a^{5} - \frac{242784982351165066425}{522737226485709933458} a^{4} + \frac{1794822637989828768015}{1045474452971419866916} a^{3} + \frac{572616304425115178895}{522737226485709933458} a^{2} - \frac{466802025763186591407}{261368613242854966729} a + \frac{199267579090262160650}{261368613242854966729} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16318156.115223706 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_3:S_3$ (as 18T23):
| A solvable group of order 54 |
| The 18 conjugacy class representatives for $C_3\times C_3:S_3$ |
| Character table for $C_3\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.243.1 x3, 6.0.1771470000.8, 6.0.1771470000.7, 6.0.196830000.3, 6.0.177147.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |